IMAGE EVALUATION
TEST TARGET (MT-3)

Photographic Sciences Corporation

23 WEST MAIN STREET
WEBSTER, N.Y. 14580
(716) 872-4503
The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

- Coloured covers/
- Covers damaged/
- Covers restored and/or laminated/
- Cover title missing/
- Coloured maps/
- Coloured ink (i.e. other than blue or black)/
- Coloured plates and/or illustrations/
- Bound with other material/
- Tight binding may cause shadows or distortion along interior margin/
- Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
- Additional comments:

This item is filmed at the reduction ratio checked below:/
Ce document est filmé au taux de réduction indiqué ci-dessous.

<table>
<thead>
<tr>
<th>Reduction Ratio</th>
<th>10X</th>
<th>14X</th>
<th>18X</th>
<th>22X</th>
<th>26X</th>
<th>30X</th>
<th>12X</th>
<th>16X</th>
<th>20X</th>
<th>24X</th>
<th>28X</th>
<th>32X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Checked</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
The copy filmed here has been reproduced thanks to the generosity of:

Library of the Public Archives of Canada

The images appearing here are the best quality possible considering the condition and legibility of the original copy and in keeping with the filming contract specifications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or illustrated impression, or the back cover when appropriate. All other original copies are filmed beginning on the first page with a printed or illustrated impression, and ending on the last page with a printed or illustrated impression.

The last recorded frame on each microfiche shall contain the symbol ← (meaning "CONTINUED"), or the symbol ▽ (meaning "END"), whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

```plaintext
1  2  3
```

L'exemple filmé fut reproduit grâce à la générosité de:

La bibliothèque des Archives publiques du Canada

Les images suivantes ont été reproduites avec le plus grand soin, compte tenu de la condition et de la netteté de l'exemple filmé, et en conformité avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en papier est imprimée sont filmés en commençant par le premier plat et en terminant soit par la dernière page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmés en commençant par la première page qui comporte une empreinte d'impression ou d'illustration et en terminant par la dernière page qui comporte une telle empreinte.

Un des symboles suivants apparaîtra sur la dernière image de chaque microfiche, selon le cas: le symbole ← signifie "A SUIVRE", le symbole ▽ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent être filmés à des taux de réduction différents. Lorsque le document est trop grand pour être reproduit en un seul cliché, il est filmé à partir de l'angle supérieur gauche, de gauche à droite, et de haut en bas, en prenant le nombre d'images nécessaire. Les diagrammes suivants illustrent la méthode.

```
1  2  3
4  5  6
```
VEGETATION OF THE DEVONIAN PERIOD—
RESTORED.
THE GEOLOGY

OF

NOVA SCOTIA, NEW BRUNSWICK, AND
PRINCE EDWARD ISLAND,

OR

ACADIAN GEOLOGY.

BY

SIR J. WILLIAM DAWSON, LL.D., F.R.S., F.G.S.,
PRINCIPAL AND VICE-CHANCELLOR OF MCGILL COLLEGE AND UNIVERSITY, MONTREAL;
CORRESPONDING MEMBER OF THE ACADEMY OF NATURAL SCIENCES, PHILADELPHIA; FELLOW OF THE
AMERICAN ACADEMY OF ARTS AND SCIENCES, AND OF THE AMERICAN PHILOSOPHICAL
SOCIETY; FOREIGN CORRESPONDING FELLOW OF THE GEOLOGICAL SOCIETY
OF EDINBURGH; HONORARY MEMBER OF THE BOSTON SOCIETY OF
NATURAL HISTORY; ETC., ETC.

FOURTH EDITION.

WITH A MAP, ILLUSTRATIONS, AND TWO SUPPLEMENTS.

London:
MACMILLAN AND CO.

1891.
ADVERTISEMETN TO THE FOURTH EDITION.

The lapse of twelve years since the issue of the Third Edition of this work has rendered necessary a Second Supplement, which will be found appended to the present Edition, and will suffice to bring it up to date by indicating what has been done in the interval, with the sources of more detailed information, as well as by stating the more important new facts and making some needed corrections. To facilitate reference, a General Table of Contents of the Two Supplements has been added.

No change has been made in the original text of 1868, so that all the facts and conclusions stated in the body of the work are of that date or earlier.

J. W. D.

January 1894.
TO

SIR CHARLES LYELL, BART., M.A., F.R.S., ETC.

My dear Sir,

After an interval of twelve years, it affords me much pleasure to renew the dedication of this work to you; and in doing so to repeat my grateful acknowledgments, for the kind aid and encouragement extended to me as a young geologist, and for the friendly interest which you have ever manifested in the labours of my riper years.

I am,

With sincere gratitude and respect,

Yours faithfully,

J. W. DAWSON.
PREFACE TO THE SECOND EDITION.

In the Preface to the First Edition of this Work, its intention was stated to be—to place within the reach of the people of the districts to which it relates, a popular account of the more recent discoveries in the Geology and mineral resources of their country, and at the same time to give to geologists in other countries a connected view of the structure of a very interesting portion of the American continent, in its relation to general and theoretical Geology. In the Edition now issued, it is hoped still more completely to fulfil this design, with reference to the present more advanced condition of knowledge.

With regard to the purely local Geology, the author has endeavoured to convey a knowledge of the structure and fossils of the region in such a manner as to be intelligible to ordinary reader, and has devoted much attention to all questions relating to the nature and present or prospective value of deposits of useful minerals. It is proper to add that, as he has no pecuniary interest in the mines of the Acadian provinces, and has received no public aid in furtherance of his explorations, he has had no inducement to write otherwise than impartially; and where he may appear to give undue prominence to one district in comparison with another, this is merely because his descriptions are necessarily limited by the scope of his opportunities of observation. When he makes positive statements as to the economical value of deposits of useful minerals, these may be relied on as the results of his inquiries as to the facts; and in all cases of uncertainty, he has endeavoured to avoid everything likely to lead to unfounded hopes or baseless speculations. It has been a source of much gratification to him to find that the First Edition of this Work
has had an important influence on the recent rapid development of the mineral resources of his native country; and he hopes that the present Edition will prove still more extensively useful; and, in any case, that it will be received in the spirit in which it is offered, as a contribution toward the progress of Acadia, from one of her sons.

In theoretical Geology, the following may be mentioned as points of general interest more fully discussed in this Edition, or which have been introduced into it for the first time:

(1.) The Pre-historic Human period in Acadia, in comparison with that of Europe.

(2.) The character and origin of the Boulder Clay and Surface Glaciation, in connexion with prevailing theories on these subjects.

(3.) The Flora of the Carboniferous period, more especially with reference to the affinities of the several genera of plants, and their relative importance in relation to the formation of Coal—a subject which will be found more fully illustrated in this work than in any previous publication.

(4.) The still more curious and ancient Devonian Flora as displayed in New Brunswick.

(5.) The Land Animals of the Carboniferous and Devonian periods, of which Acadia has afforded so many examples.

(6.) The peculiarities in the nature and age of the Auriferous Deposits of Nova Scotia.

(7.) The remarkable Primordial Fauna of Southern New Brunswick, and the peculiar development of the Lower Silurian in the eastern slope of North America.

(8.) Descriptions and illustrations of Fossils from the various formations.

I may add that I shall have occasion to show, in the following pages, that the rocks of Acadia have, among other important additions to geological science, contributed the first known indications of Carboniferous Reptiles,* and the only known Carboniferous Enalosaurian, the only Carboniferous land Shells known, the first Carboniferous Myriapod, the first Devonian Insects, the only well characterized Primordial Fauna in America, and the richest known Devonian Flora.

* 1842, see page 354.
Twelve years ago, when the First Edition of this Work was issued, the cultivators of geological science in Acadia were few, and most of these have passed away. Dr Robb, Dr Gesner, Professor Chipman, Dr Harding of Windsor, and Dr Webster of Kentville rest in the grave; and Mr Brown of Sydney has left the scene of his labours for an honourable retirement in his native country. But others have arisen in their room, and it has been my good fortune to enjoy the friendship, and to profit by the correspondence, of nearly all these more recent Geologists of the Acadian provinces. I may here mention specially, as among those who have aided me in the preparation of this edition,—L. W. Bailey, M.A., the worthy successor of Professor Robb in the chair of Natural History in the university of New Brunswick; Rev. Dr Honeyman, F.G.S., Provincial Geologist, Nova Scotia; H. How, D.C.L., Professor of Chemistry in King’s College, Windsor; G. F. Matthew, Esq., of St John’s, New Brunswick; Professor C. F. Hartt, M.A., formerly of St John’s, now of the Vassar College, New York; Henry Poole, Esq., of Glace Bay, Cape Breton; W. Barnes, Esq., Mining Engineer, Halifax; and J. Campbell, Esq., of Halifax. The names of other contributors will be found mentioned in the Explanation of the Map, and in various places in the body of the Work.

It will also be observed in the list of publications in Chapter I., that, in addition to the previous labours of Lyell and Logan, several Geologists from abroad have, in recent years, aided in the work of geological exploration in Nova Scotia and New Brunswick. Among these are Hind, Lesley, Stillman, Hitchcock, and Marsh. Acadia Geology is also indebted to Hall, Davidson, Billings, Hartt, and Scudder, for labours of great value in the department of Palaeontology, some of them kindly undertaken at the request of the author.

I have endeavoured to acquaint myself with the labours of all these cultivators of Acadian Geology, and to refer to them in every case where I have availed myself of the results of their researches. If in any respect I have failed duly to appreciate their investigations, or have misunderstood their conclusions, I shall be glad to make amends in any way in my power.

While the progress made in the Geology of Acadia since the publication of the First Edition of this Work is most satisfactory, it also
suggests the fact that the present Edition, probably the last which the
author will be permitted to issue, merely marks a stage in that
progress; and that the time will soon arrive when its imperfections
will be revealed by the discovery of new facts, when many things now
uncertain may have become plain, and when some things now held
as certain will be proved to have been errors. When that time shall
come, I trust that those who may build on the foundations which I
have laid, if they shall find it necessary to remove some misplaced
stone or decaying beam, will make due allowance for the difficulties
of the work, and the circumstances under which it was executed.*

Many portions of the Work are intended only for reference. I
would therefore advise the reader, when he finds his progress arrested
by a dry catalogue, a sectional list, or descriptions of fossils, to pass
on to the more readable portion. Should he meet with terms or
allusions which are not intelligible, by referring to the General Index
he will find their explanation in some other portion of the Work. The
Index will also be found very useful to those who desire to refer to
the structure of particular localities, the description of fossils, or the
notices of useful minerals. A "Classified List of Illustrations," an
"Index to Economic Geology," and an "Index to Subjects in
General Geology," have been added to the Table of Contents, in order
to facilitate such reference.

The lovers of the lighter kind of scientific literature may be
disappointed in not finding in this work any incidents of travel or
illustrations of the aspects of social life in Acadia. I have been
obliged by the pressure of graver and more important matter to resist
all temptation to dwell on these; but may perhaps find some future
occasion to introduce the public to the incidents and adventures of
my geological excursions.

Some explanation may be necessary as to the use of the terms
Canada and Acadia in this volume. While the Work was in prepa-
ration, that political change was inaugurated whereby the name of

* In connexion with the latter, I think it only just to myself to state that my note-
books contain a large amount of local geological detail, which, however appropriate in
the Reports of a Survey, could not be inserted in a Work of this description; and that
in the following pages a few lines must often represent facts collected in the arduous
labour of days or weeks. Much matter will also be found in the papers which I have
published, more especially in the Journal of the Geological Society of London, and
which it has been impossible to reproduce here.
It is the last which the author has completed, after a long period of laborious research and laborious work. He has found it impossible to adopt, in consequence of the necessity established by stubborn geological facts, of considering Acadia collectively with the remaining provinces of the Dominion of Canada. The reader will therefore kindly understand, that wherever in the following pages the terms Canada and Acadia are used in contradistinction, the former includes the provinces of Ontario and Quebec, the latter the provinces of New Brunswick, Nova Scotia, and Prince Edward Island. In other words, for the purposes of this volume, I regard the Dominion of Canada, with Prince Edward Island, as divisible into the two natural regions of Canada Proper and Acadia.

Upper Canada was changed to Ontario, that of Lower Canada to Quebec, and the name Canada was extended by the Imperial Parliament to the whole Dominion, including New Brunswick and Nova Scotia. This change of nomenclature the author has found it impossible fully to adopt, in consequence of the necessity established by stubborn geological facts, of considering Acadia collectively with the remaining provinces of the Dominion of Canada. The reader will therefore kindly understand, that wherever in the following pages the terms Canada and Acadia are used in contradistinction, the former includes the provinces of Ontario and Quebec, the latter the provinces of New Brunswick, Nova Scotia, and Prince Edward Island. In other words, for the purposes of this volume, I regard the Dominion of Canada, with Prince Edward Island, as divisible into the two natural regions of Canada Proper and Acadia.

I may add that, though, as a Nova Scotian, I must sympathize with the natural indignation of my countrymen, in view of the hasty and, I fear, ill-advised Imperial legislation which has deprived them, for the present at least, of their cherished provincial independence and direct connexion with the mother country, and has attached them to the new and untried Canadian "Dominion," I shall rejoice if the confederation shall result in the effectual extension of the labours of the Canadian Geological Survey, under the able management of my friend Sir William E. Logan, to the whole of British America: a union for scientific purposes, open to none of the objections which may be urged against the recent political changes, and which I strongly advocated in my First Edition.

For myself, I confess that at an earlier period of my life it was a cherished object of ambition with me, that it might be my lot to work out in a public capacity the completion of some, at least, of the departments of geological investigation opened up to me in my native province; but it has been otherwise decreed; and however I may regret the want of that extraneous aid, which would have enabled me to devote myself more completely to original researches, by which my own reputation and the interests of my country might have been advanced, I am yet thankful that I have been enabled to do so much by my own unaided resources, and that I have also been able to assist...
PREFACE.

and encourage others, who may now carry on the work more effectually in connexion with an organized Geological Survey.

The numerous additional Illustrations in this Edition have been engraved by Mr. J. H. Walker of Montreal, principally from my own drawings or from photographs. The post-pliocene fossils are from figures in the Canadian Naturalist; the Carboniferous Brachiopods have been copied from Mr. Davidson's figures; the Devonian Insects are from drawings by Mr. Scudder; and the Primordial Fossils have been drawn by Mr. Smith of the Geological Survey of Canada. By reference to the Classified List of Illustrations, it will be seen that more than two hundred and fifty species of fossils have been figured; and I have added a note referring to the Memoirs which contain illustrations of those new species of fossils noticed but not figured in this Work.

In the Explanation of the Geological Map will be found references to the authorities consulted in its preparation.

McGILL COLLEGE, Montreal, 1868.
EXPLANATION OF THE GEOLOGICAL MAP.

The Map in this Edition, though greatly improved, is still to be regarded as merely a rude approximation to the truth, and the colouring in many places, more especially in the interior, remote from the coast lines, is little more than conjectural.

With the permission of Sir W. E. Logan, I have adopted the scale and geographical lines of his large Geological Map of Canada, in which he has spared no pains to obtain the most accurate representation possible of the coast and river lines. To Sir William's Map I am also indebted for the geological lines of the part of the province of Quebec included in my Map, as well as for the geology of portions of the state of Maine and of the province of Newfoundland, in regard to which Sir William has carefully collated and harmonized the observations of Professor Hitchcock and Mr Murray with his own work in Canada. For the geology of New Brunswick I am indebted, in addition to my own observations, principally to the published Maps of Professor Robb, Professor Bailey, and Mr Matthew, and to MS. Maps and Notes on the limit lines, kindly communicated by Professor Bailey. I have also consulted Professor Hind's Preliminary Report, as to the limits of formations, more especially in Northern New Brunswick, and have availed myself of the reduction of all these observations by Sir William Logan for his Map. In preparing the General Section, I have been guided, in so far as New Brunswick is concerned, by a MS. section constructed by the late Professor Robb, and communicated to me by his brother, Mr C. Robb of Montreal. I have coloured the little-known island of Grand Manan, from notes kindly given to me by Professor A. E. Verrill of New Haven, and which I publish in the Appendix. It is, however, doubtful whether the formations
occurring on this island are Lower and Upper Silurian or Upper Silurian and Devonian.

In Nova Scotia I have, as heretofore, trusted principally to my own observations, and to those of Mr Brown in Cape Breton. Valuable corrections of limit lines have been received from Rev. Dr Honeyman, F.G.S.; and I am indebted to Mr J. B. Moore of Montreal, Mr Poole of Glace Bay, Mr Mosely of Halifax, and other friends, for MS. Maps and Sections illustrating the distribution of the Coal formation in Pictou and Cape Breton. I have also, on the Carboniferous districts, consulted the Reports of Professor Lesley and Mr Lyman, and many reports made in the interests of the several Coal Companies.

The Laurentian and Huronian formations in Southern New Brunswick are given according to the latest observations of Mr Matthew and Professor Bailey. Some uncertainty may be supposed to rest on the precise equivalency of these beds with the formations so named in Canada; but that they are below the base of the Silurian, and that they correspond in mineral character with the Laurentian and Huronian, cannot be disputed.

The boundaries of the Lower and Upper Silurian, more especially in Northern and Western New Brunswick, and in Western Nova Scotia and Cape Breton, are still very uncertain, and the limits of the igneous veins and masses occurring among these altered beds are only vaguely known. One colour has been employed to represent all the intrusive rocks associated with the formations older than the Trias. The most important of these is the Granite of the age of the Newer Devonian; but there are also numerous dikes and masses of Syenite, Diorite, Compact Felspar, Porphyry, and Dolerite, some of which may be newer and others older than the Granite. I have endeavoured to indicate some of the more important of these; but there are numerous others of minor dimensions which I have not attempted to delineate; as they could be given correctly only on a large scale, and after more minute surveys of their courses and extent.

In Northern New Brunswick, both Professor Hind and Professor Bailey state that the granitic rocks constitute several bands, traversing the Lower Silurian; but as I do not know the limits of these bands, I have adhered in the main to the colouring on Logan's Map. In Nova Scotia, also, I have no doubt that whenever a detailed
Map shall be prepared, showing the courses and limits of the quartzite and slate bands, of the gneiss and mica-slate, and of the many irregular dikes and masses of granite and other eruptive rocks, it will present an appearance marvellously intricate and complex, in comparison with the broad colouring of the present Map. In the meantime, I have been enabled to improve the limit lines formerly given, by reference to the papers of Dr Honeyman, and the Reports presented to the Government of Nova Scotia by Mr Poole and Mr Campbell, to which I may also refer for a great number of minor details of distribution which I could not introduce in the Map.

The only area in Nova Scotia coloured as Devonian is that of Nictaux and its vicinity in the west. There are, however, at and near the limits of the Silurian and Carboniferous, in the eastern part of the province, many spaces which may be of this age, but which I am not able to separate from the Upper Silurian and Carboniferous, and have therefore left as in the former Map. Areas of this kind occur in Colchester, in Pictou, and, according to Dr Honeyman, in Antigonish, and have been mentioned in the text, though I must leave their delineation on the Map to future and more detailed researches. In the Carboniferous areas I have thought it best not to adopt, as in many recent Maps, a distinct colour for the Lower and Upper Carboniferous; but have included the whole under one tint, as constituting one great geological system. The propriety of this will, I think, be obvious, when it is considered that the lines of separation between the subdivisions of the Carboniferous are not sharp and definite, that marine beds coeval with the Coal formation may readily be confounded with the true Lower Carboniferous, and that new discoveries are constantly being made, which show that more local intermixture of the several members of the Carboniferous exists than had been suspected. The boundary of the Lower Carboniferous has, however, been indicated by a dotted line, and special marks show the position of the principal beds of marine limestone, and of the more important beds of coal.

Considerable beds of interstratified trap occur in the Lower Carboniferous of Nova Scotia and New Brunswick. They are included under the general colouring, in consequence of their small superficial extent, and the uncertainty of their limits. The only
exception is a remarkable band, probably of this age, extending around the Bay de Chaleur, and which is given after Sir William Logan. Many similar beds of trap are believed to exist on the northern margin of the Carboniferous area of New Brunswick.

The northern part of the General Section does not coincide precisely with that of the Map, in consequence of the introduction of several trappean masses not indicated in the colouring of the latter. These are given as they occur in Dr Robb's Section, and may represent inter-stratified igneous rocks. I have thought it best to leave them as given by Professor Robb, not having myself explored the district.

I may also state that the General Section attached to the Map is intended to give the arrangement of the formations on the large scale only, and makes no pretension to represent the numerous minor undulations and fractures.
CONTENTS.

CHAPTER I.
The name "Acadia"—Geological Bibliography of the Acadian Provinces, 1

CHAPTER II.
General description of the Acadian Provinces—Table of Formations, 14

CHAPTER III.
The Modern Period.
Marshes—Submarine Forests—Intervals—Lake Deposits—Infusorial
Earth—Lake Margins—Peat Bogs—Drift Sand—Earthquakes, 21

CHAPTER IV.
The Modern Period—Continued.
Pre-historic Man—Results of Forest Fires, 41

CHAPTER V.
The Post-Pliocene Period.

CHAPTER VI.
The Trias or New Red Sandstone.
General Distribution—Red Sandstones—Trap—Truro to Avon Estuary—Bloomodon to Briar Island, 86

CHAPTER VII.
The Trias—Continued.
Truro to Cape d'Or—General Remarks—Minerals of the Trap and Red Sandstone, 99
CONTENTS.

CHAPTER VIII.
The Trias—Continued.
Prince Edward Island—Fossil Plants—Reptilian Remains—Useful Minerals and Soil, 116

CHAPTER IX.
The Permian Blanks, 125

CHAPTER X.
The Carboniferous Period.
General Remarks—Synoptical Table—Geographical Arrangement—Comparison with the United States and Europe, 128

CHAPTER XI.
The Carboniferous Period—Continued.
District of Cumberland—Section at the South Joggins, 150

CHAPTER XII.
The Carboniferous Period—Continued.
Explanation of Joggins Section—Animal Remains of the Coal Measures, 179

CHAPTER XIII.
The Carboniferous Period—Continued.
Inland extension of the Coal Measures of the Joggins—Shores of Northumberland Strait—Useful Minerals of Cumberland, 213

CHAPTER XIV.
The Carboniferous Period—Continued.

CHAPTER XV.
The Carboniferous Period—Continued.
District of Colchester, Hants, etc.—Useful Minerals, 251

CHAPTER XVI.
The Carboniferous Period—Continued.
Subdivisions of the Carboniferous Limestone—Marine Fossils, 278
CONTENTS.

CHAPTER XVII.

The Carboniferous Period—Continued.

Districts of Pictou, Antigonish, and Guysborough—Isolated Patches at Margaret's Bay, etc., 315

CHAPTER XVIII.

The Carboniferous Period—Continued.

Land Animals of the Coal Period—Reptiles—Pulmonates—Insects, 353

CHAPTER XIX.

The Carboniferous Period—Continued.

District of Richmond and Southern Inverness—Useful Minerals—District of Northern Inverness and Victoria—Useful Minerals—District of Cape Breton County—Useful Minerals, 390

CHAPTER XX.

The Carboniferous Period—Continued.

The Flora of the Coal Formation—Tissues in Coal—Descriptive List of Plants—Note on Xylophusus, 421

CHAPTER XXI.

The Devonian Period.

Lower Devonian of Nova Scotia—Devonian of Southern New Brunswick—Section of "Fern Ledges"—Useful Minerals—Crustaceans and Insects, 497

CHAPTER XXII.

The Devonian Period—Continued.

The Flora of the Devonian in New Brunswick—List of Plants, 531

CHAPTER XXIII.

The Upper Silurian Period.

CHAPTER XXIV.

The Lower Silurian Period.

Lower Silurian of Nova Scotia—Gold—Lower Silurian of New Brunswick—"Acadian Group"—Useful Minerals—Primordial Fossils, 613
CONTENTS.

CHAPTER XXV.

The Huronian and Laurentian Periods.

Introductory Remarks—The Huronian System—The Laurentian System
—Summary of the Geological History of Acadia—Conclusion. 658

APPENDIX.

<table>
<thead>
<tr>
<th>(A.)</th>
<th>Micmac Language and Superstitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B.)</td>
<td>Peat as Fuel</td>
</tr>
<tr>
<td>(C.)</td>
<td>Cone-in-Cone Concretions</td>
</tr>
<tr>
<td>(D.)</td>
<td>Tabular View of the Lower Coal Measures</td>
</tr>
<tr>
<td>(E.)</td>
<td>Grand Manan</td>
</tr>
<tr>
<td>(F.)</td>
<td>New Minerals from Nova Scotia</td>
</tr>
<tr>
<td>(G.)</td>
<td>Mining Laws and Regulations</td>
</tr>
<tr>
<td>(H.)</td>
<td>Additional Information on Mines</td>
</tr>
<tr>
<td>(I.)</td>
<td>Structure of Northern Cape Breton</td>
</tr>
<tr>
<td>(K.)</td>
<td>Fossils of the Palaeozoic Rocks</td>
</tr>
<tr>
<td>(L.)</td>
<td>Huronian of New Brunswick</td>
</tr>
<tr>
<td>(M.)</td>
<td>Lower Carboniferous of Southern New Brunswick</td>
</tr>
</tbody>
</table>
INDEX TO ECONOMIC GEOLOGY

<table>
<thead>
<tr>
<th>Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agate</td>
<td>114</td>
</tr>
<tr>
<td>Albertite,</td>
<td>231, 247</td>
</tr>
<tr>
<td>Alum</td>
<td>249</td>
</tr>
<tr>
<td>Anhydrite,</td>
<td>249, 263</td>
</tr>
<tr>
<td>Ankerite,</td>
<td>583</td>
</tr>
<tr>
<td>Antimony,</td>
<td>640</td>
</tr>
<tr>
<td>Barites,</td>
<td>276, 345, 592</td>
</tr>
<tr>
<td>Bitumen, Earthy,</td>
<td>248, 339</td>
</tr>
<tr>
<td>Cement, Water,</td>
<td>351</td>
</tr>
<tr>
<td>Clay</td>
<td>275, 345, 635</td>
</tr>
<tr>
<td>Coal of Cumberland,</td>
<td>218</td>
</tr>
<tr>
<td>— of Colchester,</td>
<td>275</td>
</tr>
<tr>
<td>— of Picton,</td>
<td>329</td>
</tr>
<tr>
<td>— of Antigonish,</td>
<td>319</td>
</tr>
<tr>
<td>— of Richmond,</td>
<td>396</td>
</tr>
<tr>
<td>— of Inverness and Victoria,</td>
<td>404</td>
</tr>
<tr>
<td>— of Cape Breton,</td>
<td>411</td>
</tr>
<tr>
<td>— of New Brunswick,</td>
<td>245</td>
</tr>
<tr>
<td>— probabilities of, in Prince Edward Island,</td>
<td>123</td>
</tr>
<tr>
<td>Copper Ores in Triassic Trap,</td>
<td>102, 107, 113</td>
</tr>
<tr>
<td>— in Coal Formation,</td>
<td>345</td>
</tr>
<tr>
<td>— in Devonian and Silurian Rocks,</td>
<td>527, 592, 640</td>
</tr>
<tr>
<td>Freestone,</td>
<td>249, 344, 351, 404</td>
</tr>
<tr>
<td>Gold of Nova Scotia,</td>
<td>277, 624</td>
</tr>
<tr>
<td>— of New Brunswick,</td>
<td>640</td>
</tr>
<tr>
<td>Granite,</td>
<td>654</td>
</tr>
<tr>
<td>Graphite,</td>
<td>222, 249</td>
</tr>
<tr>
<td>Gypsum,</td>
<td>222, 249, 271, 345, 399, 403, 419</td>
</tr>
<tr>
<td>Iron Ore of Triassic Trap,</td>
<td>113</td>
</tr>
<tr>
<td>— of Carboniferous,</td>
<td>222, 271, 344, 419</td>
</tr>
<tr>
<td>— of Silurian and Devonian,</td>
<td>526, 582, 641</td>
</tr>
<tr>
<td>Iron Ochres,</td>
<td>345, 351, 583, 584, 590</td>
</tr>
<tr>
<td>Jasper,</td>
<td>114</td>
</tr>
<tr>
<td>Limestone,</td>
<td>222, 249, 271, 345, 351, 403, 419, 663</td>
</tr>
<tr>
<td>Lead, Ores of,</td>
<td>275, 351, 640</td>
</tr>
<tr>
<td>Manganese Ore,</td>
<td>250, 272, 345, 641</td>
</tr>
<tr>
<td>Marble,</td>
<td>345, 399, 419, 593</td>
</tr>
<tr>
<td>Nickel,</td>
<td>641</td>
</tr>
<tr>
<td>Peat</td>
<td>35, 675</td>
</tr>
<tr>
<td>Petroleum,</td>
<td>248</td>
</tr>
<tr>
<td>Porphyry,</td>
<td>593</td>
</tr>
<tr>
<td>Quartz, smoky,</td>
<td>593</td>
</tr>
<tr>
<td>Salt Springs,</td>
<td>248, 276, 349</td>
</tr>
<tr>
<td>Silver,</td>
<td>640</td>
</tr>
<tr>
<td>Slate</td>
<td>593</td>
</tr>
<tr>
<td>Soil</td>
<td>21, 112, 123, 233, 593, 617, 623</td>
</tr>
<tr>
<td>Shale, Bituminous,</td>
<td>248</td>
</tr>
<tr>
<td>Umber,</td>
<td>351</td>
</tr>
<tr>
<td>Zinc</td>
<td>641</td>
</tr>
</tbody>
</table>
INDEX OF SUBJECTS IN GENERAL GEOLOGY ILLUSTRATED
OR DISCUSSED IN THIS VOLUME.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlbortUe, Origin of,</td>
<td>231</td>
</tr>
<tr>
<td>AntholitheB, Nature and Affinities of</td>
<td>460</td>
</tr>
<tr>
<td>Calamites, Structure and Affinities of</td>
<td>194, 441</td>
</tr>
<tr>
<td>Carboniferous System, Structure of</td>
<td>128, 147, 150</td>
</tr>
<tr>
<td>Coal, how Accumulated,</td>
<td>131, 138, 201</td>
</tr>
<tr>
<td>— Structure of</td>
<td>461</td>
</tr>
<tr>
<td>Colour of Sediments,</td>
<td>24, 623</td>
</tr>
<tr>
<td>Concretionary Structures,</td>
<td>675</td>
</tr>
<tr>
<td>Cycles in Geological Time,</td>
<td>135</td>
</tr>
<tr>
<td>Cordates, Nature and Affinities of</td>
<td>456</td>
</tr>
<tr>
<td>Copper, Native, Origin of,</td>
<td>107</td>
</tr>
<tr>
<td>Erect Trees, Preservation of</td>
<td>28, 187, 191</td>
</tr>
<tr>
<td>Footprints in Aqueous Deposits,</td>
<td>26</td>
</tr>
<tr>
<td>Frost, Action of</td>
<td>64</td>
</tr>
<tr>
<td>Forest Fires</td>
<td>47</td>
</tr>
<tr>
<td>Flora of the Coal Period,</td>
<td>421</td>
</tr>
<tr>
<td>— of the Devonian Period,</td>
<td>531</td>
</tr>
<tr>
<td>Gold, Origin of, and Mode of Occurrence,</td>
<td>624</td>
</tr>
<tr>
<td>Glacial Action</td>
<td>65</td>
</tr>
<tr>
<td>Gneiss, Origin of</td>
<td>261, 391</td>
</tr>
<tr>
<td>Huronian Period</td>
<td>659</td>
</tr>
<tr>
<td>Ice, Transporting Power of,</td>
<td>64</td>
</tr>
<tr>
<td>Insects of the Coal Period,</td>
<td>386</td>
</tr>
<tr>
<td>— of the Devonian Period,</td>
<td>523</td>
</tr>
<tr>
<td>Life in the Coal Lagoons and Estuaries</td>
<td>202</td>
</tr>
<tr>
<td>Life in the Carboniferous Sea</td>
<td>254, 285</td>
</tr>
<tr>
<td>Lepidophloios, Nature and Affinities of</td>
<td>456</td>
</tr>
<tr>
<td>Lepidodendron, Nature and Affinities of</td>
<td>450</td>
</tr>
<tr>
<td>Laurentian Period</td>
<td>662</td>
</tr>
<tr>
<td>Lower Silurian, Peculiarities in Eastern America</td>
<td>620, 637</td>
</tr>
<tr>
<td>Megaphyton, Nature and Affinities of</td>
<td>449</td>
</tr>
<tr>
<td>Metamorphism</td>
<td>610</td>
</tr>
<tr>
<td>Modern Alluvia</td>
<td>21</td>
</tr>
<tr>
<td>Pre-historic Man</td>
<td>41</td>
</tr>
<tr>
<td>Permian, Absence of, in Eastern America</td>
<td>125</td>
</tr>
<tr>
<td>Plaster-pits, Origin of</td>
<td>393</td>
</tr>
<tr>
<td>Pulmonates of the Coal Period</td>
<td>383</td>
</tr>
<tr>
<td>Primordial Fauna</td>
<td>642</td>
</tr>
<tr>
<td>Rain-marks,</td>
<td>26, 410</td>
</tr>
<tr>
<td>Reptiles of the Coal Period</td>
<td>353</td>
</tr>
<tr>
<td>Sand Dunes,</td>
<td>35</td>
</tr>
<tr>
<td>Submarine Forests</td>
<td>28</td>
</tr>
<tr>
<td>Sigillaria, Nature and Affinities of</td>
<td>430</td>
</tr>
<tr>
<td>Sternbergia, Nature of</td>
<td>424</td>
</tr>
<tr>
<td>Stigmaria, Nature of</td>
<td>179, 436</td>
</tr>
<tr>
<td>Triassic Period, Conditions of</td>
<td>86</td>
</tr>
<tr>
<td>Trigonocarpum, Nature and Affinities of</td>
<td>439</td>
</tr>
<tr>
<td>Tracks of Worms and Crustaceans,</td>
<td>256, 410</td>
</tr>
<tr>
<td>Upper Silurian of Eastern America,</td>
<td>411, 572, 610</td>
</tr>
</tbody>
</table>
CLASSIFIED LIST OF ILLUSTRATIONS.

I. MAPS.

<table>
<thead>
<tr>
<th>Map Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. General Geological Map—end of the Volume.</td>
<td>231</td>
</tr>
<tr>
<td>2. Map of Pictou Coal-field.</td>
<td>460</td>
</tr>
<tr>
<td>3. Map of Cape Breton Coal-field.</td>
<td>194</td>
</tr>
<tr>
<td>4. Section A of New Brunswick and Nova Scotia.</td>
<td>147</td>
</tr>
<tr>
<td>5. Submarine Forest, Fort Lawrence.</td>
<td>156</td>
</tr>
<tr>
<td>6. Stratified Gravel on Drift.</td>
<td>201</td>
</tr>
<tr>
<td>7. Trias and Carboniferous, Petite River.</td>
<td>15(5</td>
</tr>
<tr>
<td>8. Norton to Cape Blomidon (Trias).</td>
<td>131</td>
</tr>
<tr>
<td>9. At Swan Creek (Trias).</td>
<td>138</td>
</tr>
<tr>
<td>10. General Section Western Cumberland (Carboniferous).</td>
<td>20</td>
</tr>
<tr>
<td>11. Joggins Sections of Formations.</td>
<td>81</td>
</tr>
<tr>
<td>12. Denudation and filling up, Joggins,</td>
<td>89</td>
</tr>
<tr>
<td>13. Beds with Erect Trees, do.</td>
<td>90</td>
</tr>
<tr>
<td>14. Base of Erect Sigillaria, do.</td>
<td>103</td>
</tr>
<tr>
<td>15. Beds over Joggins Main Coal,</td>
<td>150</td>
</tr>
<tr>
<td>16. Lower part of Subdivision xxvii., Joggins,</td>
<td>125</td>
</tr>
<tr>
<td>17. Beds with Erect Trees, Cape Malagash,</td>
<td>190</td>
</tr>
<tr>
<td>18. South Joggins to Albert Mine,</td>
<td>193</td>
</tr>
<tr>
<td>19. Coal Creek, Richibucto,</td>
<td>200</td>
</tr>
<tr>
<td>20. Arched and Bent Strata, Albert Mine,</td>
<td>216</td>
</tr>
<tr>
<td>21. Vein of Albertite, Albert Mine,</td>
<td>225</td>
</tr>
<tr>
<td>22. Do. do.</td>
<td>228</td>
</tr>
<tr>
<td>23. Do. do.</td>
<td>233</td>
</tr>
<tr>
<td>24. Do. do.</td>
<td>234</td>
</tr>
<tr>
<td>25. Lower Carboniferous at Walton,</td>
<td>235</td>
</tr>
<tr>
<td>26. East River, Pictou (Carboniferous),</td>
<td>236</td>
</tr>
<tr>
<td>27. Do. (Ideal Sections),</td>
<td>258</td>
</tr>
<tr>
<td>28. Do.</td>
<td>317</td>
</tr>
<tr>
<td>29. Plaister Cove,</td>
<td>325</td>
</tr>
<tr>
<td>30. Plaister Pits,</td>
<td>391</td>
</tr>
<tr>
<td>31. Junction of Granite and Slate,</td>
<td>393</td>
</tr>
<tr>
<td>32. Devonian, etc., near St John,</td>
<td>500</td>
</tr>
<tr>
<td>33. Cape Porcupine,</td>
<td>505</td>
</tr>
<tr>
<td>34. Barrel Quartz,</td>
<td>559</td>
</tr>
</tbody>
</table>

II. SECTIONS.

<table>
<thead>
<tr>
<th>Section Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. General Section across New Brunswick and Nova Scotia—on the Map.</td>
<td>246</td>
</tr>
<tr>
<td>2. Generalized Section,</td>
<td>147</td>
</tr>
<tr>
<td>3. Submarine Forest, Fort Lawrence,</td>
<td>156</td>
</tr>
<tr>
<td>4. Stratified Gravel on Drift,</td>
<td>201</td>
</tr>
<tr>
<td>5. Trias and Carboniferous, Petite River,</td>
<td>15(5</td>
</tr>
<tr>
<td>6. Norton to Cape Blomidon (Trias),</td>
<td>131</td>
</tr>
<tr>
<td>7. At Swan Creek (Trias),</td>
<td>138</td>
</tr>
<tr>
<td>8. General Section Western Cumberland (Carboniferous),</td>
<td>20</td>
</tr>
<tr>
<td>9. Joggins Sections of Formations.</td>
<td>81</td>
</tr>
<tr>
<td>10. Denudation and filling up, Joggins,</td>
<td>89</td>
</tr>
<tr>
<td>11. Beds with Erect Trees, do.</td>
<td>90</td>
</tr>
<tr>
<td>12. Base of Erect Sigillaria, do.</td>
<td>103</td>
</tr>
<tr>
<td>13. Beds over Joggins Main Coal,</td>
<td>150</td>
</tr>
<tr>
<td>14. Lower part of Subdivision xxvii., Joggins,</td>
<td>125</td>
</tr>
<tr>
<td>15. Beds with Erect Trees, Cape Malagash,</td>
<td>190</td>
</tr>
<tr>
<td>16. South Joggins to Albert Mine,</td>
<td>193</td>
</tr>
<tr>
<td>17. Coal Creek, Richibucto,</td>
<td>200</td>
</tr>
<tr>
<td>18. Arched and Bent Strata, Albert Mine,</td>
<td>216</td>
</tr>
<tr>
<td>19. Vein of Albertite, Albert Mine,</td>
<td>225</td>
</tr>
<tr>
<td>20. Do.</td>
<td>228</td>
</tr>
<tr>
<td>21. Do.</td>
<td>233</td>
</tr>
<tr>
<td>22. Lower Carboniferous at Walton,</td>
<td>234</td>
</tr>
<tr>
<td>23. East River, Pictou (Carboniferous),</td>
<td>235</td>
</tr>
<tr>
<td>24. Do. (Ideal Sections),</td>
<td>236</td>
</tr>
<tr>
<td>25. Plaister Cove,</td>
<td>258</td>
</tr>
<tr>
<td>26. Plaister Pits,</td>
<td>317</td>
</tr>
<tr>
<td>27. Junction of Granite and Slate,</td>
<td>325</td>
</tr>
<tr>
<td>28. Devonian, etc., near St John,</td>
<td>391</td>
</tr>
<tr>
<td>29. Cape Porcupine,</td>
<td>393</td>
</tr>
<tr>
<td>30. Barrel Quartz,</td>
<td>500</td>
</tr>
<tr>
<td>31. Devonian Vegetation—Frontispiece.</td>
<td>505</td>
</tr>
<tr>
<td>32. Diatomaceae (Modern),</td>
<td>559</td>
</tr>
<tr>
<td>33. Sigillaria Brownii (Carboniferous)</td>
<td>629</td>
</tr>
<tr>
<td>34. Calamites Voltzii, roots (do.)</td>
<td>179</td>
</tr>
<tr>
<td>35. — Castell leaves (do.)</td>
<td>436</td>
</tr>
<tr>
<td>36. —— Cystidia,</td>
<td>86</td>
</tr>
<tr>
<td>37. —— Cystidia,</td>
<td>459</td>
</tr>
<tr>
<td>38. —— Cystidia,</td>
<td>256</td>
</tr>
<tr>
<td>39. —— Cystidia,</td>
<td>410</td>
</tr>
<tr>
<td>40. —— Cystidia,</td>
<td>411</td>
</tr>
<tr>
<td>41. —— Cystidia,</td>
<td>572</td>
</tr>
<tr>
<td>42. —— Cystidia,</td>
<td>610</td>
</tr>
</tbody>
</table>

III. FOSSILS.

<table>
<thead>
<tr>
<th>Fossil Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Devonian Vegetation—Frontispiece.</td>
<td>35</td>
</tr>
<tr>
<td>2. Diatomaceae (Modern),</td>
<td>180</td>
</tr>
<tr>
<td>3. Sigillaria Brownii (Carboniferous)</td>
<td>194</td>
</tr>
<tr>
<td>4. Calamites Voltzii, roots (do.)</td>
<td>194</td>
</tr>
<tr>
<td>5. —— Cystidia,</td>
<td>194</td>
</tr>
<tr>
<td>6. —— Cystidia,</td>
<td>194</td>
</tr>
<tr>
<td>Illustration ID</td>
<td>Image Description</td>
</tr>
<tr>
<td>-----------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>6</td>
<td>Calamites Suckovii (Carboniferous)</td>
</tr>
<tr>
<td>7</td>
<td>Sphenopteris munda</td>
</tr>
<tr>
<td>8</td>
<td>latior</td>
</tr>
<tr>
<td>9</td>
<td>Canadensis</td>
</tr>
<tr>
<td>10</td>
<td>Aletheopteris grandis</td>
</tr>
<tr>
<td>11</td>
<td>Neoggerathia dispar</td>
</tr>
<tr>
<td>12</td>
<td>Lepidodendron corungatum</td>
</tr>
<tr>
<td>13</td>
<td>Cyclopteris Acadica</td>
</tr>
<tr>
<td>14</td>
<td>Cordaites</td>
</tr>
<tr>
<td>15</td>
<td>Foliage of Coal Formation</td>
</tr>
<tr>
<td>16</td>
<td>Araucarites</td>
</tr>
<tr>
<td>17</td>
<td>Dadoxylon, 3 species</td>
</tr>
<tr>
<td>18</td>
<td>Sternbergia</td>
</tr>
<tr>
<td>19</td>
<td>Sigillaria, 8 species</td>
</tr>
<tr>
<td>20</td>
<td>Calamodendron</td>
</tr>
<tr>
<td>21</td>
<td>Calamites, 3 species</td>
</tr>
<tr>
<td>22</td>
<td>Equisetites curta</td>
</tr>
<tr>
<td>23</td>
<td>Asterophyllites trinervis</td>
</tr>
<tr>
<td>24</td>
<td>Annularia sphenophylloides</td>
</tr>
<tr>
<td>25</td>
<td>Sphenophyllum crosum</td>
</tr>
<tr>
<td>26</td>
<td>Pinularia ramossissima</td>
</tr>
<tr>
<td>27</td>
<td>Odontopteris subcuneata</td>
</tr>
<tr>
<td>28</td>
<td>Neuropteris cordata</td>
</tr>
<tr>
<td>29</td>
<td>Aletheopteris hachitica</td>
</tr>
<tr>
<td>30</td>
<td>Dietyopteris olibica</td>
</tr>
<tr>
<td>31</td>
<td>Neuropteris cyclopteroideae</td>
</tr>
<tr>
<td>32</td>
<td>Phyllopteris antiqua</td>
</tr>
<tr>
<td>33</td>
<td>Megaphyton magnificum,</td>
</tr>
<tr>
<td>34</td>
<td>Paleopteris Harttii</td>
</tr>
<tr>
<td>35</td>
<td>Acadiana</td>
</tr>
<tr>
<td>36</td>
<td>Lepidodendron corungatum</td>
</tr>
<tr>
<td>37</td>
<td>5 species</td>
</tr>
<tr>
<td>38</td>
<td>2 species</td>
</tr>
<tr>
<td>39</td>
<td>Lepidophloios, 3 species</td>
</tr>
<tr>
<td>40</td>
<td>Acadianus</td>
</tr>
<tr>
<td>41</td>
<td>Cordaites borassifolia</td>
</tr>
<tr>
<td>42</td>
<td>Diplotegium retusum</td>
</tr>
<tr>
<td>43</td>
<td>Antholitiria, 4 species</td>
</tr>
<tr>
<td>44</td>
<td>Trigonocarpum, 3 species</td>
</tr>
<tr>
<td>45</td>
<td>Cardiocarpum, 2 species</td>
</tr>
<tr>
<td>46</td>
<td>Sporangites papillata</td>
</tr>
<tr>
<td>47</td>
<td>Trigonocarpum Hookeri</td>
</tr>
<tr>
<td>48</td>
<td>Tissues from Coal</td>
</tr>
<tr>
<td>49</td>
<td>Stigmaria</td>
</tr>
<tr>
<td>50</td>
<td>Dadoxylon Ouangondianum (Devonian)</td>
</tr>
<tr>
<td>51</td>
<td>Calamites transitionis</td>
</tr>
<tr>
<td>52</td>
<td>Asterophyllites, 2 species</td>
</tr>
<tr>
<td>53</td>
<td>parvula</td>
</tr>
<tr>
<td>54</td>
<td>Sphenophyllum antiquum</td>
</tr>
<tr>
<td>55</td>
<td>Lytopodites Matthowi</td>
</tr>
<tr>
<td>56</td>
<td>Lepidodendron Gaspianum</td>
</tr>
</tbody>
</table>
CLASSIFIED LIST OF ILLUSTRATIONS.

Page 195

57. Psilophyton elegans (Devonian) .. 542
58. Cordaites Robbi (do.) .. 544
59. Cyclopteris Jacksoni, (do.) ... 546
60. Ferns, various species (do.) ... 548
61. Neuropteris Dawsoni (do.) .. 550
62. Fruits, etc. (do.) .. 555

Animals—Radiata.

Page 243

1. Polystomella striatopunctata (Post-pliocene) 74
2. Dentalita priscilla (Carboniferous) ... 285
3. Lithostracion Pielcense (do.) .. 285
4. Zaphrentis Minas (do.) ... 287
5. Cyathophyllum Billingsi (do.) .. 287
6. Stenopora exilis (do.) ... 287
7. Chaetetes tumidus (do.) ... 287
8. Dictyonema Websteri (Silurian) .. 563
9. Palaeaster parvusculus (do.) .. 595
10. Eocystites (do.) ... 643

Animals—Mollusca.

Page 244

1. Mytilus edulis (Post-pliocene) .. 74
2. Tellina Greenlandica (do.) ... 74
3. — calcearea (do.) .. 74
4. Saxicava rugosa (do.) ... 74
5. Mya truncata (do.) ... 74
6. Buccinum undatum (do.) .. 74
7. Natica clausa (do.) ... 74
8. Naiadites carbonaria (Carboniferous) 204
9. — elongata (do.) .. 204
10. — laevis (do.) .. 204
11. — arenacea (do.) .. 204
12. — angulata (do.) ... 204
13. Fenestella Lyelli (do.) .. 288
14. Terebratula sacculus (do.) ... 289
15. Atthyris subtilis (do.) .. 291
16. Spirifera glabra (do.) ... 291
17. — cristata (do.) .. 292
18. — scuticostata (do.) ... 292
19. Camerophoria globulina (do.) .. 293
20. Rhyynchonella Dawsoniana (do.) ... 294
21. — Acaenensis (do.) ... 295
22. Strophomena analoga (do.) .. 296
23. Strepriothlymus arenicola (do.) ... 296
24. Productus semireticulatus (do.) .. 297
25. — cora (do.) ... 297
26. Centronella Anna (do.) ... 300
27. Mollia Pooli (do.) .. 301
28. Pteronites Gayensis (do.) ... 301
29. Macrodon Hardingi (do.) .. 302
30. — Shubencadiensis (do.) .. 303
Classified List of Illustrations

<table>
<thead>
<tr>
<th>No.</th>
<th>Illustration</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.</td>
<td>Edmondia Harttii (Carboniferous)</td>
<td>303</td>
</tr>
<tr>
<td>32.</td>
<td>—— anomala (do.)</td>
<td>303</td>
</tr>
<tr>
<td>33.</td>
<td>Cypricardia insecta (do.)</td>
<td>303</td>
</tr>
<tr>
<td>34.</td>
<td>Pleurophorus quadricostatus, (do.)</td>
<td>304</td>
</tr>
<tr>
<td>35.</td>
<td>Cardinia sub-angulata (do.)</td>
<td>304</td>
</tr>
<tr>
<td>36.</td>
<td>Cardiomorpha Vindobonensis (do.)</td>
<td>305</td>
</tr>
<tr>
<td>37.</td>
<td>Conocardium Acadianum (do.)</td>
<td>305</td>
</tr>
<tr>
<td>38.</td>
<td>Aviculopecten Lyelli (do.)</td>
<td>305</td>
</tr>
<tr>
<td>39.</td>
<td>—— reticulatus (do.)</td>
<td>306</td>
</tr>
<tr>
<td>40.</td>
<td>—— simplex (do.)</td>
<td>306</td>
</tr>
<tr>
<td>41.</td>
<td>—— Acadicus (do.)</td>
<td>307</td>
</tr>
<tr>
<td>42.</td>
<td>—— cora (do.)</td>
<td>307</td>
</tr>
<tr>
<td>43.</td>
<td>—— Debertianus (do.)</td>
<td>307</td>
</tr>
<tr>
<td>44.</td>
<td>Conularia planicostata (do.)</td>
<td>308</td>
</tr>
<tr>
<td>45.</td>
<td>Enotaphus exortivus (do.)</td>
<td>309</td>
</tr>
<tr>
<td>46.</td>
<td>Naticopsis Howi (do.)</td>
<td>309</td>
</tr>
<tr>
<td>47.</td>
<td>—— dispassa (do.)</td>
<td>309</td>
</tr>
<tr>
<td>48.</td>
<td>Platyschisma dubia (do.)</td>
<td>310</td>
</tr>
<tr>
<td>49.</td>
<td>Loxonema acutula (do.)</td>
<td>310</td>
</tr>
<tr>
<td>50.</td>
<td>Murchisonia gypsea (do.)</td>
<td>310</td>
</tr>
<tr>
<td>51.</td>
<td>Nautilus Avonensis (do.)</td>
<td>310</td>
</tr>
<tr>
<td>52.</td>
<td>Gyroceras Harttii (do.)</td>
<td>311</td>
</tr>
<tr>
<td>53.</td>
<td>Orthoceras dolatum (do.)</td>
<td>311</td>
</tr>
<tr>
<td>54.</td>
<td>—— Vindobonense (do.)</td>
<td>311</td>
</tr>
<tr>
<td>55.</td>
<td>—— laqueatum (do.)</td>
<td>311</td>
</tr>
<tr>
<td>56.</td>
<td>—— perstrictum (do.)</td>
<td>312</td>
</tr>
<tr>
<td>57.</td>
<td>Actinoceras inops (do.)</td>
<td>314</td>
</tr>
<tr>
<td>58.</td>
<td>Anthracoceras Brasoria (do.)</td>
<td>314</td>
</tr>
<tr>
<td>59.</td>
<td>Pupa Vetusta (do.)</td>
<td>384</td>
</tr>
<tr>
<td>60.</td>
<td>Zonites (Conulus) priscus (do.)</td>
<td>385</td>
</tr>
<tr>
<td>61.</td>
<td>Spirifer Nictavensis (Devonian)</td>
<td>499</td>
</tr>
<tr>
<td>62.</td>
<td>Crania Acadiensis (Silurian)</td>
<td>596</td>
</tr>
<tr>
<td>63.</td>
<td>Choncetes Nova Scotica (do.)</td>
<td>596</td>
</tr>
<tr>
<td>64.</td>
<td>—— tenuistriata (do.)</td>
<td>596</td>
</tr>
<tr>
<td>65.</td>
<td>Tremastospira Acadia (do.)</td>
<td>596</td>
</tr>
<tr>
<td>66.</td>
<td>Leptocelia intermedia (do.)</td>
<td>596</td>
</tr>
<tr>
<td>67.</td>
<td>Modiolopsis rhomboidea (do.)</td>
<td>600</td>
</tr>
<tr>
<td>68.</td>
<td>Clidophorus concentricus (do.)</td>
<td>600</td>
</tr>
<tr>
<td>69.</td>
<td>—— erectus (do.)</td>
<td>600</td>
</tr>
<tr>
<td>70.</td>
<td>—— elongatus (do.)</td>
<td>601</td>
</tr>
<tr>
<td>71.</td>
<td>Nuculites (Orthonota) carinata (do.)</td>
<td>602</td>
</tr>
<tr>
<td>72.</td>
<td>Tellinomya attenuata (do.)</td>
<td>602</td>
</tr>
<tr>
<td>73.</td>
<td>Megabionia cancellata (do.)</td>
<td>602</td>
</tr>
<tr>
<td>74.</td>
<td>Avicula Honeymanii (do.)</td>
<td>604</td>
</tr>
<tr>
<td>75.</td>
<td>Holopea reversa (do.)</td>
<td>605</td>
</tr>
<tr>
<td>76.</td>
<td>Orthoceras punctostriatum (do.)</td>
<td>605</td>
</tr>
<tr>
<td>77.</td>
<td>—— elegantulum (do.)</td>
<td>605</td>
</tr>
<tr>
<td>78.</td>
<td>Lingula Matthewi (do.)</td>
<td>641</td>
</tr>
<tr>
<td>79.</td>
<td>Discina Acadica (do.)</td>
<td>641</td>
</tr>
<tr>
<td>80.</td>
<td>Orthis Billingsi (do.)</td>
<td>641</td>
</tr>
</tbody>
</table>
Classified List of Illustrations

Animals—Articulata

<table>
<thead>
<tr>
<th>Page</th>
<th>Illustration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>74</td>
<td>Balanus Hameri</td>
<td>(Post-pliocene)</td>
</tr>
<tr>
<td>74</td>
<td>Cytheridea Mulleri</td>
<td>(do.)</td>
</tr>
<tr>
<td>182</td>
<td>Spiroirbis carbonarius</td>
<td>(Carboniferous)</td>
</tr>
<tr>
<td>182</td>
<td>Cythere</td>
<td>(do.)</td>
</tr>
<tr>
<td>295</td>
<td>Spiroirbis carbonarius</td>
<td>(do.)</td>
</tr>
<tr>
<td>206</td>
<td>Bairdia</td>
<td>(do.)</td>
</tr>
<tr>
<td>206</td>
<td>Cytherella inflata</td>
<td>(do.)</td>
</tr>
<tr>
<td>206</td>
<td>Cythere</td>
<td>(do.)</td>
</tr>
<tr>
<td>207</td>
<td>Diplastrylus Dawsoni</td>
<td>(do.)</td>
</tr>
<tr>
<td>208</td>
<td>Eurypterus</td>
<td>(do.)</td>
</tr>
<tr>
<td>256</td>
<td>Cythere</td>
<td>(do.)</td>
</tr>
<tr>
<td>256</td>
<td>Leperditia Okoui</td>
<td>(do.)</td>
</tr>
<tr>
<td>256</td>
<td>Beyrichia</td>
<td>(do.)</td>
</tr>
<tr>
<td>256</td>
<td>Estheria</td>
<td>(do.)</td>
</tr>
<tr>
<td>256</td>
<td>Lealia Leidii</td>
<td>(do.)</td>
</tr>
<tr>
<td>256</td>
<td>Trails of Worms</td>
<td>(do.)</td>
</tr>
<tr>
<td>257</td>
<td>Ruschelites carbonarius</td>
<td>(do.)</td>
</tr>
<tr>
<td>312</td>
<td>Serpulites, Hortonensis</td>
<td>(do.)</td>
</tr>
<tr>
<td>313</td>
<td>S. annulatus</td>
<td>(do.)</td>
</tr>
<tr>
<td>313</td>
<td>Beyrichia Jonesi</td>
<td>(do.)</td>
</tr>
<tr>
<td>313</td>
<td>Phillipsia Howi</td>
<td>(do.)</td>
</tr>
<tr>
<td>385</td>
<td>Xylolobus Sigillaris</td>
<td>(do.)</td>
</tr>
<tr>
<td>387</td>
<td>Haplophlebia Barnesi</td>
<td>(do.)</td>
</tr>
<tr>
<td>388</td>
<td>Archimulaeris Acadiensis</td>
<td>(do.)</td>
</tr>
<tr>
<td>410</td>
<td>Ruschelites Acadiensis</td>
<td>(do.)</td>
</tr>
<tr>
<td>593</td>
<td>Eurypterus pulicaris</td>
<td>(do.)</td>
</tr>
<tr>
<td>593</td>
<td>Amphipeltis paradoxus</td>
<td>(do.)</td>
</tr>
<tr>
<td>595</td>
<td>Platephemerina antiqua</td>
<td>(do.)</td>
</tr>
<tr>
<td>595</td>
<td>Homothetus fossilis</td>
<td>(do.)</td>
</tr>
<tr>
<td>595</td>
<td>Lithocentrum Harttii</td>
<td>(do.)</td>
</tr>
<tr>
<td>595</td>
<td>Xenoneura antiquorum</td>
<td>(do.)</td>
</tr>
<tr>
<td>607</td>
<td>Homalonotus Dawsoni</td>
<td>(Silurian)</td>
</tr>
<tr>
<td>607</td>
<td>Dalmania Logani</td>
<td>(do.)</td>
</tr>
<tr>
<td>609</td>
<td>Beyrichia pubulosa</td>
<td>(do.)</td>
</tr>
<tr>
<td>609</td>
<td>Conophageleis Matthowi</td>
<td>(do.)</td>
</tr>
<tr>
<td>646</td>
<td>— equilatera</td>
<td>(do.)</td>
</tr>
<tr>
<td>649</td>
<td>Orestes</td>
<td>(do.)</td>
</tr>
<tr>
<td>651</td>
<td>Osangondianus</td>
<td>(do.)</td>
</tr>
<tr>
<td>653</td>
<td>Halli</td>
<td>(do.)</td>
</tr>
<tr>
<td>654</td>
<td>Microdiscus Dawsoni</td>
<td>(do.)</td>
</tr>
<tr>
<td>655</td>
<td>Agnostus Acadians</td>
<td>(do.)</td>
</tr>
<tr>
<td>656</td>
<td>Heads of Paradoxides</td>
<td>(do.)</td>
</tr>
<tr>
<td>657</td>
<td>Paradoxides, restored</td>
<td>(do.)</td>
</tr>
</tbody>
</table>

Animals—Vertebrata

<table>
<thead>
<tr>
<th>Page</th>
<th>Illustration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>84</td>
<td>Mastodon, femur</td>
<td>(Post-pliocene)</td>
</tr>
<tr>
<td>84</td>
<td>—— molar</td>
<td>(do.)</td>
</tr>
<tr>
<td>119</td>
<td>Bathygnatus borealis</td>
<td>(Trias)</td>
</tr>
</tbody>
</table>
CLASSIFIED LIST OF ILLUSTRATIONS.

4. Dendrerpeton Acadianum (Carboniferous) 189
5. Ctenoptychus cristatus (do.) .. 209
6. Conchodus plicatus (do.) .. 209
7. Pseammodus (do.) .. 209
8. Gyracanthus duplicatus (do.) .. 210
9. — magnificus (do.) ... 210
10. Rhizodus lancifer (do.) .. 210
11. Diplohs, (do.) .. 211
12. Paleoniscus Alberti (do.) .. 231
13. Rhizodus Hardingeri (do.) ... 254
14. Acroelpis Hortonensis (do.) ... 254
15. Ctenacanthus (do.) .. 254
16. Baphetes planiceps (do.) ... 328
17. Reptiles restored (do.) .. 352
18. Footprints (do.) ... 356
19. Footprints of Saurupus (do.) .. 358
20. Baphetes planiceps, (do.) ... 360
21. Deidrerpeton Acadianum (do.) 364
22. — Oweni (do.) ... 369
23. Hylonomus Lyelli (do.) ... 373
24. — aciedentatus (do.) ... 377
25. — Wymani (do.) .. 378
26. Hylerpeton Dawsoni, (do.) .. 380
27. Eosaurus Acadianus (do.) ... 382

IV. MISCELLANEOUS.

Impressions of Rain (Modern and Carboniferous) 27
Do. Shrinkage Cracks (do.) ... 27
Rill Marks (do.) ... 27
Sand Hills, New London, .. 39
Micmac Heads, .. 41
Stone Implements, ... 43
View of Cape Blomidon, .. 90
Basaltic Cliffs, Briar Island, .. 98
View of the Joggins Shore, ... 179
Erect Sigillaria, S. Joggins, ... 192
Cliff of Crystalline Gypsum, ... 347
Fall of Economy River, .. 557
Granite Hill and Lake near St Mary’s River, 613
Waverley Mine, .. 627
Cone-in-cone Concretion, .. 676

Note.—Figures of most of the new species of Fossils, noticed and not illustrated in this work, may be found in the Author’s Memoirs on these subjects, as follows:

ERRATA.

Page 3, etc., Maliceet is better spelled Maliseet.
 " 28, for Tellima Balthica read Tellima Gravlandica. The true
 T. Balthica is a different species.
 " 138, line 4 from bottom, for clay read marl.
 " 213, " 4 " top, for Macean read Maclean.
 " 241, " 11 " for pure read fine.
 " 244, " 2 " bottom, for this read his.
 " 246, " 9 " top, for coast read east.
 " 278, " 1 " for those read these.
 " 280, " 3 " for Stericum read Billingsi.
 " 422, " 3 " bottom, for ten-thousandth read (in some copies)
 thousandth.
 " 424, " 13 " top, for or read of.
 " 443, " 8 " for these read those.
 " 413, Description of map, for Schooner Point read Schooner Pond.
 " 444, Description of figure, for trinerne read trinervis.

If the reader should discover any other errors in addition to those above noted,
he is requested to make some allowance for the difficulty of correcting proofs,
when the author is on one side of the Atlantic and the printer on the other.
The
New
Year's
ear
ning
und
any
rains
to
as
in
hour
ignor
acade
of
or
abun
I
gain
of
m
usef
the
ject
append
tme
ACADIAN GEOLOGY.

CHAPTER I.

THE NAME "ACADIA"—GEOLOGICAL BIBLIOGRAPHY OF THE ACADIAN PROVINCES.

The old and beautiful name Acadia or Acadie, by which Nova Scotia, New Brunswick, and the neighbouring islands were known to the early French colonists, though it has a classic look and sound, is undoubtedly of aboriginal origin. Long before I was aware that any doubt or controversy existed as to its derivation, it was explained to me by an ancient Micmac patriarch named Martin St Pierre, or, as he pronounced it, "Maltun Sapeel," who used to visit my father's house, asking alms, when I was a boy. According to him, the name signifies "Plenty here," and he illustrated this by the word Shubenacadie, which still remains as the name of one of the principal rivers of Nova Scotia. Shuben, he said, or "Sgabun," means ground-nuts, or Indian potatoes; and Shubenacadie, a place where ground-nuts are abundant. On the authority of this venerable Micmac philologist, I gave, in the first edition of this work, the following explanation of the term:

"The aboriginal Miemacs of Nova Scotia, being of a practical turn of mind, were in the habit of bestowing on places the names of the useful things which could be found in them, affixing to such terms the word Acadie, denoting the local abundance of the particular objects to which the names referred. The early French settlers appear to have supposed this common termination to be the proper name of the country, and applied it as the general designation of the
region now constituting the provinces of Nova Scotia, New Brunswick, and Prince Edward Island, which still retain Acadia as their poetical appellation, and as a convenient general term for the Lower Provinces of British America as distinguished from Canada. Hence the title "Acadian Geology" is appropriate to this work, not only because that name was first bestowed on Nova Scotia, but because the structure of this province, as exposed in its excellent coast sections, furnishes a key to that of the neighbouring regions, which I have endeavoured to apply to such portions of them as I have explored."

I find, however, that the Commissioners on the Settlement of the North-eastern Boundary had previously given a very different explanation of the name. They say, as quoted by Prof. Hind:—*

"The obscurity which has been thrown in past times over the territorial extent of Acadia, that country of which De Monts received letters patent in 1603, was occasioned by not attending to the Indian origin of the name, and to the repeated transfer of the name to other parts of the country to which the first settlers afterwards removed. Even before the appointment of De la Roche, in 1598, as Lieutenant-General of the country, including those parts adjacent to the Bay of Fundy, the bay into which the St Croix empties itself was known to the Indians of the Moriseet (Maliseet) tribe, which still inhabits New Brunswick, by the name Peska dum quodiah, from Peskadm, fish, and Quodiah, the name of a fish resembling the cod,"—which fish is supposed to be that known as the "Pollock."

They further state that the French softened this word Quodiah into Quadive, Cadie, and finally Acadie, while the English have changed it into Quoddy, as in the well-known name Passamaquoddy, still applied to the bay above mentioned. Independently of the natural objection of an Acadian to believe in the derivation of this honoured and euphonious name from a word meaning a kind of cod-fish, I had great doubts as to the correctness of this etymology in any respect; and with the view of fortifying myself in the belief of the derivation of my old friend St Pierre, I have applied to the Rev. Mr Rand of Hantsport, Nova Scotia, whose acquaintance with the Miemac and Maliseet languages is second to that of no man living, and am happy to say that he confirms my previous opinion, and illustrates it in many curious ways, so that we need no longer speak of the meaning and origin of the name Acadia doubful.

Mr Rand informs me that the word, in its original form, is Kada. * Report on Geology of New Brunswick.
New Brunswick, as their poetical Lower Provinces, and the name Cadid, and that it is equivalent to "region, field, ground, land, or place;" but that when joined to an adjective, or to a noun with the force of an adjective, it denotes that the place referred to is the appropriate or special place of the object expressed by the noun or noun-adjective. Now, in Micmac, adjectives of this kind are formed by suffixing "a" or "wa" to the noun. Thus, in the word before quoted, Segubuna is a ground-nut; Segubuna, or of relating to ground-nuts; and Segubuna-kaddy is the place or region of ground-nuts, or the place in which these are to be found in abundance. The following may be given as examples of actual Indian names formed in this way:—

Sooma-Kaddy (Soananadie)—Place of cranberries.
Kata-Kaddy—Eel-ground.
Tululak-Kaddy (Tracadie)—Probably place of residence; dwelling-place.

Skuidakomoocha-Kaddy—Ghost or spirit land—is the somewhat difficult name of a large island in the Bras d'Or Lake, once used as a burial-ground.

Buna-Kaddy (Bumacadie or Benacadie)—Is the place of bringing forth; a place resorted to by moose at the calving-time.

Segoomuna-Kaddy—Place of Gaspereaux, Gaspereau or Alewife River.

According to Mr Rand, Quodidah, or Codidah, is merely a modification of Kaddy in the language of the Maliecets, and replacing the other form in certain compounds. Thus:

Nooda-Kwoddy (Noodiquoddy or Winchelsea Harbour)—Is place of seals, or, more literally, place of seal-hunting.

Koockjo-Kwoddy—Giant-land, or land of giants.

Boonamoo-Kwoddy—Tom-cod ground; and, lastly,—

Pestumoo-Kwoddy—Pollock-ground; which brings us back to Passamannoquddy, and to the learned derivation of the Commissioners, who, as unsuccessful in etymology as in the just settlement of the boundary, have merely changed the meaning of the first component of the word into a general term for fish, and have taken kwody for the equivalent of pollock; very likely because its sound resembled that of cod, or because some Maliecet Indian had rendered the name into his imperfect English by the words "Pollock fish here."

So much for the etymology of Cadid or Quoddy; now as to its application to the large region known as Acadia. Two explanations may be given of this. First, the name may be a mere alteration, as suggested by the Commissioners, of that of the bay which lay at the western
extremity of Acadia, and whose aboriginal people were called by the English the Quoddy Indians, perhaps because of the frequent occurrence of the word in their names of places. This name remains in Quoddy Head, the last point of the United States next to Acadia. Secondly, the name, as suggested by me in the first edition of "Acadian Geology," may have originated in the frequency of names with this termination in the language of the natives. The early settlers were desirous of information as to the localities of useful productions, and in giving such information the aborigines would require so often to use the term "Cadie," that it might very naturally come to be regarded as a general name for the country. I still think the latter explanation the more probable.

Acadia, therefore, signifies primarily a place or region, and, in combination with other words, a place of plenty or abundance. Thus it is not only a beautiful name, which should never have been abandoned for such names as New Brunswick or Nova Scotia, but it is most applicable to a region which is richer in the "chief things of the ancient mountains, the precious things of the lasting hills, and the precious things of the earth and of the deep that coucheth beneath," than any other portion of America of similar dimensions.

Farther, since by those unchanging laws of geological structure and geographical position which the Creator himself has established, this region must always, notwithstanding any artificial arrangements that man may make, remain distinct from Canada on the one hand, and New England on the other, the name Acadia must live; and I venture to predict that it will yet figure honourably in the history of this western world. The resources of the Acadian provinces must necessarily render them more wealthy and populous than any area of the same extent on the Atlantic coast, from the Bay of Fundy to the Gulf of Mexico, or in the St Lawrence valley, from the sea to the head of the great lakes. Their maritime and mineral resources constitute them the Great Britain of Eastern America; and though merely agricultural capabilities may give some inland and more southern regions a temporary advantage, Acadia will in the end assert its natural pre-eminence.

The above considerations justify me in retaining the title of "Acadian Geology" for the present edition of this work, notwithstanding that the name has been overlooked in the new political constitution recently bestowed on Acadia and Canada by the Parliament of Great Britain; and in which the name "Canada" is extended over the whole of British North America. The title is farther appropriate for a work of this nature, from the circumstance that the...
Acadian provinces form a well-marked geological district, distinguished from all the neighbouring parts of America by the enormous and remarkable development within it of rocks of the Carboniferous and Triassic systems.

Nova Scotia, which is in a geological point of view the most important of the Acadian provinces, has not enjoyed the full benefit of a public geological survey; though some preliminary explorations have been made under the auspices of the Government. Yet, its mineral resources have been very extensively developed by mining enterprise, its structure has been somewhat minutely examined, and it has afforded some very important contributions to our knowledge of the earth’s geological history. Circumstances of a political character, rather than any want of liberality or scientific zeal on the part of the people, have delayed the public and systematic exploration of the geology and mineral resources of the country; while the possession of useful minerals, deficient in all the neighbouring regions, has made it of necessity one of the most important mining districts in North America. Unfortunately, in one sense, for the colony, its abundant mineral wealth attracted attention at a period when the Government of the mother country was not actuated by the liberal spirit that now characterizes its dealings with its dependencies, and when the rights of the colonists were not so jealously or ably guarded as at present. The valuable minerals were reserved by the Crown, and were leased to an association of British capitalists, who opened the principal deposits of coal, and largely exported their produce, and some of whose agents have zealously and successfully aided in exploring the geology of the country. The Provincial Legislature, however, evinced a very natural disinclination to expend the public money in the examination of deposits in which its constituents had no direct interest, and which long continued to be a fertile subject of controversy with the mining company and the Imperial Government.

These impediments to public action on the subject of geological exploration have now passed away. Arrangements have been entered into between the province and the mother country, in virtue of which the control of the mines will revert to the former on the expiry of the lease. A recent act of the Legislature has empowered the Provincial Government to grant leases of unopened mines to private speculators. The provincial lines of railway have opened up many of the inland mineral districts. Valuable metallic minerals have been discovered in localities which had escaped the reservation; and arrangements have been made with the General Mining Association, which have thrown open the coal districts of the province to mining
enterprise. In all these facts there is promise that the Provincial Government will soon find itself in a position to institute a thorough scientific investigation of the structure and productions of the country, and it is to be hoped that this will be done by competent persons and on a liberal scale; and not, as has been the ease in some neighbouring colonies, in a manner too imperfect to afford trustworthy results. The excellent survey of Canada now in progress under Sir W. E. Logan, is a model to the other provinces in this respect; and it is to be hoped that, under the new political constitution provided for these colonies, its benefits may be extended to the whole of British North America.

In the meantime, Nova Scotia may congratulate herself, that the noble monuments of the earth's geological history exposed in her coast cliffs have induced eminent geologists from abroad to occupy themselves with the more interesting parts of the structure of the province, and have cherished a strong taste for geological inquiry among her own sons; and that much has thus been effected as a labour of love, which in other countries would have cost a large expenditure of the public wealth. Much, no doubt, still remains to be done, especially in those districts less fertile in facts interesting to the naturalist; but a glance at the list of publications in the following pages, is sufficient to show how much labour has been voluntarily and gratuitously expended, as well as the importance and interest of the discoveries that have been made.

But though a large amount of valuable information has been accumulated, it is scattered through the numbers of scientific journals and other publications, inaccessible to the general reader, and not easily referred to by the geological student; and it is in its nature fragmentary, and incapable of affording a complete view of the structure of the country. These considerations, and the possession of a mass of unpublished notes which had been accumulating for fourteen years, induced the author, in 1855, to undertake the present work, and to believe that, in doing so, he would render an acceptable service not only to his own countrymen and to the inhabitants of the other Acadian provinces, but to those geologists in Britain and America who may be acquainted with his published papers, and may desire a more complete acquaintance with Acadian geology. Ten years have now elapsed since the publication of the first edition of "Acadian Geology." In that time a great additional quantity of geological information has accumulated,—the science itself has made much progress, and a remarkable development of the mineral wealth of the Acadian provinces has occurred. The author has, it is true,
been removed in the meantime from the scene of his former labours, and now dwells in the great Silurian plain of Lower Canada; but he still retains a lively interest in the geology of his native province, and has endeavoured to carry forward to completion some of the subjects left unfinished in 1855, and to acquaint himself as far as possible with the results of the researches of other observers.

In the edition of 1855, Nova Scotia was not only taken as the typical region for the whole of the Acadian provinces; but the scope of the work was in a great degree limited to that province. In the present edition it has become necessary to take a wider range, more especially in regard to New Brunswick, since the researches of Dr. Robb, Professor Bailey, Mr. Matthews, Mr. Hartt, and Professor Hind, have developed to a remarkable extent the geology of the latter province, and have disclosed there some geological formations of great importance not as yet recognised in Nova Scotia.

The earliest account of the geology of Nova Scotia with which I am acquainted, is contained in an elaborate paper in Silliman's American Journal of Science for 1828, by C. T. Jackson and F. Alger, Esq., of Boston, United States. Messrs. Jackson and Alger directed their attention principally to the trap and red sandstone formations of the western districts, and the interesting crystallized minerals contained in the former; but they also gave a tolerably correct view of the distribution of the rock formations throughout the province, and made the earliest attempt to represent them on a geological map. Their determinations of the minerals of the trap district are accurate, and their catalogue of these minerals still admits of little extension. This paper was published in a separate form in 1832.

An important addition was made to the geology of the province in 1829, in a chapter contributed to Haliburton's History of Nova Scotia, by Messrs. Brown and Smith, then exploring the province on behalf of the General Mining Association; and the former of whom has subsequently been one of the most successful investigators of the geology of the coal formation. The article in Haliburton relates principally to the eastern districts, and is chiefly remarkable as containing the most accurate views of the development of the carboniferous system in Nova Scotia promulgated previously to the visit of Sir Charles Lyell in 1842.

In 1836, a volume, entitled "Remarks on the Geology and Mineralogy of Nova Scotia," by A. Geaner, F.G.S., was published in Halifax, and was the first work on the local geology extensively circulated in the province. This work was in great part a popular résumé of
the previously published discoveries of Jackson and Alger, but with many additional facts collected by its author in the course of careful examinations of the coasts of the Bay of Fundy, and more hurried journeys in other parts of the province. Gesner's work was of great service in directing popular attention within the province to the subject of geology, and it is still an excellent guide to the localities of interesting mineral specimens. "The Industrial Resources of Nova Scotia," a second work by the same author, was published in 1849.

In 1841, Sir W. E. Logan, now provincial geologist of Canada, made a short tour in Nova Scotia, and contributed a paper on the subject to the Geological Society of London. In 1842, in passing through Nova Scotia on his way to Canada, he visited the South Joggins, and executed the remarkable section which he published in 1845 in his first Report on the Geology of Canada. This section, which includes detailed descriptions and measurements of more than fourteen thousand feet of beds, and occupies sixty-five octavo pages, is a remarkable monument of his industry and powers of observation, and gives a detailed view of nearly the whole thickness of the coal formation of Nova Scotia.

The year 1842 forms an epoch in the history of geology in Nova Scotia. In that year Sir Charles Lyell visited the province, and carefully examined some of the more difficult features of its geological structure, which had baffled or misled previous inquirers. Sir Charles also performed the valuable service of placing in communication with each other, and with the geologists of Great Britain, the inquirers already at work on the geology of the province, and of stimulating their activity, and directing it into the most profitable channels. The writer of the present work gratefully acknowledges his obligations in these respects. The results obtained by Sir Charles, which much modified and enlarged the views previously entertained of the structure of Nova Scotia, were communicated to the Geological Society, and a popular account of them was given in his "Travels in North America."

Since 1842, a great number of papers on the geology of Nova Scotia and the neighbouring provinces have been published in the scientific journals and otherwise. The following list includes such of these as have been consulted in the preparation of this work, arranged according to their dates:

On the Geology of Cape Breton. R. Brown, ibid. p. 207. 3 woodcuts.

Notes on the Fossils communicated by Mr Dawson. Bunbury, ibid. pp. 136-139. 1 8vo plate.

On a group of erect Fossil Trees in the Sydney Coal Formation, Cape Breton. R. Brown, ibid. pp. 393-396. 3 woodcuts.

ACADIAN GEOLOGY.

On a Fossil Fern from Cape Breton. Bunbury, ibid. viii. pp. 31-35. 1 plate.

Dr Robb's Notices of the Geology of New Brunswick in Johnston's Report. 1819.

Deposition of R. C. Taylor, etc., on the Albert Mine. 1851.

On a Fossil imbedded in a mass of Pictou Coal. Professor Owen, ibid. x. pp. 207, 208. Lithographic plate.

On a Modern Submerged Forest at Fort Lawrence, Nova Scotia. Dawson, ibid. xi. p. 119.

On Faroeite and other Minerals. How, ibid. 1858.
On the Lower Carboniferous Brachiopoda of Nova Scotia. Davidson, ibid. xix. p. 188.
On New Crustaceans from the Carboniferous and Devonian Rocks of British America. Salter, ibid. xix. p. 75.
On a new Species of Dendrerpeton, and on Dermal Coverings of Fossil Reptiles. Dawson, ibid. xix. p. 469.

A Lecture on Sable Island. Gilpin, Halifax, 1858.

On the Coal Measures of Cape Breton; with section. Lesley, ibid. 2d series, xxxvi. p. 179.

Air-Breathers of the Coal Period. Dawson, ibid. 1st series, viii. p. 1, etc.; and in separate Work. 6 plates, Montreal, 1863.

The Rocks in the Vicinity of Halifax. Gossip, ibid. p. 44.

Notes on the Economic Mineralogy of Nova Scotia, parts 1, 2, and 3, How, ibid. p. 78.

Reports of the Chief Commissioner of Mines, Nova Scotia, 1863 to 1866.

I have endeavoured to introduce into this edition some notice of the more important facts and conclusions contained in the foregoing publications, along with such additional matter as my own observations have supplied. There will, however, be frequent occasion to refer to them in the following pages for details which my space does not permit me to introduce.
CHAPTER II.

GENERAL DESCRIPTION OF THE ACADIAN PROVINCES—TABULAR ARRANGEMENT OF FORMATIONS.

Let the reader glance at the map, and he will readily perceive some of the principal physical features of the region we have to describe. Nova Scotia consists of a peninsula and island, situated between north latitude 43° 25' and 47°, and between west longitude 59° 40' and 66° 25'; and bounded on the south-eastern side by the Atlantic, and on the western and northern sides by the Bay of Fundy, New Brunswick, and the Gulf of St Lawrence. The peninsular part, Nova Scotia proper, is 250 miles in length, and about 100 in its extreme breadth, and is attached to the mainland of North America by a low isthmus sixteen miles in width. Its form is nearly triangular, and its surface is occupied by several rock formations, arranged for the most part in lines corresponding with its longest or Atlantic coast line. The insular part, Cape Breton, barely separated from the mainland by the narrow strait of Canseau, is 100 miles in extreme length and eighty in breadth; and its rock formations are similar to those of Nova Scotia proper, though more irregularly distributed.

The three sides of the triangle formed by Nova Scotia proper are, as seen on the map, distinguished by marked differences of outline. That fronting the north-west is deeply indented by large arms of the sea, separated by precipitous promontories. The longest side, that facing the Atlantic, is dotted with innumerable islands, and penetrated everywhere by small inlets and indentations. The northern shore, fronting the Gulf of St Lawrence, is comparatively smooth and uniform in its coast lines. This is also the character of the eastern coast of Cape Breton; while its remaining sides are very irregular, and its interior is occupied by a lake-like arm of the sea, which, but for the isthmus of St Peter's, less than a mile in width, would cut it into two parts.

It will be observed that the characters of these several coast lines, as well as the different physical districts of the province, are well marked by geological and topographical differences, and lines of junction have been subject to much modification. The whole of its rocks have been subjected to a mode of metamorphism that can alone account for the formation of its surface and its internal structure. I may refer in connexion with this subject to the several different physical districts of Nova Scotia proper, though more irregularly distributed.

The three sides of the triangle formed by Nova Scotia proper are, as seen on the map, distinguished by marked differences of outline. That fronting the north-west is deeply indented by large arms of the sea, separated by precipitous promontories. The longest side, that facing the Atlantic, is dotted with innumerable islands, and penetrated everywhere by small inlets and indentations. The northern shore, fronting the Gulf of St Lawrence, is comparatively smooth and uniform in its coast lines. This is also the character of the eastern coast of Cape Breton; while its remaining sides are very irregular, and its interior is occupied by a lake-like arm of the sea, which, but for the isthmus of St Peter's, less than a mile in width, would cut it into two parts.

It will be observed that the characters of these several coast lines, as well as the different physical districts of the province, are well marked by geological and topographical differences, and lines of junction have been subject to much modification. The whole of its rocks have been subjected to a mode of metamorphism that can alone account for the formation of its surface and its internal structure. I may refer in connexion with this subject to the several different physical districts of Nova Scotia proper, though more irregularly distributed.
marked by the arrangement of the tints which distinguish the different geological formations. The boundaries of these often coincide with those of ranges of hills, and the general direction both of the hills and lines of rock formation is N.E. and S.W., which is the prevailing direction of the structure of the whole eastern part of North America. The whole contour of the country indeed, as well as the directions of its coasts, rivers, and hills, depends on the nature and arrangement of its rocks, and on the elevatory movements to which they have been subjected. The former determine the minor details of the surface and the coast lines: the latter, the elevation and distribution of the rocky masses on the great scale. For illustrations of this, I may refer the reader to the general section annexed to the map, in connexion with the following explanation of the colours representing the several formations.

The carmine and purple portions of the map, representing the oldest rocks in the province—rocks partly ejected in a molten state from the interior of the earth, and partly very ancient sediments metamorphosed or altered by heat and other chemical agencies—extend in an unbroken band along the whole Atlantic coast, wide at its western end, and tapering to a point in the eastern. This belt of country is in some parts low, rugged, and broken, and in others boldly undulating. It is traversed by many rocky ridges, and abounds in lakes, bogs, and streams. Its soils are often sterile and stony, though it has also large tracts of fertile soil, supporting noble forests, and fine agricultural settlements. Its maritime situation and numerous harbours have made it the abode of a large fishing and trading population; and these advantages have also given to it the capital of the province, and several of the most prosperous towns and villages, while its recently discovered gold veins have added to it in recent years great importance as a mining district. This district is low at the Atlantic coast, and gradually rises to the height of a few hundreds of feet at its northern limit, where it descends somewhat suddenly to the level of the inland valleys, which, in the greater part of its length, separate it from the district next to be mentioned.

The very irregular bands and patches, of a blue colour, with carmine lines and spots, also consist of altered rocks, with others of igneous origin, poured through them from beneath; but the whole of somewhat later age than the rocks of the Atlantic coast. This district consists in great part of elevated ridges. It includes the highest and most continuous hills in the province, none of which, however, exceed 1200 feet in height, and the sources of all the
principal rivers. Its hills are covered with fertile soil, and in their natural state support some of the finest forests in the country; and it includes valuable deposits of metallic minerals. Its deep ravines, cascades, and fine wood-clothed precipices, afford the nearest approach to picturesque mountain scenery that a country so little elevated as Nova Scotia can boast.

The portions coloured gray or neutral tint and red represent low and undulating districts, stretching in plains or narrow valleys between and into the higher lands already described. The larger of these, that coloured gray, is the great carboniferous district, including all the valuable deposits of coal, freestone, grindstone, gypsum, and limestone, and having fertile soils over the greater part of its surface. It is therefore the principal abode of the mining, quarrying, and agricultural population. The red district, which is of comparatively small dimensions, represents the New Red Sandstone, a later formation covered by light and productive soil, and containing some of the oldest and finest agricultural settlements.

The long crimson band, extending along the hilly district on the south coast of the Bay of Fundy, and the isolated patches of the same colour on the opposite side of Minas Channel and Basin, are the most recent rocks in Nova Scotia, being masses of volcanic origin which have been poured through the New Red Sandstone formation. They constitute marked and picturesque features in the scenery of the western counties, and along their flanks and on their summits afford fertile soils and support valuable forests.

Lastly, the recent alluvium produced by the tides of the Bay of Fundy, and forming marsh soils of almost inexhaustible fertility, is represented by certain limited stripes and patches of a brown colour.

While, however, each of the geological formations which appear on the map has its special influence on the contour, coast outlines, scenery, and industrial resources of the country, there is a great variety of minor differences within each; for a geological formation, though it often includes a group of rocks characterized, merely as rocks, by many features in common, is distinguished from others not so much on this ground, as by the period when it was formed, and the fossils characteristic of that period which it contains; consequently we shall often find very dissimilar conditions and mineral productions in neighbouring parts of the same geological district.

If we turn to New Brunswick, we shall find there, with some differences of detail, a repetition of the features of Nova Scotia on a broader and more uniform scale. Stretching along the southern coast, from the head of the Bay of Fundy to the frontier of Maine, are
belts of ancient and partially altered rocks, forming a somewhat broken and hilly country. At the south-western extremity of the province this belt is joined by another still more extensive, stretching south-westward from the Bay de Chaleur, and forming, with the other, a gigantic letter V, between the arms of which lies the wide triangular area of the New Brunswick coal field; while beyond the northern arm of metamorphic and igneous rocks a plain of unaltered Silurian beds extends to the highlands, along the south side of the St Lawrence. The carboniferous plain of New Brunswick corresponds to, and, at its eastern extremity, is connected with that of Nova Scotia; and its hilly ranges of altered and igneous rocks form, with those of Nova Scotia, outlying ridges rudely parallel to the great Appalachian breast-bone of America, and, like it, descending under the level of newer deposits and of the sea at their north-eastern extremities. Where they thus die out and leave the beautifully arched southern bay of the Gulf of St Lawrence, bordered, from Gaspe to Cape Breton, with the coal-bearing rocks, Prince Edward Island bends like a crescent across its extremities, and displays its bright red shores of later age than the carboniferous period, its low but beautifully undulating surface, and its fertile soil unsurpassed in Eastern America.

The whole of this Acadian region is characterized, like other parts of the Atlantic slope of North America, as distinguished from its interior plains, by a varied and uneven surface, and by great variety of soil and mineral products. In the latter, the Acadian provinces are especially rich; and in these and their maritime situation, they bear to the inland regions of Canada much the same relation with that which the British Islands bear to the plains of Central Europe. Nova Scotia, more particularly, is most richly endowed with coal, iron, and gold; and these, with its other resources, its admirable harbours and the hardy and intelligent population, which it possesses in common with the other Acadian provinces, must in time make it the England of North-Eastern America, and must give it an eminence in wealth and influence altogether disproportioned to its limited area.

It is, however, of the nature of mineral wealth such as that of the Acadian provinces, to be more slowly developed than the merely superficial richness of the soil and forests of the great interior plains; and consequently this region has appeared to linger behind Western Canada in its improvement. Its progress, however, is now very rapid, and must proceed at an accelerated rate.

Such being the general physical features of Acadia, it belongs to us, as geologists, to inquire into the structure of its different rock formations, the various materials of which they are composed, the
manner in which they were formed, the periods of the earth’s history in which they were produced, and the evidences they afford of the condition of the earth in those periods, the fossils which are embedded in them, and the useful minerals which they contain. No further introduction will be required to enable the non-geological reader to understand the conclusions arrived at on these subjects, as well as in some degree the manner in which geologists reach these conclusions. Nature, when carefully examined and minutely described, is her own best interpreter; and I have endeavoured so to arrange the subjects treated of as to lead gradually from those modern causes and changes with which nearly all are familiar, to the more ancient natural processes and events, which can be understood only by calling the modern conditions of the earth’s surface as witnesses to prove the nature and origin of their predecessors. Fortunately, Nova Scotia affords in its modern deposits many remarkable parallels to the conditions evidenced by its rock formations; and when we fail to discover such analogies within the province, they can generally be obtained by a reference to other countries with which the greater number of intelligent persons are familiar. Should any farther aid be required, it may be obtained by a reference to any of those elementary geological works which are now so numerous and accessible. For these reasons, I shall not detain the reader with any geological information of a general character, other than that contained in the following table, which shows the formations already noticed in connexion with the map and sections, in their relation to the complete geological series, as represented in the rocks of Britain and those of the great mainland of North America.

Tabular View of the Geological Formations of the Acadian Provinces, compared with those of Great Britain, the United States, and Canada.

I. CAINOZOIC, OR MODERN AND TERTIARY.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervals, Marshes, Sand Dunes, etc.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marine Clays of St John, etc.</td>
<td>Leda Clay.</td>
<td>Champlain Clay.</td>
<td>Marine Clays.</td>
</tr>
</tbody>
</table>
I. CAINOZOIC, OR MODERN AND TERTIARY.—Continued.

<table>
<thead>
<tr>
<th>Formations recognised in the</th>
<th>Canada</th>
<th>Representatives in</th>
<th>Britain.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acadian Provinces.</td>
<td></td>
<td>United States.</td>
<td></td>
</tr>
<tr>
<td>Newer Tertiaries</td>
<td>Not found.</td>
<td>of Southern States.</td>
<td>Crag, etc.</td>
</tr>
<tr>
<td>Middle Tertiaries</td>
<td>Not found.</td>
<td>of Southern States and Nebraska.</td>
<td>Hempstead Beds, etc.</td>
</tr>
<tr>
<td>Older Tertiaries</td>
<td>Not found.</td>
<td>of Southern and Middle States.</td>
<td>Headon Series, Bagshot Beds, London Clay, etc.</td>
</tr>
<tr>
<td>Cainozoic, or Modern</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>and Tertiary,—Continued.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Newer Red Sandstone and</td>
<td>Not found.</td>
<td>Greensand and Limestone of New Jersey, Alabama, Texas, Missouri, etc.</td>
<td>Chalk, Gault, Greensand, Wealden.</td>
</tr>
<tr>
<td>Trap of Western Nova Scotia,</td>
<td></td>
<td>Limestones, etc., of Black Hills, Dakota.</td>
<td>Upper, Middle, and Lower Oolite, and Liassic.</td>
</tr>
<tr>
<td>III. PALEOZOIC, OR PRIMARY.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not represented unless by</td>
<td>Not found.</td>
<td>Limestone, Marls, etc., of Kansas.</td>
<td>Magnesian. Limestone, Marl-Slate, and Lower New Red Sandstone.</td>
</tr>
<tr>
<td>the lower part of the Sandstones of P. E. Island.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper Coal Formation.</td>
<td>Not found.</td>
<td>Upper Coal Measures.</td>
<td>Coal Formation.</td>
</tr>
<tr>
<td>Millstone Grit. Gypsic. Series, Limestones, etc.</td>
<td>Not found.</td>
<td>“Sub-Carboniferous” or Lower Carboniferous.</td>
<td></td>
</tr>
</tbody>
</table>
III. Palæozoic, or Primary—Continued.

<table>
<thead>
<tr>
<th>Formations recognised in the Acadian Provinces</th>
<th>Representatives in Canada</th>
<th>Representatives in the United States</th>
<th>Britain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sandstones of Restigouche.</td>
<td>Hamilton</td>
<td>Hamilton.</td>
<td></td>
</tr>
<tr>
<td>Slate, Sandstones, and Iron Ore, of Bear R., Nictaux, etc.</td>
<td>Corniferous</td>
<td>Upper Helderberg.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Limestone</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oriskany</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper Ariassig Series.</td>
<td>Lower Helderberg Series.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Cobequid Mt. Series.)</td>
<td>Onondaga</td>
<td>Lower Helderberg.</td>
<td></td>
</tr>
<tr>
<td>Limestones, etc., of Dalhousie and Restigouche.</td>
<td>Guelph</td>
<td>Salina.</td>
<td></td>
</tr>
<tr>
<td>New Canaan Slates, etc.</td>
<td>Niagara</td>
<td>Niagara.</td>
<td></td>
</tr>
<tr>
<td>Lower Ariassig Series.</td>
<td>Clinton</td>
<td>Clinton.</td>
<td></td>
</tr>
<tr>
<td>(Kingston Series, N. B.)</td>
<td>Medina</td>
<td>Medina and Oneida.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Anticosti Gr.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hudson R. Ser.</td>
<td>Hudson R.</td>
<td></td>
</tr>
<tr>
<td>Upper Members not found.</td>
<td>Utica</td>
<td>Utica.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trenton</td>
<td>Trenton.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Black R.</td>
<td>Black R.</td>
<td></td>
</tr>
<tr>
<td>Lower Silurian.</td>
<td></td>
<td>Caradoc and Bala.</td>
<td></td>
</tr>
<tr>
<td>Atlantic Coast Metamorphic Series, and Metamorphic Belt of Northern New Brunswick.</td>
<td>Chazy</td>
<td>Llandoilo.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Quebec</td>
<td>Tremadoc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calciferous</td>
<td>Lingula.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>U. Potsdam.</td>
<td>Flags.</td>
<td></td>
</tr>
<tr>
<td>St John, or Acadian Series.</td>
<td>L. Potsdam.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Longmynd Series.</td>
<td></td>
</tr>
<tr>
<td>Coldbrook Group, N. B.</td>
<td>Huronian Series.</td>
<td>Huronian Series.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Longmynd Series.</td>
<td></td>
</tr>
</tbody>
</table>

IV. Eoësic, or Laurentian.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>St John, N. B.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In the above Table the formations of Canada have been taken from Logan's Report, those of the United States from Dana, and those of Great Britain from Murchison and Lyell.

* In Eastern Canada, Gaspé Sandstonea.
GENERALIZED SECTION OF THE ROCKS OF ACADIA,

ON A LINE FROM WOODSTOCK, NEW BRUNSWICK, TO MAHONE BAY, NOVA SCOTIA.

N.W. c i c f e i d f a b c e f Bay of Fundy h g d e e d i d e i S.E.

a, Laurentian.
b, Huronian.
c, Lower Silurian.
d, Upper Silurian.
e, Devonian.
f, Carboniferous.
g, Trias.
a, Triassic Trap.
i, Granite Rocks.

[The above Section represents the view entertained at present by the author as to the probable general arrangement of the formations described in this volume. It is of course an Ideal Section, and many of the facts represented admit of different interpretations.]
Those parts of the Bay of Fundy, which, by fertile in many soils, which, when entering the swamps to the pressed and other, until in seven miles per feet or more. accustomed swamp nature than of brown mud retired from it of muddy water seen to break and, covering the higher sweep in the turbid with all the channel and often having runs steadily for ebb still trickling and then, as the steady rapidity security crops of deluge. In a shalt thou come
CHAPTER III.

THE MODERN PERIOD.

Those parts of Nova Scotia and New Brunswick bordering on the Bay of Fundy present some interesting examples of marine alluvial soils, which, while of great practical value to the inhabitants, are equally fertile in material of thought to the geologist. The tide-wave that sweeps to the north-east, along the Atlantic coast of the United States, entering the funnel-like mouth of the Bay of Fundy, becomes compressed and elevated, as the sides of the bay gradually approach each other, until in the narrower parts the water runs at the rate of six or seven miles per hour, and the vertical rise of the tide amounts to sixty feet or more. In Cobequid and Chiegnecto Bays, these tides, to an unacustomed spectator, have rather the aspect of some rare convulsion of nature than of an ordinary daily phenomenon. At low tide, wide flats of brown mud are seen to extend for miles, as if the sea had altogether retired from its bed; and the distant channel appears as a mere stripe of muddy water. At the commencement of flood, a slight ripple is seen to break over the edge of the flats. It rushes swiftly forward, and, covering the lower flats almost instantaneously, gains rapidly on the higher swells of mud, which appear as if they were being dissolved in the turbid waters. At the same time the torrent of red water enters all the channels, creeks, and estuaries; surging, whirling, and foaming, and often having in its front a white, breaking wave, or “bore,” which runs steadily forward, meeting and swallowing up the remains of the ebb still trickling down the channels. The mud flats are soon covered; and then, as the stranger sees the water gaining with noiseless and steady rapidity on the steep sides of banks and cliffs, a sense of insecurity creeps over him, as if no limit could be set to the advancing deluge. In a little time, however, he sees that the fiat, “Hitherto shalt thou come, and no farther,” has been issued to the great bay.
tide: its retreat commences, and the waters rush back as rapidly as they entered.

The rising tide sweeps away the fine material from every exposed bank and cliff, and becomes loaded with mud and extremely fine sand, which, as it stagnates at high water, it deposits in a thin layer on the surface of the flats. This layer, which may vary in thickness from a quarter of an inch to a quarter of a line, is coarser and thicker at the outer edge of the flats than nearer the shore; and hence these flats, as well as the marshes, are usually higher near the channels than at their inner edge. From the same cause,—the more rapid deposition of the coarser sediment,—the lower side of the layer is arenaceous, and sometimes dotted over with films of mica, while the upper side is fine and slimy, and when dry has a shining and polished surface. The falling tide has little effect on these deposits, and hence the gradual growth of the flats, until they reach such a height that they can be overflowed only by the high spring tides. They then become natural or salt marsh, covered with the coarse grasses and Carices which grow in such places. So far the process is carried on by the hand of nature; and before the colonization of Nova Scotia, there were large tracts of this grassy alluvium to excite the wonder and delight of the first settlers on the shores of the Bay of Fundy.

Man, however, carries the land-making process farther; and by diking and draining, excludes the sea water, and produces a soil capable of yielding for an indefinite period, without manure, the most valuable cultivated grains and grasses. Already there are in Nova Scotia more than forty thousand acres of diked marsh, or "dike," as it is more shortly called, the average value of which cannot be estimated at less than twenty pounds currency per acre. The undiked flats, bare at low tide, are of immensely greater extent.

The differences in the nature of the deposit in different parts of the flats, already noticed, produce an important difference in the character of the marsh soils. In the higher parts of the marshes, near the channels, the soil is red and comparatively friable. In the lower parts and especially near the edge of the upland, it passes into a gray or bluish clay called "blue dike," or, from the circumstance of its containing many vegetable fragments and fibres, "corky dike." These two varieties of marsh differ very materially in their agricultural value. It often happens, however, that in the growth of the deposit, portions of blue marsh become buried under red deposits, so that, on digging two layers or strata are found markedly different from each other in colour and other properties; and this change may be artificially produced by digging channels to admit the turbid red waters to overflow the low blue marsh.
The red marsh, though varying somewhat in quality, is the best soil in the region, and much of it compares favourably with the most celebrated alluvial soils of the old and new worlds. The following analysis of recently deposited marsh mud from Truro, will serve to show the composition of this kind of soil:

<table>
<thead>
<tr>
<th>Soluble in Water</th>
<th>Soluble in Hydrochloric Acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture,</td>
<td>Phosphoric Acid,</td>
</tr>
<tr>
<td>Organic matter,</td>
<td>Silicious Sand (very fine),</td>
</tr>
<tr>
<td>Chlorine, as common salt,</td>
<td></td>
</tr>
<tr>
<td>Soda,</td>
<td></td>
</tr>
<tr>
<td>Potash,</td>
<td></td>
</tr>
<tr>
<td>Sulphuric Acid, as gypsum,</td>
<td></td>
</tr>
<tr>
<td>Lime,</td>
<td></td>
</tr>
<tr>
<td>Alumina,</td>
<td></td>
</tr>
<tr>
<td>Magnesia,</td>
<td></td>
</tr>
<tr>
<td>Carbonate of Lime,</td>
<td></td>
</tr>
<tr>
<td>Oxide of Iron,</td>
<td></td>
</tr>
<tr>
<td>Alumina,</td>
<td></td>
</tr>
<tr>
<td>Magnesia,</td>
<td></td>
</tr>
<tr>
<td>Soda and Potash,</td>
<td></td>
</tr>
<tr>
<td>Phosphoric Acid,</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>moisture,</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic matter,</td>
<td>1.5</td>
</tr>
<tr>
<td>Chlorine,</td>
<td>0.095</td>
</tr>
<tr>
<td>Soda,</td>
<td>0.115</td>
</tr>
<tr>
<td>Potash,</td>
<td>0.013</td>
</tr>
<tr>
<td>Sulphuric Acid,</td>
<td>0.073</td>
</tr>
<tr>
<td>Lime,</td>
<td>0.061</td>
</tr>
<tr>
<td>Alumina,</td>
<td>0.005</td>
</tr>
<tr>
<td>Magnesia,</td>
<td>0.004</td>
</tr>
<tr>
<td>Carbonate of Lime,</td>
<td>3.60</td>
</tr>
<tr>
<td>Oxide of Iron,</td>
<td>2.74</td>
</tr>
<tr>
<td>Alumina,</td>
<td>1.20</td>
</tr>
<tr>
<td>Magnesia,</td>
<td>0.11</td>
</tr>
<tr>
<td>Soda and Potash,</td>
<td>8</td>
</tr>
<tr>
<td>Phosphoric Acid,</td>
<td>0.09</td>
</tr>
<tr>
<td>Silicious Sand (very fine),</td>
<td>88.00</td>
</tr>
</tbody>
</table>

So valuable is this soil, though nearly destitute of organic matter, that it is found profitable to cart it upon the upland as a manure. Its best varieties have now been cropped without manure for more than two centuries, without becoming unproductive; though there can be no question that under this treatment a gradual diminution of its fertility is perceptible. The weakest point of the marsh land, judging from the above analysis, is its small proportion of phosphates. It is probable, however, that this is in part compensated by the presence of fish bones and other matters of organic origin, which do not appear in an analysis. Yet I have no doubt that the cheapest manure for failing marsh will be found to be bone dust or guano, which, by supplying phosphates, will restore it nearly to its original condition. There seems no reason to suppose that a soil with the fine mixture of mineral ingredients present in the marsh mud, requires any artificial supply of ammoniacal matters. Draining is well known to be essential to the fertility of the marshes, and many valuable tracts of this land are now in an unproductive condition from its neglect. The fertility of failing marsh may also be restored by admitting the sea to cover it with a new deposit. This remedy, however, involves the loss of several crops, as some years are required to remove from the new soil its saline matter. It is, however, observed, that in some situations the newly diked marsh produces spontaneously a crop of couch grass...
and other upland plants, the seeds of which must have been washed into the sea by streams and deposited with the mud.

The low or inner marsh, which I have previously mentioned under its other names of blue marsh and corky dike, is much less valuable than the red. It contains, however, much more vegetable matter, and sometimes approaches to the character of a boggy swamp; so that when a quantity of it is taken out and spread over the upland, it forms a useful manure. It emits a fetid smell when recently turned up, and the water cozing from it stains the ground of a rusty colour. It produces in its natural state crops of coarse grass, but when broken up is unproductive, with the sole exception that rank crops of oats can sometimes be obtained from it.

The chemical composition of this singular soil, so unlike the red mud from which it is produced, involves some changes which are of interest both in agriculture and geology. The red marsh derives its colour from the peroxide of iron. In the gray or blue marsh, the iron exists in the state of a sulphuret, as may easily be proved by exposing a piece of it to a red heat, when a strong sulphurous odour is exhaled, and the red colour is restored. The change is produced by the action of the animal and vegetable matters present in the mud. These in their decay have a strong affinity for oxygen, by virtue of which they decompose the sulphuric acid present in sea-water in the forms of sulphate of magnesia and sulphate of lime. The sulphur thus liberated enters into combination with hydrogen, obtained from the organic matter or from water, and the product is sulphuretted hydrogen, the gas which gives to the mud its unpleasant smell. This gas, dissolved in the water which percolates the mud, enters into combination with the oxide of iron, producing a sulphuret of iron, which, with the remains of the organic matter, serves to colour the marsh blue or gray. The sulphuret of iron remains unchanged while submerged or water-soaked; but when exposed to the atmosphere, the oxygen of the air acts upon it, and it passes into sulphate of iron or green vitriol,—a substance poisonous to most cultivated crops, and which when dried or exposed to the action of alkaline substances, deposits the hydrated brown oxide of iron. Hence the bad effects of disturbing the blue marsh, and hence also the rusty colour of the water flowing from it. The remedies for this condition of the soil are draining and liming. Draining admits air and removes the saline water; lime decomposes the sulphate of iron, and produces sulphate of lime and oxide of iron, both of which are useful substances to the farmer.*

* Since the publication of the first edition of this work, the blue marsh of Nova Scota has been extensively improved by this process.

This kind of which is as it explains abundance like the brief origin of it often account those which the failures of the present in which the matter tends or change in the sediments.

Much geology of Fundy, for facilities which we find illustrated a quote a summary by Sir Charles phenomena as "The sediments being derived belonging chasms smallest estuary sixty feet and between the summer by a cracks caused to be taken up a each slab, with a usually very the equal thickness of tides rising a foot. When a shows flat is usually the uncovered by
This singular and complicated series of processes, into all the details of which I have not entered, is of especial interest to the geologist, as it explains the causes which have produced the gray colour and abundance of sulphuret of iron observed in many ancient rocks, which, like the blue marls, have been produced from red sediment, changed in colour by the presence of organic matter. It also explains the origin of those singular stains which, in rocks coloured by iron, so often accompany organic remains, or testify to the former existence of those which have passed away. It farther shows the reason of the paucity of organic remains in red rocks, for the red oxide of iron, when present in excess, tends to corrode and destroy any organic matter which may be present; and on the other hand, an excess of organic matter tends to deoxidise the iron and remove it in a state of solution, or change it into a sulphuret, according to circumstances,—the colour of the sediment being changed in either case.

Much geological interest attaches to the marine alluvium of the Bay of Fundy, from the great breadth of it laid bare at low tide, and the facilities which it in consequence affords for the study of sun-cracks, impressions of rain-drops, foot-prints of animals, and other appearances which we find imitated on many ancient rocks. The genuineness of these ancient traces, as well as their mode of preservation, can be illustrated and proved only by the study of modern deposits. I quote a summary of facts of this kind from a paper on rain-prints by Sir Charles Lyell, who was the first to direct attention to these phenomena as exhibited in the Bay of Fundy.*

"The sediment with which the waters are charged is extremely fine, being derived from the destruction of cliffs of red sandstone and shale, belonging chiefly to the coal measures. On the borders of even the smallest estuaries communicating with a bay, in which the tides rise sixty feet and upwards, large areas are laid dry for nearly a fortnight between the spring and neap tides, and the mud is then baked in summer by a hot sun, so that it becomes solidified and traversed by cracks caused by shrinkage. Portions of the hardened mud may then be taken up and removed without injury. On examining the edges of each slab, we observe numerous layers, formed by successive tides, usually very thin, sometimes only one-tenth of an inch thick,—of unequal thickness, however, because, according to Dr Webster, the night-tides rising a foot higher than the day-tides throw down more sediment. When a shower of rain falls, the highest portion of the mud-covered flat is usually too hard to receive any impressions; while that recently uncovered by the tide, near the water's edge, is too soft. Between * Journal of London Geological Society, vol. vii. p. 239.
these areas a zone occurs almost as smooth and even as a looking-glass, on which every drop forms a cavity of circular or oval form; and if the shower be transient, these pits retain their shape permanently, being dried by the sun, and being then too firm to be effaced by the action of the succeeding tide, which deposits upon them a new layer of mud. Hence, we find on splitting open a slab an inch or more thick, on the upper surface of which the marks of recent rain occur, that an inferior layer, deposited perhaps ten or fourteen tides previously, exhibits on its under surface perfect casts of rain-prints which stand out in relief, the moulds of the same being seen in the layer below.”

After mentioning that a continued shower of rain obliterates the more regular impressions, and produces merely a blistered or uneven surface, and describing minutely the characteristics of true rain-marks in their most perfect state, Sir Charles adds:—

“On some of the specimens the winding tubular tracks of worms are seen, which have been bored just beneath the surface. Sometimes the worms have dived beneath the surface, and then reappeared. Occasionally the same mud is traversed by the foot-prints of birds (Tringa minuta), and of musk rats, minks, dogs, sheep, and cats. The leaves also of the elm, maple, and oak trees have been scattered by the winds over the soft mud, and having been buried under the deposits of succeeding tides, are found on dividing the layers. When the leaves themselves are removed, very faithful impressions, not only of their outline, but of their minutest veins, are left imprinted on the clay.”

We have here a perfect instance, in a modern deposit, of phenomena which we shall have to notice in some of the most ancient rocks; and it is only by such minute studies of existing nature that we can hope to interpret those older appearances. In some very ancient rocks we have impressions of rain-marks, or their casts, on the under surface of the overlying beds, quite similar to those which occur in the alluvial mud of the Bay of Fundy. In these old rocks, also, and especially in the coal formation, we find surfaces netted with sun-cracks precisely like those on the dried surfaces of the modern mud flats, and faithful casts of these taken by the bed next deposited. A still more curious appearance is presented by the rill-marks produced by the flowing of the receding tide, or of rain, down inclined surfaces of mud. The little streamlets flowing together into larger channels, form singular patterns, which may be compared to graceful foliage or to the ramifications of roots, and which have often been mistaken for fossils. In the following figures (Figs. 1, 2, 3) I have endeavoured to represent the surface of a small

Fig. 1—

Fig. 2—

Fig. 3—

Fig. 4—

Fig. 5—
RAIN-MARKS IN MARINE ALLUVIUM.

Fig. 1. Fig. 2. Fig. 3.

Fig. 4.

Fig. 5.

Fig. 1.—Impressions of Rain-Drops.—Modern.—Bay of Fundy.
2.—Impressions of Rain-Drops.—Carboniferous.—Tatamagouche.
3.—Impressions of Continued Rain.—Carboniferous.
4.—Shrinkage Cracks and Rain Marks.—Carboniferous.—Reduced in size.
5.—Cast of Rill Marks.—Carboniferous.—Reduced in size.
rain-marked slab of modern mud, presented to me by Dr Webster, and beside it the casts of rain-drops from the showers which fell in Nova Scotia in the carboniferous period. I have also given specimens of rill-marks and sun-cracks from the coal field of Cape Breton, which are quite similar to those to be seen at low tide in the Bay of Fundy; and farther on will be found representations of worm-tracks and foot-prints of animals found on rocks of the same age, and the mode of formation and preservation of which is explained by these same modern deposits (Figs. 4, 5).

A still more striking geological fact connected with the marshes, is the presence beneath them of stumps of trees still rooted in the soil, and other indications which prove that much if not the whole of this marine alluvium rests on what once was upland soil supporting forest trees; and that, by some change of level, these ancient forests have been submerged and buried under the tidal deposits. To illustrate this, I may notice one of the best instances of these submarine forests with which I am acquainted, and which I described in the Journal of the Geological Society in 1854. It occurs on the edge of the marsh near the mouth of the La Planche river, in Cumberland county, at the extremity of Fort Lawrence ridge, which separates the La Planche from the Missaquash, and may be well seen in the neighbourhood of a pier which has recently been erected there.

The upland of Fort Lawrence slopes gently down toward the diked marsh, on crossing which we find, outside the dike, a narrow space of salt marsh thinly covered with coarse grass and samphire (Salicornia), and at the outer edge cut away by the neap tides so as to present a perpendicular step about five feet in height. Below this is seen, at low tide, a sloping expanse of red mud, in places cut into furrows by the tides, and in other places covered with patches of soft recently deposited mud. On this slope I saw impressions of rain-drops, sun-cracks, tracks of sandpipers and crows, and abundance of the shells of the little Tellina Bathica, a shell very common in the muddy parts of the Bay of Fundy. There were also a few long straight furrows, still quite distinct in August, but which, I was informed, had been ploughed by the ice in the past spring. At the distance of 326 paces from the abrupt edge of the marsh, and about 25 feet below the level of the highest tides, which here rise in all about 40 feet, I saw the first of the rooted stumps, which appear in a belt of sand, gravel, and stones mixed with mud, rock and other detritus. I also observed, on the outer face of the dikes, and extending more directly over the edge of the high tide mark of the same wood. The furrows I have just mentioned and between which are a few ridges without stumps, which may be, in part, at least, those which may have been left by the ice.

Of thirty or forty of these stumps, the most were pine (Pinus), and it is worthy of note that the few which were on the dry upland that immediately adjoins a comparatively hard plateau and the appearance of the surface. The latter is covered with the remains of tree stumps, which are spread in a very remarkable manner; and here I have seen two distinct layers of stumps, with some of the roots remaining, which indicate that this surface was at one time covered with a forest, and has since been transformed into a marsh by the downwarping of the land.
mixed with mud, which intervenes between the slope of mud already mentioned and the level of low tide. Beyond the stump first seen, and extending to a depth of at least 30 to 35 feet below the level of high tide, other stumps were irregularly scattered as in an open wood. The lowest stump seen was 135 paces beyond the first; and between it and the water level there was a space of 170 paces without stumps, but with scattered fragments of roots and trunks, which may have belonged to rooted trees broken up and swept away by the ice (Fig. 6).

Fig. 6.—Submarine Forest.—Fort Lawrence.

On digging under and around some of the stumps, they were found to be rooted in a soil having all the characters of forest soil. In one place it was a reddish sandy loam, like the ordinary upland soil of Fort Lawrence; in another place it was a black vegetable soil resting on a white sandy subsoil. Immediately over the soil were the remains of a layer of tough bluish clay, with a few vegetable fibres, apparently rootlets of grasses, which seemed to have been the first layer of marsh mud deposited over the upland soil. All the rootlets of the stumps were entire and covered with their bark, and the appearances were perfectly conclusive as to their being in the place of their growth (Fig. 7).

Fig. 7.—Stump of Beech in the Submarine Forest.

Of thirty or forty stumps which I examined, the greater number were pine (*Pinus strobus*), but a few were beech (*Fagus ferruginea*); and it is worthy of note that these are trees characteristic rather of dry upland than of low or swampy ground. The pine stumps were quite sound, though somewhat softened and discoloured at the surface. The beech, on the other hand, though retaining much
of the appearance of sound wood in the interior, was quite charred at the surface, and was throughout so soft and brittle that large trunks and roots could be cut through with a spade or broken with a slight blow. Owing to their softness, the beech stumps were worn down almost to the level of the mud, while some of the pines projected more than a foot; these last were, however, much crushed by the pressure of the ice, which, with the tides, must eventually remove them. The largest stump observed was a pine two feet six inches in diameter, and showing more than two hundred annual rings of growth. I was informed by respectable and intelligent persons that similar appearances have been observed on the opposite side of the La Planche, and in various other places in the Cumberland Basin. It is only, however, in places where the marsh is being cut away by the current that they can be seen, and the stumps, when laid bare, are soon removed by the tide. Similar beds of stumps and vegetable soil are also occasionally disclosed in digging ditches in the shallower parts of the marshes, and there appears little reason to doubt that the whole of the Cumberland marshes rest on old upland surfaces. A submerged forest is also said to appear at the mouth of the Folly River in Cobequid Bay; and peaty soils and trunks and stumps of trees are of frequent occurrence in digging in the marshes of King's and Annapolis counties. It would seem, therefore, that these appearances are somewhat general throughout the marsh country.

With respect to the age of these submerged stumps, there can be little difference of opinion. They belong to the modern period in geology, and, judging from the state of preservation of the wood, after making every allowance for the preservative effect of the salt mud, not to the very oldest part of that period. Yet their antiquity is considerable. The marshes are known to have existed in their present state for two hundred and fifty years; and since these trees grew and were submerged, all the mud of the marshes must have accumulated, at least in its present position. Here then we have a modern phenomenon involving great physical changes in the relations of land and water, and rivalling some of those geological events of which we have evidence in the older rocks.

How did this change of the sea level occur? Only two causes can be assigned. It must have been either the rupture of a barrier previously excluding the sea water, or an actual sinking or subsidence of the whole of the western part of the province. The first of these suppositions is that which most readily recommends itself to the popular mind, and we have at no great distance an instance of a small lake of a similar transverse character in the existing barrier without the submersion of a tide water. It is only to twenty four feet wide, and four feet deep; it now quite is laid bare, and it is some fact which has a marked application to the subject. The depth below which the salt water could not penetrate, and the effects of a more or less softening caused by any cause is a subsidence of the surface of a marsh, whether this can be a cause to support us in this case.

If a great lake, geologically a marsh, the country still remains subject to the same physical changes in the relations of land and water, and rivalling some of those geological events of which we have evidence in the older rocks. I should a
small scale of the effect which might be produced by the rupture of a sea barrier. At the mouth of the St John River, there is a transverse ridge of rock which obstructs the entrance of the tide and the exit of the river water. At low tide, the river water falls outward over the ridge. At about half tide, the water within and that without are on a level. At high tide, there is a strong fall of the tide water inward. Without the barrier, the tide rises from twenty to twenty-five feet; within, it raises the level of the water only about four feet. Now there can be no question that, if this barrier were removed, the tide would daily raise the river to a height which it now attains only in times of flood, while at low tide it would be laid dry to a great depth. If such a change had occurred at some former period, marshes might be found to exist in places which had at one time supported terrestrial plants. Against the application of this explanation, however, to the submarine forests of the Bay of Fundy, we have the great extent of the barrier required, the absence of any existing remains of it, and the great depth below high water at which the remains exist; as it is difficult to suppose that the existence of any barrier, even if it wholly excluded the tide, could produce dry upland at such a level. The effect would rather be the production of a lake, or, at the utmost, of a morass. For these reasons it can scarcely be supposed that any cause of this kind can apply. It only remains to believe that a subsidence has taken place over a considerable area, and to a depth of about forty feet. We have no distinct evidence to show whether this has been sudden or gradual, but analogy would lead us to suppose that it was the latter.

If a gradual subsidence of this kind has occurred in times geologically modern, the question remains, has it ceased, or is the country still subsiding, as Newfoundland and the south of Sweden are supposed to be doing? There are some facts which would seem to indicate that it is. In some localities portions of marsh formerly reclaimed have been abandoned, and it is said that it is now more difficult to maintain the dikes than formerly. We may, however, readily account for all this by supposing that the mud has settled, or that the tides have increased in height or have changed in their direction, in consequence of the contraction of the channels by the diking of new portions of marsh land. We are not therefore under the necessity of arriving at the unpleasant conclusion that our fertile marshes are again settling down beneath the level of the sea, or that the waters of the bay are likely to overflow the upland farms.

I should add, however, that, since the publication of the above
remarks, Professor Cook presented to the meeting of the American Association in Montreal, in 1857, an interesting summary of indications of modern subsidence observed on the coasts of New England, New York, and New Jersey, and estimated the average rate of sinking at two feet in a century, under the impression that it is still in progress, which would coincide with the view above-mentioned as entertained in some parts of the marsh districts of Nova Scotia, that the tides now rise higher than formerly. Additional interest is thus given to the Fort Lawrence instance, as indicating the great vertical amount of this very extensive subsidence. In 1861 also, Dr Gesner, in his paper on “Elevations and Depressions of the Earth in North America,” noticed several additional instances of modern submergence in various parts of the British Provinces and the United States, and inferred that such submergence is still in progress, or, at least, has occurred in very recent times. Within the limits of Acadia, and in addition to the examples above referred to, he mentions Grand Manan, Bay Verte, Louisburg in Cape Breton, and Casco in Prince Edward Island, as places in which there is evidence of subsidence since the European colonization of the country.

I would ask the non-geological reader to pause here, to remark that, in the mud-deposits of the Bay of Fundy, we have an example of a geological formation enclosing remains and traces of several of the animals and plants now inhabiting the land or its shores; and that if, in consequence of the colonization of the country, or any physical change, these creatures or any of them were to become extinct, we might find, in digging into the marshes or by examining their borders, evidence of the former existence of such extinct animals or plants, just as the remains of the now extinct European beaver and Irish gigantic stag are found in the peat bogs and lake deposits of Great Britain. Further, we have in the submarine forests the evidence of extensive changes of level; and if we suppose that, by such changes occurring in the future, the marshes were to be buried under new deposits until they had been consolidated into rock by pressure, by aqueous infiltration of mineral substances, or by internal heat, and then elevated again to the surface, we should discover in their hardened masses a variety of fossils, which, if properly interpreted, would throw much light on the present condition of the country. By bearing in mind these obvious conclusions, much time and perplexity may be avoided, when we arrive at the consideration of ancient formations to which changes of these kinds have actually happened.
Diked Marshes.—Fresh-water Alluvia.

The principal localities of diked marshes in Nova Scotia are, Chignecto Bay and Cumberland Basin, Cobequid Bay, Minas Basin, and Annapolis Basin, all of which are parts of the Bay of Fundy. The quantity of marsh in these several places appears from the census of 1851 to be as follows:

<table>
<thead>
<tr>
<th>Location</th>
<th>Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chignecto Bay and Cumberland Basin</td>
<td>16,170</td>
</tr>
<tr>
<td>Cobequid Bay</td>
<td>7,139</td>
</tr>
<tr>
<td>Minas Basin</td>
<td>10,280</td>
</tr>
<tr>
<td>Annapolis Basin</td>
<td>2,793</td>
</tr>
<tr>
<td>Total</td>
<td>36,382</td>
</tr>
</tbody>
</table>

A considerable breadth of marsh on the New Brunswick side of Chignecto Bay is not included in the above statement.

The value of the marshes in an agricultural point of view can hardly be overrated. For the maintenance of cattle, and the production of butter and cheese, the marsh counties of Nova Scotia and New Brunswick possess facilities unsurpassed and perhaps unequaled by those of any other part of North America.

The principal Fresh-water Alluvia are the river intervale, and the deposits forming in the beds of lakes. The intervale occur on the banks of all the streams. They usually consist of fine friable soil resting on hard gravel, and they constitute most productive land for farming purposes, while their fine elms and alder copses form most pleasing features in our river valleys. I am not aware that they present any geological features requiring detailed notice. The rivers of Nova Scotia are of small size, and do not present, in so far as I am aware, any marked examples of high-level gravels or river terraces; and the gravel ridges which occur on the sides of their valleys are rather to be attributed to the action of the sea before the elevation of the country. On the larger rivers of New Brunswick, and especially the St John River, there are alluvial deposits on a more extensive scale; and Professor Hind has pointed out some terraces, of no great elevation, as distinct from those which belong to the sea-margins of the Post-Pliocene period. The lake deposits must be very considerable in amount, as there is an immense number of lakes all receiving sediment from the streams which flow into them. On the most detailed maps of Nova Scotia, about four hundred lakes, varying in length from half a mile to fifteen miles, may be counted, and these are but a part, perhaps not much more
than half, of the whole number. The mud forming in the bottoms
of these lakes must contain large quantities of the remains of fresh-
water fishes, shell-fish, and other animals, as well as of terrestrial
quadrupeds that have been drowned in them or killed on their
margins; and should these lakes be artificially drained, such remains
may excite much interest. At present, however, I shall refer to
only one kind of lake deposit, which is curious as an evidence
of the large quantity of matter that may be accumulated by the
growth and death of successive generations of creatures too small
to be observed individually except by the microscope. This is
the substance known to naturalists as Infusorial earth, and which
has been found to abound not only in the deposits from modern
waters, but in some ancient rocks, of which it appears indeed
sometimes to form the mass. It is, as found in Nova Scotia, a
white and, when dry, very light friable earth, having a floury
texture, and showing, when examined in a bright light, an infinity
of minute shining specks. A little of it diffused in a drop of water,
and viewed through a powerful microscope, presents thousands of
curiously formed cylindrical, bow-shaped, and rounded transparent
bodies, which consist of pure silica or flint, and are the coatings
which strengthened the cell-walls of certain minute organisms at
one time regarded as animals, but now as one-celled plants of the
family Diatomaceae. They grow in the waters of some of our
lakes in such numbers that their indestructible silicious coverings
in the course of time, accumulate in layers several feet in thickness.
The hardness, sharpness, and minute size of these shells render
the mass composed of them useful as a polishing material; the
best tripoli being, in fact, an earth of this description. The only
specimens of this infusorial earth in my possession, and found in
Nova Scotia, are from lakes in the hills of Earlton and Cornwallis.
That from the last-named locality is the finer of the two. It was
discovered by Dr Webster of Kentville. The late Professor Bailey
of West Point, the well-known microscopist, to whom I forwarded
specimens from one of the above-named localities, states* that
the species contained in it are common to Nova Scotia and the
northern parts of the United States. He mentions the following
as occurring in specimens from Nova Scotia:—Pinnularia viridis,
P. inaequalis, Cocconema cymbiforme, Gallionella distans, Eunota
monodon, etc., Himantidium arcus, Gomphonema acuminatum, Sir
irella splendida, Stauroneis Baylei; Spongillites, etc. Some of
these species are represented in Fig. 8.

Lake Margins in Nova Scotia are of some geological interest, from the effects of ice-pressure which they exhibit. The expansion of the thick icy sheet which forms on the surface of our lakes in winter, and its drifting to and fro when loosed from the shores by the thaws of spring, heap up very remarkable ridges and embankments of stones, gravel, and earth. In low and muddy shores, these actions of the ice, I believe principally the latter, push up long mounds, which look as if an attempt had been made to raise an artificial dike; and where the shores consist of small stones and gravel, still more regular structures are sometimes produced. Occasionally there are two mounds, one within the other, marking different levels of the water; and I have seen these mounds still remaining, in places where lakes and ponds had been long since filled up and converted into bogs. On rocky shores, large stones are pushed against the bank and packed together until they form huge sloping Cyclopean walls, which testify not only by their mass, but by the manner in which they have been wedged together, to the force that has been applied to them. This last appearance is as well seen in some of the upper lakes of the Shubenacadie as in any others that I have examined. These modern effects of ice-pressure will serve to explain some of the phenomena of the drift or boulder formation which overspreads the surface of the province. They are also curious from the resemblance which they bear to glacier moraines, for which they might, in some cases, be easily mistaken.

Bogs and peaty swamps form another class of modern deposits which I may notice here. They are very numerous in Nova Scotia, especially in the rocky districts of the Atlantic coast. The largest that I have observed are the Savannahs near Clyde River in Shelburne, and the Carriboe bog of Aylesford. With respect to the geological features of these deposits, I may notice: First, That they consist of vegetable matter which has grown on the spot, and has accumulated, because in water-soaked soils the decay of dead vegetable substances proceeds more slowly than the acquisition of new
matter by growing vegetation from the air and water. Secondly, The vegetable matter in bogs, forming a black carbonaceous mass, has entered on the first stage of the changes by which it may be converted into coal; and it is not unusual to find in the bottom of such bogs a substance much resembling ordinary bituminous coal. Thirdly, The organic acids produced by the vegetable matter, when long saturated in water, remove from the subsoil of the bogs the oxides of iron and manganese, as well as lime and the other alkaline earths; hence the subsoils of bogs usually consist of bleached whitish sand or clay of a very unproductive character. There are a few exceptions to this in localities where the soil contains a very large proportion of lime. On the other hand, when the underlying rocks contain bi-sulphuret of iron, as is the case in some parts of the slate districts, the sulphuric acid produced from this mineral gives a still greater degree of acidity to the bog, while the iron is sometimes in too great quantity to be removed entirely. Fourthly, The iron and manganese, removed in the manner above mentioned, are deposited, usually in rounded kernels, at the outlets of such bogs, or in the soils through which their waters soak, and become partially exposed to the air. In this way small quantities of bog iron ore and bog manganese ore are formed in the vicinity of many swamps. All these facts respecting bogs have their analogues on a large scale in our ancient rock formations, and more especially in those of the carboniferous system.

The bogs when drained, and their surface dressed with sand, or sand and lime, to supply the silicious and calcareous matter in which they are deficient, are excellent soils, second only to diked marsh in their productiveness in hay and oats. Portions of bog have already been reclaimed in this way in several of the counties, and there can be no doubt that many tracts of this description, more especially in the less fertile portions of the province, require only the application of skill and industry to render them valuable.

In describing the modern deposits, I should not omit those of blown sand, which occur somewhat extensively within the region to which this work relates. **Sable Island** is the highest part of one of those banks of sand, pebbles, and fragments of shells and coral which form a line extending under the waters of the Atlantic, and parallel to the American coast, from Newfound land to the vicinity of Cape Cod; and which are separated from the coast and from each other by valleys of mud. **Sable Island Bank** is one of the largest of these submarine sand-beds. Its area is equal to one-third of the area of Nova Scotia. The depth of water at its margins varies from 35 to 68 fathoms, the shores of the island being from one to one and a half of the nearest point of land, grey or white sand being stated to be found at that height. The wind is often blowing from land, and the water, and blowing from the sea, and then falling in a way resembles the habit of the island, as likely as not, to be naturalized in Nova Scotia, and is the establishment of Captains of the island. It is twenty-eight miles in length, and its greatest breadth, increasing in time, has diminished in time. It is located about a mile eastward from the rest of the island, a whole island is from west to east, from the line of the bank into which the whole bank of marine current can be produced by the fresh-water current from land, and
SAND ISLANDS.

68 fathoms; and from this depth it shoals gradually toward the shores of the island, which is situated near its eastern extremity. Sable Island itself is about 23 miles in length, and from one mile to one and a half in breadth. It is distant about 85 miles from the nearest part of Nova Scotia. Its surface consists entirely of light gray or whitish sand, rising in places into rounded hills, one of which is stated by persons who have visited the island to be 100 feet in height. The whole of this sandy surface has evidently been washed and blown up by the sea and wind; and I have not been able to learn, from any of the accounts of the island, that any more solid substratum exists. Pools of fresh water, however, appear in places, which would seem to imply that there is an impervious subsoil. This may, however, be caused by the floating of rain water on water-soaked sand, an appearance which may sometimes be observed on ordinary sand beaches, where, in consequence of their resting on the surface of the sea-water, these pools or springs sometimes rise and fall with the tide. I am not aware, however, that this occurs at Sable Island. There is also a large salt-water lake or lagoon, which at one time formed a harbour; but its entrance was closed by a storm. The surface of the island is covered with coarse grass and cranberry and whortleberry plants; and horses, rabbits, and rats have been naturalized and exist in a wild state. The Government of Nova Scotia, aided by an annual sum from Great Britain, supports an establishment on the island for the succour of shipwreacked mariners.

Captain Darby, late superintendent of the establishment on the island, states, in a letter contributed to Blunt's Coast Pilot, that within twenty-eight years the western extremity of the island has decreased in length seven miles. He also states that the island has been increasing in height, especially at the eastern end, and at the same time diminishing in width. He believes that the bank and bar extending from the western end have been constantly travelling to the eastward. It would indeed appear from the difference in the longitude of the island, as given in the old charts and by late surveys, that the whole island is moving eastward; a very natural effect of the prevailing westerly wind, which must continually shift the particles of sand from west to east, and may eventually throw the island over the edge of the bank into deep water, and cause it to disappear; unless indeed the whole bank is moving in the same direction under the influence of marine currents. A singular intermixture of animal remains may be produced by this movement of a sand island, tenanted by land and fresh-water creatures, over the surface of a marine sandbank remote from land, and which otherwise would contain only deep sea shells.
The following facts, which have a geological as well as a zoological interest, are collected from an interesting lecture on Sable Island, by Dr Gilpin of Halifax.* The walrus, or seahorse (Trichecus rosmarus), at one time inhabited the island, but is now extinct, probably in consequence of the attacks of man, since as many as three hundred pairs of teeth are mentioned as being collected on the island. This would seem to have been the most southern range of the walrus, and it is an interesting fact that this arctic creature should come as far south as lat. 44°, on an island to which the Gulf Stream wafts many southern marine forms, such as Spirula Peronii and others mentioned by Mr Willis in his list of the shells of Sable Island. The explanation of this curious fact is no doubt to be found in the circumstance that the Sable Island banks form a meeting-place of the ice-laden Arctic Current and the Gulf Stream. The former has brought the walrus and the Greenland seal, which still lives on the island, and many boreal mollusks; the latter drifts to the shores of Sable Island many of the products of more southern latitudes, which may have become mixed in the same deposits with their arctic contemporaries. The only land quadruped mentioned as native to the island is a "black fox," but of what species is uncertain, as the creature seems to be extinct. Horses have been introduced, at what time is uncertain, and have produced the present wild ponies of the island. Their size is small, and their colours "Isabella" and gray, while they have the "large head, thick shaggy neck, low withers, and sloping quarters," usual in wild horses. The rabbit is of recent introduction, and appears to thrive, and to revert to the colour of the wild gray variety of England. The white owl (Nyctea nivea) is said to have made its first appearance in 1827, and to have visited the island periodically ever since.

Sand hills and beaches exist in many parts of Nova Scotia and New Brunswick; but nowhere to so great an extent as on the northern side of Prince Edward Island, where the sand resulting from the waste of the soft red sandstones of the island has been moved upward by the waves, and blown by the wind until it forms long ranges of sand-dunes, extending along the coast and crossing the bays, but I believe in no place penetrating far inland; though, since the forest has been cleared, the sand is becoming troublesome on some parts of the coast farms. Across Casco funny and Richmond bays, and along the intervening coast, a nearly continuous range of sand beaches and hills extends for more than twenty miles; and at New London, Rustico, Covehead, Tracadie, and St Peter's Bays, there are similar

* Halifax, 1858.
ranges of sand hills, amounting altogether to about twenty miles more (Fig. 9).

At New London, the only place where I have had an opportunity of examining these sand hills, they attain the height of forty-feet, and are covered with tufts of coarse beach grass. Their northern sides are frequently cut away into escarpments of loose sand; but on the whole they do not appear to be rapidly changing their form or position. The sand is of a gray or light brownish colour, though derived from red sandstone; its superficial coating of red oxide of iron being almost entirely removed by friction.

Fig. 9.—Sand Hills, New London, P. E. I.

No part of Nova Scotia or New Brunswick is sufficiently elevated to retain any snow later than April or May. There is, however, a ravine in the North mountain of Granville, opposite Annapolis, in which ice is said to endure throughout the summer. I visited it in April, and so could not have absolute proof of its perfection as an ice-house. It is a deep ravine encumbered by blocks of trap, which have fallen from its sides in landslips; and it appears that the ice which forms between these blocks in winter is sufficiently protected by the sides of the ravine, the dense vegetation and the blocks themselves to be found unchanged even at the end of summer.

Slight earthquake shocks have been felt at rare intervals in several parts of the Acadian provinces. One occurred on the 8th of February 1855, and was observed throughout Nova Scotia and New Brunswick, and as far to the south-west as Boston. Its point of greatest intensity appears to have been at the Bend of the Petit-
codiac, near the extremity of the New Brunswick coast-line of metamorphic hills. At this place there were several shocks, one of them sufficiently severe to damage a brick building, whereas in the other places only one slight shock was experienced. At Pictou and Halifax, the only shock felt occurred a few minutes before 7 A.M., and it appears to have been simultaneous throughout Nova Scotia and New Brunswick.

The earthquake of the 17th October 1860, which was felt throughout Canada and the Northern States, was felt also in New Brunswick; but I believe not so severely as in Canada.
MICMAC HEADS.
FROM PHOTOGRAPHS.

These are given as memorials of a decaying race, which may soon disappear. The woman is believed to be of pure Micmac descent. The young man, her son, has probably a slight intermixture of French blood by the father's side. Both have the typical features of the race.
CHAPTER IV.

THE MODERN PERIOD—Continued.

PRE-HISTORIC MAN—RESULTS OF FOREST FIRES.

In a region whose history extends backward scarce three hundred years, pre-historic times may seem to have little interest, in so far as the human period is concerned. Yet I think that something may be learned, at a time when pre-historic human remains are exciting so much attention in the old world, by referring to the more recent “Stone Age” of Acadia. Those who speculate as to the antiquity of man, and the ages of Stone, Bronze, and Iron in Europe, and who, looking back on the earlier of these periods through the mists of centuries, attach to it a fabulous antiquity, may derive some lessons from a country in which the stone age existed three hundred years ago, and has yet passed away as completely as though it had never been. The Micmac still pitches his rude wigwam of birch bark within sight of the largest cities of Acadia; but he has entered into the iron age, and the stone weapons of his ancestors are as much objects of curiosity to him as to his neighbours of European origin. When first visited by Europeans, the Micmacs inhabited the coast line of Nova Scotia and New Brunswick, the Malicetes the interior of the latter. Both tribes were of the great Algonquin race, speaking cognate dialects of that widely diffused American tongue which extended along the whole northern side of the St Lawrence valley to Lake Superior. Both tribes were hunters and fishermen, making their canoes and wigwams, as they still do, of the bark of the white birch, and using weapons and other implements of stone and bone. The bronze age never existed in North America; but in Nova Scotia, as in Canada, native copper was used for trinkets, though, from its scarcity, only to a very small extent. The stone implements, as in Canada and the New England states, were both chipped and polished. In the former way were made knives, spearheads, and arrow-heads, of quartz and flinty slate. In the latter way, chisels, axes, and gouges were made of greenstone and other crystalline rocks. Both varieties were used at the same period for different pur-
poses. The implements represented in Fig. 10 are specimens of the first class, and will serve to show their resemblance to the pre-historic remains of Europe. The large weapon in the middle is the head of a spear or javelin made of hard jasper slate or fine-grained fissile quartzite. On either side of it are two knives made of a similar material. All three are believed to have been used in a skirmish between the Micmacs and the French, in the early colonization of Nova Scotia. The arrow-head is a beautiful and symmetrical little weapon of pure milky quartz, found in a ploughed field, and of uncertain age. These are good specimens of the Micmac stone implements of the chipped style, and are all of native rocks found in the metamorphic districts of the country. Their implements of polished stone are principally oval or wedge-shaped axes or adzes, often of large size and admirably shaped and smoothed. It would appear from the traditions of these people, as well as from a few historical notices preserved by their earlier visitors, that they carried on wars with the natives of Newfoundland on the north, and of Maine on the south, and with the Mohawks or Iroquois of the St Lawrence; and that, though divided into small tribes, they could form great national leagues for the prosecution of these wars. Their armies were organized under generals and subordinate leaders, and their camps, when in the field, were regularly planned and fortified with palisades interwoven with boughs. The now dwindled remnant of the Micmacs, according to Mr Rand, recall the memory of this stone age of their forefathers as if it were their golden age. Then they were numerous, independent, and powerful. They had fish, game, and clothing in abundance. Their dense forests sheltered them from the winter cold and summer heat. Poverty, want, and disease were comparatively unknown.

How long had this stone age continued? Tradition and history are silent on this point, and, in the nature of the case, monumental evidence fails to give dates. Certain it is, that no discoveries have yet been made pointing to the residence of man in that later Post-Pliocene period in which the Mastodon flourished; and it is probable that the origin of the long-headed or Dolichocephalic race of Eastern America, to which the Micmacs and Malicetces belong, is to be sought for in an ancient immigration from Northern Africa or Europe. The reasons advanced in favour of this view by Retzias,* based on the form of the skull, as compared with that in the Guanches of the Canaries, and the Copts, Moors, etc., are strengthened by the large number of root-words identical with those of the Indo-European

* Archives des Sciences, Geneva, 1860.
Fig. 10.—Stone Implements, etc.: Figs. a to d one-half natural size.
languages in the various Algonquin dialects. This subject, to which
attention has been called by my friend Mr Rand, has not received
the amount of study which it merits, in connexion with the wide
diffusion of these root-words over the native languages of Eastern
America. Philologists, regarding grammatical construction as alone
important, and misled by the superficial dissimilarity of the languages
even of neighbouring tribes, have not taken the trouble to search for
those deeper resemblances which, even to this day, link the languages
of Eastern America with those of the opposite side of the Atlantic.*
It is at least certain that the primitive line of migration of the
Eastern Americans was northward from the West Indies and Mexico,
and that on the shores of the Gulf of St Lawrence they met with
another tide of migration coming from the northward and represented
by the Esquimaux. Some of the evidences of this have been given
in my papers, in the Canadian Naturalist, on the Aboriginal Antiquities
of Montreal. I may merely mention here the identity of the manners
and customs of the American Indians along the whole east coast
up to the limits of the Esquimaux, and the fact that plants native
to Mexico, as maize, tobacco, and kidney beans, were cultivated
as far north as Quebec. It would seem, therefore, that in these
aborigines we have a people whose ancestors migrated from the western
part of the old world during the stone age of that region, and, isolated
in America, preserved the habits of that primitive period unchanged
almost until our own time, presenting us with a perfect picture of a
condition of humanity which in the old world has become so obscure
as to constitute a field for the wildest speculations and theories. A
further question may be raised, as to the amount of displacements
of races in the meeting of different lines of migration, and as to the
possibility of any race of men having displaced the Micmacs and
Malicetes in Acadia. The Malicetes themselves had a tradition that
they migrated eastward from Canada, pressed by the Iroquois popula-
tion. This is very likely, though it was probably a modern movement,
and it may have forced the Micmacs more toward the coast; the latter
in this case being perhaps the more primitive people of the two.
Both tribes have obscure traditions of certain primitive giants, whom
they know by the name Kookwes (γύψας); but this may be a remnant
of traditional lore belonging to the primeval seats of their ancestors
in the old world. Carved stones have also been found in New
Brunswick, which are unlike anything executed by the more modern
tribes, and may have been the work of preceding races. Figure
10 e represents one of these stones, found at Harris Cove, on the

* See examples in the Appendix.

Kennebec, and probably formed part of the building of the place.
In the attempt at the New Brunswick monuments of the most
medieval kind, the Indian language lost its age, and was

Such was the state of the aboriginal population of the North
in France, this wilderness was yet an unexplored forest, a
province of caribou or reindeer, where the fur hunters were
seeking for the extreme north--towards extinct aboriginal inhabi-
tants than the modern French. It is, however, an exception of the
most ancient history, and we need not be surprised that in
France is, at least, a land well known to the outside world; but the iron age
of the country was but the beginning of a great age for the
aboriginals who had lived since the days of the ancient migrations.
The monument which I have already referred to as the
former summer of the woods, and which was found on some old
land near the Kennebec, was replaced by a more modern
structure, which was destroyed by the English. I have in
mind the transition from the ancient to the modern.

The iron instrument, which was found at the foot of the
Hers, the fur skins, the fur trade, and the rest, were
mixed with the customs and habits of the local
aboriginals. The iron instru-
Kennebecaris River. It is three feet in length, and is composed of a hard conglomerate, occurring in situ in the vicinity of the place where it was found. It has the aspect of a first rude attempt at the execution of a sphinx or cherub, and may have been a monumental stone, or the ornament of a gate, or the charm of a medicine-man. It was disinterred in digging a cellar; but as to its age, or whether it is the work of the Malicetes, nothing is known.

Such was the stone age of three centuries ago in Acadia; and it is instructive to bear in mind that in a country in the latitude of France, this was not only the stone age, but also the age of the caribou or reindeer, and moose and beaver,—animals now verging toward extinction, and of no more importance to the present inhabitants than the park deer are to those of the old world. With the exception of a few of the forest-clad hilly districts, Nova Scotia is now as unsuitable to the existence of the reindeer and moose as France is, and yet three centuries ago these animals were the chief food of its inhabitants. No material change of climate has occurred, but the iron age has introduced a new race, and the forests have been cleared away.

The monuments of the stone age are few. Piles of shells of oysters and other mollusks, in some parts of the coasts, mark the site of former summer encampments. Numerous stone implements are found on some old battle-grounds or cemeteries, or on the sites of villages; and occasional specimens are turned up by the plough. But this is nearly all; and if the written record of the discovery and colonization of the country did not prevent, we might, in so far as the monumental history is concerned, believe the close of the stone age to have belonged to a remote antiquity. If the Micmacs had been replaced by a semi-barbarous race, not keeping written records, and destroying the aborigines or incorporating them with themselves, the date of the stone age would already be altogether uncertain.

I have in my collection a curious specimen illustrative of the transition from the stone to the iron period. It was found at Merigomish Harbour, an old place of residence of one of the eastern Micmac tribes. It consists of a mass of hard ferruginous sandstone, which was found at some depth in the ground, wrapped carefully in beaver skins, the fur of which is still well preserved. The mass, when broken, was found to be full of blades of iron knives or daggers, mixed with black and white beads and bugles, among which were traces of basket-work or matting and a cylindrical iron awl or bodkin. The iron instruments had been completely oxidised, and had furnished
the cementing material of the mass; and their wooden handles had
been perfectly petrified or converted into a hard fibrous brown
limonite, still retaining the structure of the wood. The deposit was
probably a cache or hiding-place of valuable booty in the early
French and Indian wars; and serves, among other things, to show
the comparatively perishable character of iron implements as compared
with those of stone, and the short space of time which under certain
circumstances may give to modern objects the aspect of hoar antiquity.

One of the questions in connexion with pre-historic times which
has recently been discussed in Europe, has been the disappearance
and renewal of forests in connexion with the succession of races
of men. Though the subject was not noticed in the first edition of
this work, I had some years previously, in the Edinburgh New
Philosophical Journal, directed attention to it, and now reproduce
portions of the article, as furnishing useful data to those who, on
evidence of this kind, are endeavouring to calculate the antiquity of
pre-historic man in Europe.

In their natural state, Nova Scotia and the neighbouring provinces
were covered with dense woods, extending from the shores to the
summits of the hills. These woods did not form detached groves,
but constituted a nearly continuous sheet of foliage, the individual
trees composing which were so closely placed as to prevent them
from assuming full and rounded forms, and to oblige them to take
tall and slender shapes, that each might obtain air and light. The
only exceptions to this are certain rich and usually light soils, where
the forest is sometimes more open, and hills too rocky to support
a covering of trees. When viewed from the summit of a hill, the
forest presents a continuous undulating surface of a more or less
dark colour and uneven form, in proportion to the prevalence of the
deep colours and hard outlines of the evergreen coniferæ, or of the
lighter tints and rounded contours of the deciduous trees; and these
two classes are usually arranged in belts or irregular patches, con-
taining mixtures of trees corresponding to the fertility and dryness
of the soil. In general, the deciduous or hardwood trees prevail
on intervale ground, fertile uplands, and the flanks and summits of
slaty and trappean hills; while swamps, the less fertile and lightest up-
land soils, and granitic hills, are chiefly occupied by coniferous trees.

The forest trees spring from a bed of black vegetable mould, whose
surface is rendered uneven by the little hillocks of earth and stones
thrown up by windfalls; and which, though usually named "Cradle
hills," are in reality the graves of departed members of the forest,
whose trunks have mouldered into the mossy soil. These cradle
hills are many times of the coniferæ and usually light ferns, and
beneath the

The wood is so formed for their decay as to be confined to the
Indians tell us, that some of the limbs and branches of
this preparatory are inflamed; for the not very common
peat, burns easily, as a great measure, when the burning
by winds, cannot burn as rapidly than in
of the grander
fire, spreading over the tall resinous tree
their summits, in
happens, however,
cannot spread and
burn; and thus
In addition to this
it is probable that
amongst the trees have been
they are more
in this condition than
dead and dry wood,
 arising from natu-

prise agents for
hills are most numerous in thin soils; and are chiefly produced by the coniferous trees, and especially by the hemlock spruce. There is usually little underwood in the original forest; mosses, lycopodia, ferns, and a few herbaceous flowering plants, however, flourish beneath the shade of the woods.

The woods perish by the axe and by fire, either purposely applied for their destruction or accidental. Forest fires have not been confined to the period of European occupation. The traditions of the Indians tell of extensive ancient conflagrations; and it is believed that some of the aboriginal names of places in Nova Scotia, for example, Chebucto, Chedabucto, Pictou, originated in these events. In later times, however, fires have been more numerous and destructive. In clearing land, the trees when cut down are always burned; and, that this may be effected as completely as possible, the driest weather is frequently selected; although the fire is then much more likely to spread into the surrounding woods. It frequently happens that the woods contain large quantities of dry branches and tops of trees, left by cutters of timber and firewood, who rarely consider any part of the tree except the trunk worthy of their attention. Even without this preparation, however, the woods may in dry weather be easily inflamed; for although the trunks and foliage of growing trees are not very combustible, the mossy vegetable soil, much resembling peat, burns easily and rapidly. Upon this mossy soil depends, in a great measure, the propagation of fires, the only exception being when the burning of groves of the resinous coniferous trees is assisted by winds, causing the flame to stream through their tops more rapidly than it can pass along the ground. In such cases some of the grandest appearances ever shown by forest fires occur. The fire, spreading for a time along the ground, suddenly rushes up the tall resinous trees with a loud crashing report, and streams far beyond their summits, in columns and streamers of lurid flame. It frequently happens, however, that in wet or swampy ground, where the fire cannot spread around their roots, even the resinous trees refuse to burn; and thus swampy tracts are comparatively secure from fire. In addition to the causes of the progress of fires above referred to, it is probable that at a certain stage of the growth of forests, when the trees have attained to great ages, and are beginning to decay, they are more readily destroyed by accidental conflagrations. In this condition the trees are often moss-grown, and have much dead and dry wood; and it is probable that we should regard fires arising from natural or accidental causes as the ordinary and appropriate agents for the removal of such worn-out forests.
Where circumstances are favourable to their progress, forest fires may extend over great areas. The great fire which occurred in 1825, in the neighbourhood of the Miramichi River, in New Brunswick, devastated a region 100 miles in length and 50 miles in breadth. One hundred and sixty persons, and more than 800 cattle, besides innumerable wild animals, are said to have perished in this conflagration. In this case, a really dry summer, a light soil easily affected by drought, and a forest composed of full-grown pine trees, concurred, with other causes, in producing a conflagration of unusual extent.

When the fire has passed through a portion of forest, if this consist principally of hardwood trees, they are usually merely scorched,—to such a degree, however, as in most cases to cause their death; some trees, such as the birches, probably from the more inflammable nature of their outer bark, being more easily killed than others. Where the woods consist of softwood or coniferous trees, the fire often leaves nothing but bare trunks and branches, or at most a little foliage, scorched to a rusty-brown colour. In either case, a vast quantity of wood remains unconsumed, and soon becomes sufficiently dry to furnish food for a new conflagration; so that the same portion of forest is liable to be repeatedly burned, until it becomes a bare and desolate "barren," with only a few charred and wasted trunks towering above the blackened surface. This has been the fate of large districts in Nova Scotia and the neighbouring colonies; and as these burned tracts could not be immediately occupied for agricultural purposes, and are diminished in value by the loss of their timber, they have been left to the unaided efforts of nature to restore their original verdure. Before proceeding to consider more particularly the mode in which this restoration is effected, and the appearances by which it is accompanied, I may quote, from a paper by the late Mr Titus Smith of Halifax, a few statements on this subject, which, as the results of long and careful observation, are entitled to much respect, and may form the groundwork for the remarks which are to follow.

"If an acre or two be cut down in the midst of a forest, and then neglected, it will soon be occupied by a growth similar to that which was cut down; but when all the timber on tracts of great size is killed by fires, except certain parts of swamps, a very different growth springs up; at first a great number of herbs and shrubs, which did not grow on the land when covered by living wood. The tufty coat, filled with the decaying fibres of the roots of the trees and plants of the forest, now all killed by the fire, becomes a kind of hot-bed, and seeds which had lain dormant for centuries, spring up

and flourish, blueberry and fireweed, beechnut and fireweed, wild red cherry and most of the firs, white and spruce; this has occurred in poison, being from 8 to 10 years, form so under the shelter of a birch spring or thicket twenty feet from the ground, beginning and within six years, growth to the above statement, of which forests are made in detail."

1st, Where the same district be easily accounted for, the place of those woods cut in winter, the fire of this kind, however, merely growing in a mode of the destruction of the original woods, maple or beech, and it may happen to spring from the soil leaving the same, requiring a less fire, the forests of beech and are sometimes succeeding this kind, both

2dly. When the whole of the vegetable complicated process first stage, the bu
and flourish in the mellow soil. On the most barren portions, the blueberry appears almost everywhere; great fields of red raspberries and fireweed or French willow, spring up along the edges of the beech and hemlock land, and abundance of redberried elder and wild red cherry appear soon after; but in a few years, the raspberries and most of the herbage disappear, and are followed by a growth of fir, white and yellow birch, and poplar. When a succession of fires has occurred, small shrubs occupy the barren, the Kalmia, or sheep-poison, being the most abundant; and, in the course of ten or twelve years, form so much turf, that a thicket of small alder begins to grow, under the shelter of which fir, spruce, haemetae (larch), and white birch spring up. When the ground is thoroughly shaded by a thicket twenty feet high, the species which originally occupied the ground, begins to prevail, and suffocate the wood which sheltered it; and within sixty years, the land will generally be covered with a young growth of the same kind that it produced of old. Assuming the above statements to be a correct summary of the principal modes in which forests are reproduced, we may proceed to consider them more in detail.

1st, Where the forest trees are merely cut down and not burned, the same description of wood is immediately reproduced. This may be easily accounted for. The soil contains abundance of the seeds of these trees, there are even numerous young plants ready to take the place of those which have been destroyed; and if the trees have been cut in winter, their stumps produce young shoots. Even in cases of this kind, however, a number of shrubs and herbaceous plants, not formerly growing in the place, spring up; the cause of this may be more properly noticed when describing cases of another kind. This simplest mode of the destruction of the forest, may assume another aspect. If the original wood have been of kinds requiring a fertile soil, such as maple or beech, and if the soil be removed, for example, for firewood, it may happen that the quantity of inorganic matter thus removed from the soil may incapacitate it, at least for a long time, from producing the same description of timber. In this case, some species requiring a less fertile soil may occupy the ground. For this reason, forests of beech growing on light soils, when removed for firewood, are sometimes succeeded by spruce and fir. I have observed instances of this kind, both in Nova Scotia and Prince Edward Island.

2dly, When the trees are burned, without the destruction of the whole of the vegetable soil, the woods are reproduced by a more complicated process, which may occupy a number of years. In its first stage, the burned ground bears a luxuriant crop of herbs and
shrubs, which, if it be fertile and not of very great extent, may nearly cover its surface in the summer succeeding the fire. This first growth may comprise a considerable variety of species, which we may divide into three groups. The first of these consists of herbaceous plants, which have their roots so deeply embedded in the soil as to escape the effects of the fire. Of this kind are the various species of Trillium, whose tubers are deeply embedded in the black mould of the woods, and whose flowers may sometimes be seen thickly sprinkled over the black surface of woodland very recently burned. Some species of ferns also, in this way, occasionally survive forest fires. A second group is composed of plants whose seeds are readily transported by the wind. Pre-eminent among these is the species of Epilobium known in Nova Scotia as the fire-weed or French willow (E. angustifolium), whose feathered seeds are admirably adapted for flying to great distances, and which often covers large tracts of burned ground so completely, that its purple flowers communicate their own colour to the whole surface, when viewed from a distance. This plant appears to prefer the less fertile soils, and the name of fire-weed has been given to it in consequence of its occupying these when their wood has been destroyed by fire. Various species of Senecio, Solidago, and Aster, and Equiseta, Farns, and Mosses, are also among the first occupants of burned ground; and their presence may be explained in the same way with that of the Epilobium, their seeds and spores being easily scattered over the surface of the barren by wind. A third group of species, found abundantly on burned ground, consists of plants bearing edible fruits. The seeds of these are scattered over the barren by birds which feed on the fruits, and, finding a rich and congenial soil, soon bear abundantly and attract more birds, bringing with them the seeds of other species. In this way, it sometimes happens that a patch of burned ground, only a few acres in extent, may, in a few years, contain specimens of nearly all the fruit-bearing shrubs and herbs indigenous in the country. Among the most common plants which overspread the burned ground in this manner, are the raspberry, which, in good soils, is one of the first to make its appearance; the species of Vaccinium, or whortle-berries and blueberries; the tea-berry or wintergreen (Gaultheria procumbens); the pigeon-berry (Cornus canadensis); and the wild strawberry. It is not denied that some plants may be found in recently burned districts whose presence may not be explicable in the above modes; but no person acquainted with the facts can deny that nearly all the plants which appear in any considerable quantity within a few years after the occurrence of a fire, may readily be included in the groups which have been mentioned. By the

simple means of speedily furnishing the appearance of a forest, to a great extent, until a new growth is formed.

With the passing of years not without the original forest having been suffocated the appearance of the species which are usually killed by fire, such as shrubs, and others that have an aversion for it, and which have continued to exist for a long time in some places as a result of the fire, is destroyed. This consists of peculiarly hardy shrubs, which may, in the course of a few years, resemble the original forest, and, in certain instances, may be found to have been succeeded by them, such as maple and birch. The forests in these woods, in Pictou, have been succeeded by the growth of maple and birch, which, after thirteen years, has been a complete change of forest, and thirty feet in height. In Prince Edward Island, such forests are said to have been destroyed by the growth of maple and birch, which, after the great fires of 1811 and 1817, were replaced by maple and birch. This is an instructive lesson in the destructive power of fire with different species of trees. As already stated, the forest similar to the

...
simple means which have been described, a clothing of vegetation is speedily furnished to the burned district; the unsightliness of its appearance is thus removed, abundant supplies of food are furnished to a great variety of animals, and the fertility of the soil is preserved, until a new forest has time to overspread it.

With the smaller plants which first cover a burned district great numbers of seedling trees spring up, and these, though for a few years not very conspicuous, eventually overtop and, if numerous, suffocate the humbler vegetation. Many of these young trees are of the species which composed the original wood, but the majority are usually different from the former occupants of the soil. The original forest may have consisted of white or red pine; black, white, or hemlock spruce; maple, beech, black or yellow birch, or of other trees of large dimensions, and capable of attaining to a great age. The "second growth" which succeeds these usually consists of poplar, white or poplar birch, wild cherry, balsam fir, scrub pine, alder, and other trees of small stature, and usually of rapid growth, which, in good soils, prepare the way for the larger forest trees, and occupy permanently only the less fertile soils. A few examples will show the contrast which thus appears between the primeval forest and that which succeeds it after a fire. Near the town of Picton, woods chiefly consisting of beech, maple, and hemlock, have been succeeded by white birch and firs. A clearing in woods of maple and beech in New Annav, at one time under cultivation, was, after thirty years, observed to be thickly covered with ploplars thirty feet in height, presenting a striking contrast to the surrounding woods. In Prince Edward Island, fine hardwood forests have been succeeded by fir and spruce. The pine woods of Miramichi, destroyed by the great fire above referred to, have been followed by a second growth, principally composed of white birch, larch, poplar, and wild cherry. When I visited this place, twenty years after the great fire, the second growth had attained to nearly half the height of the dead trunks of the ancient pines, which were still standing in great numbers; and in 1864 I found that the burnt woods were replaced by a dense and luxuriant forest principally of white birch and larch or taecet, and I was informed that some of these trees were already sufficiently large to be used in ship-building. This is an instructive illustration of the fact, that after a great forest fire an extensive region may in less than half a century be re-clothed with different species from those by which it was originally covered.

As already stated, the second growth almost always includes many trees similar to those which preceded it, and when the smaller trees
have attained their full height, these, and other trees capable of
attaining a greater magnitude, overtop them, and finally cause their
death. The forest has then attained its last stage, that of perfect
renovation. The cause of the last part of the process evidently is,
that in an old forest, trees of the larger size and longest life have
a tendency to prevail, to the exclusion of others. For reasons which
will be afterwards stated, this last stage is rarely attained by the
burned forests in countries beginning to be occupied by civilized
man, and it is evident that many circumstances may occur which will
prevent this restoration of the primeval forest.

In accounting for the presence of the seeds necessary for the
production of the second growth, we may refer to the same causes
which supply the seeds of the smaller plants appearing immediately
after the fire. The seeds of many forest trees, especially the poplar,
the birch, and the fir and spruce, are furnished with ample means
for their conveyance through the air. The cottony pappus of the
poplar seems especially to adapt it for this purpose. The seeds of
the wild cherry, another species of frequent occurrence in woods
of the second growth, are dispersed by birds, which are fond of the
fruit; the same remark applies to some other fruit-bearing species
of less frequent occurrence. When the seeds that are dispersed in these
ways fall in the growing woods, they cannot vegetate; but when they
are deposited on the comparatively bare surface of a barren, they
readily grow; and if the soil is suited to them, the young plants
increase in size with great rapidity.

It is possible, however, that the seeds of the trees of the second
growth may be already in the soil. It has been already stated, that
deeply-buried tubers sometimes escape the effects of fire; and, in
the same manner, seeds embedded in the vegetable mould, or buried
in cradle hills, may retain their vitality, and, being supplied by the
ashes which cover the ground with alkaline solutions well-fitted
to promote their vegetation, may spring up before a supply of seed
could be furnished from any extraneous source. It is even probable
that many of the old forests may already have passed through a
rotation similar to that above detailed, and that the seeds deposited
by former preparatory growths may retain their vitality, and be called
into life by the favourable conditions existing after a fire.

If, as already suggested, forest fires, in the uncultivated state of the
country, be a provision for removing old and decaying forests,
then such changes as those above detailed must have an important
use in the economy of nature, since by their means different portions
of the country would succeed each other in assuming the state of

"barrens, the sustenance of these and these young and

3dly, These extensive fires, but may have
are not, however, woods, some
remains, you as at first,
since the more
and the vegetable
be in exclusive; the the burned ground, which does not
may appear by a perfect garden, mosses and lichen
colonies who gather flowers already referred
these more permanent variety of other
angustifolia, or plant over large the seeds of as of many exot
the native plants

Lastly, When purposes, the rep. In this case, the barrens disappear and the Canada the fields, and an injurious weeds native plants, but the cultivated gro
and the crowsfoot
"barrens," producing abundance of herbs and wild fruits suitable for the sustenance of animals which could not subsist in the old woods; and these gradually becoming wooded, would keep up a succession of young and vigorous forests.

3dly, The process of restoration may be interrupted by successive fires. These are most likely to occur soon after the first burning, but may happen at any subsequent stage. The resources of nature are not, however, easily exhausted. When fires pass through young woods, some trees always escape; and so long as any vegetable soil remains, young plants continue to spring up, though not so plentifully as at first. Repeated fires, however, greatly impoverish the soil, since the most valuable part of the ashes is readily removed by rains, and the vegetable mould is entirely consumed. In this case, if the ground be not of great natural fertility, it becomes incapable of supporting a vigorous crop of young trees. It is then permanently occupied by shrubs and herbaceous plants; at least these remain in exclusive possession of the soil for a long period. In this state the burned ground is usually considered a permanent barren,—a name which does not, however, well express its character; for though it may appear bleak and desolate when viewed from a distance, it is a perfect garden of flowering and fruit-bearing plants, and of beautiful mosses and lichens. There are few persons born in the American colonies who cannot recall the memory of happy youthful days spent in gathering flowers and berries in the burnt barrens. Most of the plants already referred to as appearing soon after fires continue to grow in these more permanent barrens. In addition to these, however, a great variety of other plants gradually appear, especially the Kalmia angustifolia, or sheep laurel, which often becomes the predominant plant over large tracts. Cattle straying into the barrens deposit the seeds of cultivated plants, as the grasses and clovers, as well as of many exotic weeds, which often grow as luxuriantly as any of the native plants.

Lastly, When the ground is permanently occupied for agricultural purposes, the reproduction of the forest is of course entirely prevented. In this case, the greater number of the smaller plants found in the barrens disappear. Some species, as the Solidagos and Asters, and the Canada thistle, as well as a few smaller plants, remain in the fields, and sometimes become troublesome weeds. The most injurious weeds found in the cultivated ground are not, however, native plants, but foreign species, which have been introduced with the cultivated grains and grasses; the ox-eyed daisy or white weed, and the crowfoot or buttercup, are two of the most abundant of these.
When a district has undergone this last change,—when the sombre woods and the shade-loving plants that grow beneath them have given place to open fields, clothed with cultivated plants,—the metamorphosis which has taken place extends in its effects to the indigenous animals; and in this department its effects are nearly as conspicuous and important as in relation to vegetation. Some wild animals are incapable of accommodating themselves to the change of circumstances; others at once adapt themselves to new modes of life, and increase greatly in numbers. It was before stated that the barrens, when clothed with shrubs, young trees, and herbaceous plants, were in a condition highly favourable to the support of wild animals; and perhaps there are few species which could not subsist more easily in a country at least partially in this state. For this reason, the transition of a country from the forest state to that of burned barrens is temporarily favourable to many species, which disappear before the progress of cultivation; and this would be more evident than it is, if European colonization did not tend to produce a more destructive warfare against such species than could be carried on by the aborigines. The ruffed grouse, a truly woodland bird, becomes, when unmolested, more numerous on the margins of barrens and clearings than in other parts of the woods. The hare multiplies exceedingly in young second growths of birch. The wild pigeon has its favourite resort in the barrens during a great part of the summer. The moose and cariboo, in summer, find better supplies of food in second growth and barrens than in the old forests. The large quantities of decaying wood, left by fires and wood-cutters, afford more abundant means of subsistence to the tribe of woodpeckers. Many of the fly-catchers, warblers, thrushes, and sparrows, greatly prefer the barrens to most other places. Carnivorous birds and quadrupeds are found in such places in numbers proportioned to the supplies of food which they afford. The number of instances of this kind might be increased to a great extent if necessary; enough has, however, been stated to illustrate the fact.

Nearly all the animals above noticed, and many others, disappear when the country becomes cultivated. There are, however, other species which increase in numbers, and at once adapt themselves to the new conditions introduced by man. The robin (Turdus migratorius) resorts to and derives its subsistence from the fields, and greatly multiplies, though much persecuted by sportsmen. The Junco hyemalis, a summer bird in Nova Scotia, becomes very familiar, building in outhouses, and frequenting barns in search of food. The song sparrow and Savannah finch swarm in the cultivated ground. The yellow bird (Sylvia australis) becomes very familiar, often building in cultivated fields, cliff-swallow and house wrens, in houses, and woodpeckers. In Acadian or Louisiana, the jay, the robin, and the crow, are more abundant, and in much greater numbers, than they are in the burned barrens of Nova Scotia.

It thus appears that large areas of the following may be cultivated: second-growth forests, cultivated fields, the better portions of the abandoned clearings of each would imply a greater number of different species, and a more extensive, might indeed be said to be a more stable con"
The cliff-swallow exchanges the faces of rocks for the eaves of barns and houses, and the barn and chimney swallows are everywhere ready to avail themselves of the accommodation afforded by buildings. The Acadian or little owl makes its abode in barns during winter. The boblincoln, the king-bird, the waxwing or cherry-bird, and the hummingbird, are among the species which profit by the progress of cultivation. The larger quadrupeds disappear, but the fox and ermine still prowl about the cultivated grounds, and the field-mouse (Arvicola Pennsylvanica), which is very abundant in some parts of the woods, is equally so in the fields. Many insects are vastly increased in numbers in consequence of the clearing of the forests. Of this kind are the grasshoppers and locusts, which, in dry seasons, are very destructive to grass and grain; the frog-spittle insects (Cercopsis), of which several species are found in the fields and gardens, and are very injurious to vegetation; and the Lepidoptera, nearly the whole of which find greater abundance of food and more favourable conditions in the burned barrens and cultivated fields than in the growing woods.

It thus appears that, in the course of between two and three centuries, large areas of the Acadian provinces have passed through two or more of the following conditions:—1. That of primitive forest; 2. That of second-growth forest; 3. That of the burned barren; 4. That of cultivated fields. Each of these changes is accompanied with modifications of the animal population; and in primitive states of society each would imply a change in the habits of the people; and, if very extensive, might even cause migrations of tribes and important changes of population. In the old world, most countries have passed through these vicissitudes in very early times, and have subsequently reached a more stable condition, with more slow and gradual changes; and in extensive regions it has usually happened that the destruction and removal of forests have been effected piecemeal, so as to extend only over limited areas at one time. The case of Denmark would seem to have been an exception to this. At a very early pre-historic time it seems to have been covered by forests of Scotch fir. These were destroyed, probably by a great fire like that of Miramichi. The people perished or were driven from the country, and were replaced by another race, while the forests grew up again, but were now composed of oak. Still more recently the oak forests were replaced by beech. The stages of unrecorded human history connected in Denmark with these successive forests, are thus summed up by Steenstrup and Morlot:—"1st, A stone

period, when the inhabitants were small-sized men, brachycephalous or short headed, like the modern Lapps, using stone implements, and subsisting by hunting. Then the country, or a considerable part of it, was covered by forests of Scotch fir (*Pinus sylvestris*). 2d, A bronze period, in which implements of bronze as well as of stone were used, and the skulls of the people were larger and longer than in the previous period; while the country seems to have been covered with forests of oak (*Quercus robur*). 3d, An iron period, which lasted to the historic times, and in which beech forests replaced those of oak.” All of these remains are geologically recent; and, except the changes in the forests, and of some indigenous animals in consequence, and probably a slight elevation of some parts of Denmark, no material changes in organic or inorganic nature have occurred.

The Danish antiquaries have attempted to calculate the age of the oldest of these deposits by considerations based on the growth of peat, and the succession of trees; but these calculations are obviously unreliable. The first forest of pines would, when it attained maturity, naturally be destroyed, as usually happens in America, by forest conflagrations. It might perish in this way in a single summer. The second growth which succeeded would, in America, be birch, poplar, and similar trees, which would form a new and tall forest in half a century; and in two or three centuries would probably be succeeded by a second permanent forest, which in the present case seems to have been of oak. This would be of longer continuance, and would, independently of human agency, only be replaced by beech, if, in the course of ages, the latter tree proved itself more suitable to the soil, climate, and other conditions. Both oak and beech are of slow extension, their seeds not being carried by the winds, and only to a limited degree by birds. On the other hand, the changes of forests cannot have been absolute or universal. There must have been oak and beech groves even in the pine woods; and the growing and increasing beech woods would be contemporary with the older and dying oak forest, as this last would probably perish, not by fire, but by decay, and by the competition of the beeches. The growth of peat has also been appealed to in connexion with the succession of forests as affording a mark of time; but this is very variable even in the same locality. It goes on very rapidly when moisture and other conditions are favourable, and especially when it is aided by wind-falls, drift-wood, or beaver-dams, impeding drainage and contributing to the accumulation of vegetable matter. It is retarded and finally terminated by the rise of the surface above the drainage level, by the clearing of the country, or by the establishment of natural or artificial drainage.
On the one hand, all the changes observed in Denmark may have taken place within a minimum time of two thousand years. On the other hand, no one can affirm that either of the three successive forests may not have flourished for that length of time. A chronology measured by years, and based on such data, is evidently worthless; but it is interesting in connexion with our present subject to observe, that the remains preserved in the shell-heaps or "Kjøkkenmödding" of the stone age in Denmark indicate a wonderful similarity of habits and customs with those of primitive America, except that the people seem to have borne a closer resemblance to the Esquimaux than to the ordinary American Indian.

On the whole, nothing can be more striking to any one acquainted with the American Indian than the entire similarity of the traces of pre-historic man in Europe to those which remain of the primitive condition of the American aborigines, whether we consider their food, their implements and weapons, or their modes of sepulture; and it seems evident that if these pre-historic remains are ever to be correctly interpreted by European antiquaries, they must avail themselves of American light for their guidance. Much of this light has already been thrown on this subject by my friend Professor Wilson, in his "Prehistoric Man;" but one can scarcely open any European book on this subject, or glance at any of the numerous articles and papers on this fertile theme in scientific journals, without wishing that those who discuss pre-historic man in Europe knew a little more of his analogue in America. The subject is a tempting one, but I must close this notice, already too long for the space I should devote to it, by remarking, that the relations in America of the short-headed and long-headed races of men are by no means dissimilar from those of the two similar races in Europe; while it is also evident that some pre-historic skulls, supposed to be of vast antiquity, as, for instance, that of Engis, bear a very close resemblance to those of the Algonquin and Iroquois Indians.
CHAPTER V.

THE POST-PLIOCENE PERIOD.

UNSTRATIFIED DRIFT—TRAVELLED BOULDERS—STRIATED ROCK SURFACES—PEAT UNDER BOULDER CLAY—ORIGIN OF DRIFT—STRATIFIED GRAVELS—REMAINS OF MASTODON.

The deposits last described are found in the bed or on the margin of the existing waters, and they rest on the ordinary upland soils, which are consequently older than they. These soils and subsoils, which are often of great depth, and which over a great part of the region under consideration completely hide the rocks which lie beneath, belong to the formations which we are now to describe. The soils and subsoils of any country, so far at least as they consist of mineral matter, are derived from the waste of the rocks of which that country is composed. Hence we are in no way surprised to find the soil overlying sandstone rocks to be sandy, that over shales and slates to consist in great part of clay, or that overlying limestone to be calcareous; and we may attribute such appearances to the mere waste or decay of the underlying rock, by the action of the air, the water, and the frost. This waste may have been proceeding ever since the country emerged from beneath the deep, and need not necessarily belong to one geological period more than to another. But the case becomes very different where we find the soil to consist of or to contain materials for whose presence we cannot account by any causes now in operation in the locality; and this we shall find to be the case with the formations of that time which immediately preceded our Modern epoch, and which we name the Post-Pliocene; but which, from the nature of its deposits, and the conditions which they imply, has also received such names as the drift, the boulder formation, and the glacial period.

If we examine the materials exposed in ordinary excavations, or on the coasts and river banks, and which extend from the surface down to the solid rocks, we find them to consist of clay or sand intermixed with large stones, or occasionally of large stones with their interstices filled with soil, or possibly in a few localities of rolled gravel, like that found on the surface of the sea, beyond a certain depth, are materials, which may be divided into different kinds, according as they are composed of the same or different stones. Others are found to consist of materials which are farther off the sea, and which are not arranged in a regular order. The fine rocks, also, are sometimes composed of large fragments, and sometimes of fine clay composed of decomposed peaty matter.

By studying these materials, we may arrive at the conclusion that they have been formed from the new materials as follows:

1. Gravel from the erosion of the country, and indicating the action of the waters.

2. Stratified clays and argillaceous rocks, derived from the action of the waters.

3. Unstratified clay and argillaceous rocks, derived from the same source.

4. Peaty deposits, derived from the decay of the boulder clay.

As the third kind is the most common, it has been diffused in America on a large scale, and has been derived from the others to a less extent.

The Unstratified Drift is a deposit of a base or pediment. The base varies in character, and is generally composed of the materials of the country, the soil, and the deposit of the land. It is not uncommon to find a deposit of clay, sand, and gravel in such a place, and it is not uncommon to find a deposit of clay, sand, and gravel in such a place.

The greater number of rocks are angular, and the smaller ones are rounded. The larger ones are usually angular, and the smaller ones are rounded. The larger ones are usually angular, and the smaller ones are rounded.
found on the beach or in river beds. If our inquiries proceed a little beyond a mere glance at these at first sight not very interesting materials, we may discover that the large stones in the drift are of very different kinds. Some of them, perhaps the greater number, may be of the same kind with the rocks occurring in situ in the vicinity. Others are of kinds not found in place except at great distances. It is farther observable that the clay or sand containing large stones, is not arranged in layers, but that its materials are confusedly intermixed. The fine rounded gravel, however, is not only comparatively free from large stones, but it is arranged in beds or layers, often with bands of sand between. We shall also in some localities find beds of fine clay containing marine shells, and sometimes, though rarely, compressed peaty matter underlying the drift deposits.

By studying the superposition of these materials, we may readily arrive at the following arrangement of them in descending order, or from the newer to the older:

1. Gravel and sand beds, and ancient gravel ridges and beaches, indicating the action of shallow water and strong currents and waves.
2. Stratified clay with shells, showing quiet deposition in deeper water.
3. Unstratified boulder clay, indicating the united action of ice and water.
4. Peaty deposits, belonging to a land surface preceding the deposit of the boulder clay.

As the third of these formations is the most important and generally diffused in Acadia, we shall attend to it first, and notice the relation of the others to it.

The Unstratified Drift or boulder clay may be viewed as consisting of a base or paste including angular and rounded fragments of rocks. The base varies from a stiff clay to loose sand, and its composition and colour generally depend upon those of the underlying and neighbouring rocks. Thus, over sandstone it is arenaceous, over shales argilaceous, and over conglomerates and hard slates pebbly or shingly. The greater number of the stones contained in the drift are usually, like the paste containing them, derived from the neighbouring rock formations. These untravelled fragments are often of large size, and are usually angular, except when they are of very soft material, or of rocks whose corners readily weather away. It is unnecessary to give illustrations of these facts. Any one can observe, that on passing from a granitic district to one composed of slate, or from slate to sandstone,
the character of the loose stones changes accordingly. It is also a matter of familiar observation, that in proportion to the hardness or softness of the prevailing rocks, the quantity of these loose stones increases or diminishes. In some of the quartzite and granite districts of the Atlantic coast, the surface seems to be heaped with boulders with only a little soil in their interstices, and every little field, cleared with immense labour, is still half-filled with huge white masses popularly known as “elephants.” On the other hand, in the districts of soft sandstone and shale, one may travel some distance without seeing a boulder of considerable size.

Though I have called these fragments untravelled, it by no means follows that they are undisturbed. They have been lifted from their original beds, heaped upon each other in every variety of position, and intermixed with sand and clay, in a manner which shows convincingly that the sorting action of running water had nothing to do with the matter; and this applies not only to stones of moderate size, but to masses of ten feet or more in diameter. It is as if a gigantic harrow had been dragged over the surface, tearing up the solid rocks, and mingling their fragments in a rude and unsorted mass.

Beside the untravelled fragments, the drift always contains boulders derived from distant localities, to which in many cases we can trace them; and I shall mention a few instances of this to show how extensive has been this transport of detritus. In the low country of Cumberland there are few boulders, but of the few that appear, some belong to the hard rocks of the Cobequid Hills to the southward; others may have been derived from the somewhat similar hills of New Brunswick. On the summits of the Cobequid Hills and their northern slopes, we find angular fragments of the sandstones of the plain below, not only drifted from their original sites, but elevated several hundreds of feet above them. To the southward and eastward of the Cobequids, throughout Colchester, Northern Hants, and Picton, fragments from these hills, usually much rounded, are the most abundant travelled boulders, showing that there has been great driftage from this elevated tract. In like manner, the long ridge of trap rocks extending from Cape Blomidon to Briar Island has sent off great quantities of boulders across the sandstone valley which bounds it on the south, and up the slopes of the slate and granite hills to the southward of this valley. Well characterized fragments of trap from Blomidon may be seen near the town of Windsor; and I have seen unmistakable fragments of similar rock from Digby Neck, on the Tusket River, thirty miles from their original position. On the other hand, numerous boulders of granite have been carried to the northward from the hills of

Annapolis, and some of them on the shores of Digby Neck, being large numbers of granite boulders that have drifted in the counties of Annapolis and the transport in the valleys of America, have been exclusively of granite, and more especially of the lower grounds of the existence of a basin and the hilly region.

As might be expected, the great ridges of Cumberland at the end of the North, and the great projecting ridges of Colchester, are seen as most denuding agencies, and they project ridges of rock and masses of rock that are greatly diminished.

One of the main factors in this materials is the structure which prevails over the interior of Europe, and not uncommonly it is the rule rather than exception that the surface is not only smoothed and made uniform, but also that heavy and hard materials are useful to the superficial detritus, in the direction with success among the drift to fill in different parts of
Annapolis, and deposited on the slopes of the opposite trappean ridge; and some of them have been carried round its eastern end, and now lie on the shores of Londonderry and Onslow. So also, while immense numbers of boulders have been scattered over the south coast from the granite and quartz rock ridges immediately inland, many have drifted in the opposite direction, and may be found scattered over the counties of Sydney, Pictou, and Colchester. These facts show that the transport of travelled blocks, though it may have as in other parts of America, have been principally from the northward, has by no means been exclusively so; boulders having been carried in various directions, and more especially from the more elevated and rocky districts to the lower grounds in their vicinity. Professor Hind has shown the existence of a similar relation between the boulders of New Brunswick and the hilly ranges of that country.

As might have been expected, the removal of these travelled masses has occasioned important changes of the surface, or, to use the ordinary geological term, there has been very extensive *denudation* in the production of the boulder deposits. A very large proportion of the present features of the surface indeed result from this cause; the ridges of Cumberland, the deep valley of Cornwallis and Annapolis, the great gorges crossing the Cobequid Mountains and the western end of the North Mountains in Annapolis and Digby counties, such eminences as the Greenhill in Pictou county, and Onslow Mountain in Colchester, are due in great part to the removal of soft rocks by denuding agencies of this period, while the harder rocks remained in projecting ridges. On the other hand, it might be shown that many masses of rock which once projected above the surface have been greatly diminished or entirely removed.

One of the most remarkable effects of the transport of surface materials is the *scratching and polishing of rock surfaces*, a phenomenon which prevails very extensively over the northern parts of America and Europe, and may be frequently observed in Nova Scotia. Indeed it is the rule rather than the exception, that when a fresh rock-surface is uncovered by the removal of the boulder clay, it is found to be smoothed and marked with striæ, scratches, and furrows, usually in a uniform direction; the whole being evidently the result of the passage of heavy and hard substances over the surface. These scratches or furrows are useful as indicating the direction in which the mass of superficial detritus has been moved; and I have even used this direction with success in tracing useful minerals found in fragments among the drift to the sources whence they were derived. I give below the directions of the diluvial scratches in a number of localities in different parts of the province.
Point Pleasant, and other places near Halifax, exposure south, very distinct striae; S. 20° E. to S. 30° E.
Head of the Basin, exposure south, but in a valley, E. & W. nearly.
La Have River, exposure S.E., S. 20° W.
Petite River, exposure S., S. 20° E.
Beaw River, exposure N., S. 30° E.
Rawdon, exposure N., S. 25° E.
The Gore Mountain, exposure N., two sets of striae, respectively; S. 65° E. & S. 20° E.
Windsor Road, exposure not noted, S.S.E.
Gay's River, exposure N., Nearly S. & N.
Musquodoboit Harbour, exposure S., Nearly S. & N.
Near Pictou, exposure E., in a valley; Nearly E. & W.
Polson's Lake, summit of a ridge, Nearly N. & S.
Near Guysboro', exposure not noted, Nearly S. & N.
Sydney Mines, Cape Breton, exposure S. S. 30° W.*

The above instances show a tendency to a southerly and south-easterly direction, which accords with the prevailing course in most parts of North-easterly America. Local circumstances have, however, modified this prevailing direction; and it is interesting to observe that, while S. E. is the prevailing direction in Acadia and New England, it is exceptional in the St. Lawrence valley, where the prevailing direction is S.W.† Professor Hind has given a table of similar stria in New Brunswick, showing that the direction ranges from N. 10° W. to N. 30° E., in all except a few cases. On Blue Mountains, 1650 feet above the sea, it is stated to be N. and S. As in Nova Scotia, N. W. and S. E. seems to be the prevailing course.

The travelled and untravelled boulders are usually intermixed in the drift. In some instances, however, the former appear to be most numerous near the surface of the mass, and their horizontal distribution is also very irregular. In examining coast sections of the drift, we may find for some distance a great abundance of angular blocks, with few travelled boulders, and then we may observe a portion of the shore or bank in which both varieties are equally intermixed, or in which travelled boulders prevail; and we may often observe particular kinds of these last grouped together, as, for instance, a number of blocks of granite, greenstone, syenite, etc., all lying together, as if they had been removed from their original beds and all deposited together.

* The above and other courses in this volume are magnetic, the average variation being about 18° W.
† Logan, "Report on Geology of Canada."
ORIGIN OF DRIFT.

63
together at one operation. On the surface of the country where the woods have been removed, this arrangement is sometimes equally evident; thus hundreds of granite boulders may be seen to cumber one limited spot, while in its neighbourhood they are comparatively rare. It is also well known to the farmers in the more rocky districts, that many spots which appear to be covered with boulders have, when these are removed, a layer of soil comparatively free from stones beneath. These appearances may in some instances result from the action of currents of water, which have in spots carried off the sand or clay, leaving the boulders behind; but in many cases this is manifestly the original arrangement of the material.

Boulders or travelled stones are often found in places where there is no other drift. For example, on bare granite hills, about 500 feet in height, near the St. Mary’s River, there are large angular blocks of quartzite, derived from the ridges of that material which abound in the district, but are separated from the hills on which the fragments lie by deep valleys.

In Canada and the Northern States, as well as in Scotland, marine shells are sometimes found in the boulder formation as well as in the clays overlying it; and it is worthy of remark that these shells are of such species as indicate a colder or more arctic climate than that which at present prevails in those countries. In Nova Scotia I have observed nothing of this kind; and the only evidence of organic life, during the boulder period, or immediately before it, that I have noticed is a hardened peaty bed which appears under the boulder clay on the north-west arm of the River of Inhabitants in Cape Breton. It rests upon gray clay similar to that which underlies peat bogs, and is overlaid by nearly twenty feet of boulder clay. Pressure has rendered it nearly as hard as coal, though it is somewhat tougher and more earthy than good coal. It has a glossy appearance when rubbed or scratched with a knife, burns with considerable flame, and approaches in its character to the brown coals or more imperfect varieties of bituminous coal. It contains many small roots and branches, apparently of coniferous trees allied to the spruces. The vegetable matter composing this bed must have flourished before the drift was spread over the province, so that it belongs to some part (probably one of the later parts) of the great tertiary group of rocks of which the drift is the latest member.

If we ask what has been the origin of this great mass of shifted and drifted material, which overspreads the surface not only of the district we are now describing, but the greater part of the land of the northern hemisphere, we raise one of the most vexed questions of modern ge-
ology. In reasoning, however, on this subject as regards Nova Scotia, I have the advantage of appealing to causes now in operation within the country, and which are at present admitted by the greater number of modern geological authorities to afford the best explanation of the phenomena. In the first place, it may at once be admitted that no such operations as those which formed the drift are now in progress on the surface of the land, so that the drift is a relic of a past state of things, in so far at least as regards the localities in which it now rests. In the next place, we find, on examining the drift, that it strongly resembles, though on a greater scale, the effects now produced by frost and floating ice. Frost breaks up the surface of the most solid rocks, and throws down cliffs and precipices. Floating ice annually takes up and removes immense quantities of loose stones from the shores, and deposits them in the bottom of the sea or on distant parts of the coasts. Very heavy masses are removed in this way. I have seen in the Strait of Canseau large stones, ten feet in diameter, that had been taken from below low-water mark and pushed up upon the beach. Stones so large that they had to be removed by blasting, have been taken from the base of the cliffs at the Joggins and deposited off the coal-loading pier, and I have seen resting on the mud-flats at the mouth of the Petitcodiac River a boulder at least eight feet in length, that had been floated by the ice down the river (Fig. 11). Another

Fig. 11.—Travelled Stone, Petitcodiac River.

testimony to the same fact is furnished by the rapidity with which huge piles of fallen rock are removed by the floating ice from the base of the trap cliffs of the Bay of Fundy. Let us suppose, then, the surface of the land, while its projecting rocks were still unbroken by surface deposits, exposed for many successive centuries to the action of alternate frosts and thaws, the whole of the untravelled drift might have been accumulated on its surface. Let it then be submerged until its hill-tops should become islands or reefs of rocks in a sea loaded in winter and spring with drift ice, floated along by currents, which, like the present Arctic current, would set from N.E. to S.W. with various modifications produced by local causes. We have in these
causes ample means for accounting for the whole of the appearances, including the travelled blocks and the scratched and polished rock-surfaces. This, however, is only a general explanation. Had we time to follow it into details, many most interesting and complicated facts and processes would be discovered. I mention merely one for an example, as it illustrates the manner in which the land may have subsided beneath the boulder-bearing seas. I have stated that large blocks of sandstone from the plains of Cumberland have been carried to the summits of the Cobequid Mountains. When these blocks were carried to their present place, the waters must have reached to the summits of the hills; but at that time the plain from which these blocks came must have been several hundred feet below the sea-level. How then could ice take them from such a depth? We may fancy huge icebergs grounding in this deep water, but they could not float over the hills or ground against their summits. The explanation is that the country was gradually subsiding. While the water was shallow, the blocks were drifted against the base of the hills. As the land sunk, the ice-fields of successive years gradually pushed them higher, until the summits of the hills were submerged so deeply that the ice could no longer take up the blocks. Most of the apparent anomalies of the drift may be explained in such ways, when the theory of ice-carriage is once admitted.

I have retained the above explanation of the boulder clay, which appeared in my edition of 1855, because I have as yet seen no reason to change my opinion on the subject, although I have since that time had opportunities of studying the Post-pliocene of Canada and other parts of America and of Europe, and have read nearly all that has been written by the advocates of a terrestrial origin of this deposit, in a supposed glacial period when the whole of the northern parts of Europe and America are imagined to have been covered with glaciers, or rather with a universal glacier like that of Greenland, but on an enormously larger scale. The more I have considered this hypothesis, the more improbable it has appeared, whether in a mechanical, meteorological, or geological point of view; and a recent visit to Mont Blanc, and the study of the effects produced by icebergs in the Straits of Belleisle, have more fully established in my mind the belief that floating ice and the Arctic current have been the grand agents employed. As the glacier hypothesis of Agassiz, Ramsay, and others, has been incorporated into the best American text-book of geology, that of Professor Dana, and has recently been ably advocated in the case of New Brunswick, I may here give some of my reasons for dissenting from it, as stated in a paper published some time ago in Canada.
The facts to be accounted for are the striation and polishing of rock surfaces, the deposit of a sheet of unstratified clay and stones, the transport of boulders from distant sites lying to the northward, and the deposit on the boulder clay of beds of stratified clay and sand, containing marine shells. The rival theories in discussion are,—first, that which supposes a gradual subsidence and re-elevation, with the action of the sea and its currents, bearing ice at certain seasons of the year; and, secondly, that which supposes the American land to have been covered with a sheet of glacier several thousands of feet thick.

The last of these theories, without attempting to undervalue its application to such regions as those of the Alps or of Spitzbergen or Greenland, has appeared to me inapplicable to the drift deposits of eastern America, for the following among other reasons:—

1. It requires a series of suppositions unlikely in themselves and not warranted by facts. The most important of these is the coincidence of a wide-spread continent and a universal covering of ice in a temperate latitude. In the existing state of the world, it is well known that the ordinary conditions required by glaciers in temperate latitudes are elevated chains and peaks extending above the snowline; and that cases in which, in such latitudes, glaciers extend nearly to the sea-level, occur only where the mean temperature is reduced by cold ocean-currents approaching to high land, as for instance in Tierra del Fuego and the southern extremity of South America. But the temperate regions of North America could not be covered with a permanent mantle of ice under the existing conditions of solar radiation; for, even if the whole were elevated into a table-land, its breadth would secure a sufficient summer heat to melt away the ice, except from high mountain-peaks. Either, then, there must have been immense mountain-chains which have disappeared, or there must have been some unexampled astronomical cause of refrigeration, as, for example, the earth passing into a colder portion of space, or the amount of solar heat being diminished. But the former supposition has no warrant from geology, and astronomy affords no evidence for the latter view, which, besides, would imply a diminution of evaporation mitigating as much against the glacier theory as would an excess of heat. An attempt has recently been made by Professor Frankland to account for such a state of things by the supposition of a higher temperature of the sea, along with a colder temperature of the land; but this inversion of the usual state of things is unwarranted by the doctrine of the secular cooling of the earth; it is contradicted by the fossils of the period, which show that the seas were colder than at present; and if it existed, it could not produce the effects required, unless a pretension were made by the supposed currents of ice to spread the effects of evaporation in the northward, as much as the ancients supposed that the winds did by the heat of the sun. Charles Lyell, however, supposes a different climate throughout, from the present to the post-Pliocene.

2. It seems equally unlikely to me that any uniform or general laws of the existing or of the supposed glaciers could be applied to the present state of the world. Charles Lyell supposes that the present state of the world could be produced by a uniformity of temperature and an increased amount of water thrown into the seas. But it seems equally probable that the present state of the world could be produced by a different system of temperature and a diminution in the amount of water. It is to be doubted, whether it be a sound supposition that any interglacial period could have been as long as the supposed one, and at the same time that the mass of ice required to cover the globe could have been scattered in this way.

3. The transport of the ice is a problem of them on high, and on the high mountains, and on the sea cliffs. But the supposed ice-sheets, from which to carry the ice to the sea, must have been elevated, and not covered by water from the sea. On the other hand, the sea, of which the ice was formed, are huge bodies of water, in which the water must have been by the waves and ice transport, the ice at right angles to the sea, and the sea at right angles to the former. Quite as striking is the supposition that the ice-sheets, from which the ice was obtained, was to be obtained from the sea, and the sea from the land.
preternatural arrest were at the same time laid on the winds, which spread the temperature of the sea over the land. The alleged facts observed in Norway, and stated to support this view, are evidently nothing but the results ordinarily observed in ranges of hills, one side of which fronts cold sea-water, and the other land warmed in summer by the sun.

The supposed effects of the varying eccentricity of the earth's orbit, so ably expounded by Mr Croll, are no doubt deserving of consideration in this connexion; but I agree with Sir Charles Lyell in regarding them as insufficient to produce any effect so great as that refrigeration supposed by the theory now before us, even if aided by what Sir Charles truly regards as a more important cause of cold,—namely, a different distribution of land and water, in such a manner as to give a great excess of land in high latitudes.

2. It seems physically impossible that a sheet of ice, such as that supposed, could move over an uneven surface, stratiating it in directions uniform over vast areas, and often different from the present inclinations of the surface. Glacier ice may move on very slight slopes, but it must follow these; and the only result of the immense accumulation of ice supposed, would be to prevent motion altogether by the want of slope or the counteraction of opposing slopes, or to induce a slight and irregular motion toward the margins or outward from the more prominent protuberances.

It is to be observed, also, that, as Hopkins has shown, it is only the sliding motion of glaciers that can polish or erode surfaces, and that any internal changes resulting from the mere weight of a thick mass of ice resting on a level surface, could have little or no influence in this way.

3. The transport of boulders to great distances, and the lodgment of them on hill-tops, could not have been occasioned by glaciers. These carry downward the blocks that fall on them from wasting cliffs. But the universal glacier supposed could have no such cliffs from which to collect; and it must have carried boulders for hundreds of miles, and left them on points as high as those they were taken from. On the Montreal Mountain, at a height of 600 feet above the sea, are huge boulders of feldspar from the Laurentide Hills, which must have been carried 50 to 100 miles from points of scarcely greater elevation, and over a valley in which the strata are in a direction nearly at right angles with that of the probable driftage of the boulders. Quite as striking examples occur in many parts of this country. It is also to be observed that boulders, often of large size, occur scattered through the marine stratified clays and sands containing sea-shells;
and whatever views may be entertained as to other boulders, it cannot be denied that these have been borne by floating ice. Nor is it true, as has been often affirmed, that the boulder clay is destitute of marine fossils. At Isle Verte, Riviere du Loup, Murray Bay, and St Nicholas on the St Lawrence, and also at Cape Elizabeth, near Portland, there are tough stony clays of the nature of true "till," and in the lower part of the drift, which contain numerous marine shells of the usual Post-pliocene species.

4. The Post-pliocene deposits of Canada, in their fossil remains and general character, indicate a gradual elevation from a state of depression, which on the evidence of fossils must have extended to at least 500 feet, and on that of far-travelled boulders to several times that amount; while there is nothing but the boulder clay to represent the previous subsidence, and nothing whatever to represent the supposed previous ice-clad state of the land, except the scratches on the rock surfaces, which must have been caused by the same agency which deposited the boulder clay.

5. The peat deposits, with fir-roots, found below the boulder clay in Cape Breton, the remains of plants and land-snails in the marine clays of the Ottawa, and the shells of the St Lawrence clays and sands, show that the sea at the period in question had nearly the temperature of the present Arctic currents of our coasts, and that the land was not covered with ice, but supported a vegetation similar to that of Labrador and the north shore of the St Lawrence at present. This evidence refers not to the later period of the Mammoth and Mastodon, when the re-elevation was perhaps nearly complete, but to the earlier period contemporaneous with or immediately following the supposed glacier period. In my former papers on the Post-pliocene of the St Lawrence, I have shown that the change of climate involved is not greater than that which may have been due to the subsidence of land, and to the change of course of the Arctic current, actually proved by the deposits themselves.

These objections might be pursued to much greater length; but enough has been said to show that there are, in the case of north-eastern America, strong reasons against the existence of any such period of extreme glaciation as supposed by many geologists; and that if we can otherwise explain the rock striation and polishing, and the formation of fiords and lake basins, the strong points with these theorists, we can dispense altogether with the portentous changes in physical geography involved in their views, and which are not necessary to explain any of the other phenomena.

On these points, the Report of the Geological Survey of Canada
throws new light; though Sir William Logan, with his usual caution, has not committed himself to theoretical conclusions; and in one or two local cases he seems to favour the glacier theory. It has long been known to geologists, that in north-eastern America, two main directions of striation of rock surfaces occur, from north-east to southwest, and from north-west to south-east; and that locally the directions vary from these to north and south and east and west. Various attempts have been made, but without much success, to account for these directions of striation by the motion of glaciers; and while it is quite easy for any one prepossessed with this view to account in this way for the striation in a particular valley or part of a valley, yet so many exceptional facts occur as to throw doubt on the explanation, except in the case of a few of the smaller and steeper mountain gorges.

In the Report of the Survey of Canada a valuable table of these striations is given, from which it appears that they are locally distributed in such a way as to throw a decided gleam of light on their origin.

It would seem that the dominant direction in the valley of the St Lawrence, along the high lands to the north of it, and across western New York, is north-east and south-west; and that there is another series of scratches running nearly at right angles to the former, across the neck of land between Georgian Bay and Lake Ontario, down the valley of the Ottawa, and across parts of the Eastern Townships, connecting with the prevalent south and south-east striation which occurs in the valleys of the Connecticut and Lake Champlain, and elsewhere in New England, as well as in Nova Scotia and New Brunswick. What were the determining conditions of these two courses, and were they contemporaneous or distinct in time? The first point to be settled in answering these questions is the direction of the force which caused the strie. Now, I have no hesitation in asserting, from my own observations as well as from those of others, that for the south-west striation the direction was from the ocean toward the interior, against the slope of the St Lawrence valley. The crag-and-tail forms of all our isolated hills, and the direction of transport of boulders carried from them, show that throughout Canada the movement was from north-east to south-west.* This at once disposes of the glacier-theory for the prevailing set of strie; for we cannot suppose a glacier moving from the Atlantic up into the interior. On the other hand, it is eminently favourable to the idea of ocean drift. A subsidence of

* The few exceptional cases appear to belong mostly to the later period of the stratified sands.
America, such as would at present convert all the plains of Canada and New York and New England into sea, would determine the course of the Arctic current over this submerged land from north-east to south-west; and as the current would move up a slope, the ice which it bore would tend to ground, and to grind the bottom as it passed into shallower water; for it must be observed that the character of slope which enables a glacier to grind the surface may prevent ice born by a current from doing so, and vice versa.

Now we know that in the Post-pliocene period eastern America was submerged, and consequently the striation at once comes into harmony with other geological facts. We have, of course, to suppose that the striation took place during submergence, and that the process was slow and gradual, beginning near the sea and at the lower levels, and carried upwards to the higher grounds in successive centuries, while the portions previously striated were covered with deposits swept down from the sinking land or dropped from melting ice. It would be easy to show that this view corresponds with many of the minor facts.

Farther, the theory thus stated accounts for the excavation of the deep and land-locked basins of our great American lakes. Ocean currents, if cold, and clinging to the bottom, must cut out pot-holes, just as rivers do, though geologists are too apt to limit their function to the throwing up of banks. The course of the present Arctic current along the American coast has its deep hollows as well as its sand-banks. Our American lake-basins are cut out deeply into the softer strata. Running water on the land would not have done this, for it could have no outlet; nor could this result be effected by breakers. Glaciers could not have effected it; for even if the climatal conditions for these were admitted, there is no height of land to give them momentum. But if we suppose the land submerged so that the Arctic current, flowing from the north-east, should pour over the Laurentian rocks on the north side of Lake Superior and Lake Huron, it would necessarily cut out of the softer Silurian strata just such basins, drifting their materials to the south-west. At the same time, the lower strata of the current would be powerfully determined through the strait between the Adirondac and Laurentide Hills, and, flowing over the ridge of hard rock which connects them at the Thousand Islands, would cut out the long basin of Lake Ontario, heaping up at the same time, in the lee of the Laurentian ridge, the great mass of boulder clay which intervenes between Lake Ontario and Georgian Bay. Lake Erie may have been cut by the flow of the upper layers of water over the Middle Silurian escarpment; and Lake Michigan, though less close, are, due to other causes, of unequal depth.

The present lakes, developed during a period of time when New York and New England were below the land-level, could have been cut by the combined action of the current, oblique and converging, and act on the land with equal force in all directions. The outer margin of the north-west and south-west was the account for the sinking of the Ohio and the Lake Superior and Superior basins, and the Lake Huron and the Lake Michigan basins, as is thrown so rapidly into the larger strata of such summits.

Nor would we be able to account for the American, though so much nearer to them the present water level of the condition of the land. The action of the water, the freshened water of the ocean, that permanent element of nature, has cut extensive glaciers, and I think that most of the lakes of America, and that old sea, failed to find easy outlet to the ocean, to the almost to their shores. But if I have ventured to work of glaciers, extending at their coast-lines loaded with ice, of them convey slowly subsiding shallow water, an depth increased.
less closely connected with the direction of the current, is, like the others, due to the action of a continuous eroding force on rocks of unequal hardness.

The predominant south-west striation, and the cutting of the upper lakes, demand an outlet to the west for the Arctic current. But both during depression and elevation of the land, there must have been a time when this outlet was obstructed, and when the lower levels of New York, New England, and Canada were still under water. Then the valley of the Ottawa, that of the Mohawk, and the low country between Lakes Ontario and Huron, and the valleys of Lake Champlain and the Connecticut, would be straits or arms of the sea, and the current, obstructed in its direct flow, would set principally along these, and act on the rocks in north and south and north-west and south-east directions. To this portion of the process I would attribute the north-west and south-east striation. It is true that this view does not account for the south-east strie observed on some high peaks in New England; but it must be observed that even at the time of greatest depression, the Arctic current would cling to the northern land, or be thrown so rapidly to the west that its direct action might not reach such summits.

Nor would I exclude altogether the action of glaciers in eastern America, though I must dissent from any view which would assign to them the principal agency in our glacial phenomena. Under a condition of the continent in which only its higher peaks were above the water, the air would be so moist, and the temperature so low, that permanent ice may have clung about mountains in the temperate latitudes. The striation itself shows that there must have been extensive glaciers, as now, in the extreme Arctic regions. Yet I think that most of the alleged instances must be founded on error, and that old sea-beaches have been mistaken for moraines. I have failed to find even in our higher mountains any distinct sign of glacier action, though the action of the ocean-breakers is visible almost to their summits; and though I have observed in Canada and Nova Scotia many old sea-beaches, gravel-ridges, and lake-margins, I have seen nothing that could fairly be regarded as the work of glaciers. The so-called moraines, in so far as my observation extends, are more probably shingle beaches and bars, old coast-lines loaded with boulders, trains of boulders or "ozars." Most of them convey to my mind the impression of ice-action along a slowly subsiding coast, forming successive deposits of stones in the shallow water, and burying them in clay and smaller stones as the depth increased. These deposits were again modified during emer-
gence, when the old ridges were sometimes bared by denudation, and new ones heaped up.*

I shall close these remarks, perhaps already too tedious, by a mere reference to the alleged prevalence of lake basins and fiords in high northern latitudes, as connected with glacial action. In reasoning on this, it seems to be overlooked that the prevalence of hard metamorphic rocks over wide areas in the north is one element in the matter. Again, cold Arctic currents are the cutters of basins, not the warm surface-currents. Further, the fiords on coasts like the deep lateral valleys of mountains are evidences of the action of the waves and currents rather than of that of ice. I am sure that this is the case with the numerous indentations of the coast of Nova Scotia, which are cut into the softer and more shattered bands of rock; and show, in raised beaches and gravel ridges like those of the present coast, the levels of the sea at the time of their formation.

In Nova Scotia we have the means of applying another and crucial test to this theory of lake basins. The whole surface of the peninsula has been striated and polished; and it has been estimated that one-third of its area is occupied by lakes, most of them of small dimension. Now these lakes are almost entirely confined to those metamorphic regions where unequal hardness and imperfect facilities for drainage tend to promote their occurrence. It is evident, therefore, that we are to seek for the origin of the lake basins in these local causes, and not in any universal covering of glacier. Further, as I have above shown, the manner in which the great Canadian lakes have been cut out of the softer materials, and their relations to the neighbouring harder portions of the country, prove that these great basins may be due to the action of ocean-currents, a cause to which I would attribute also the greater part of the smaller lakes of Nova Scotia. To these reasons I may add the following comparative statements of the effects of glaciers and icebergs, deduced from examinations of the glaciers of Mont Blanc and the icebergs of Belleisle:—†

* I have no doubt that Logar, Hind, and Packard, are correct in assigning some of the striation in the Laurentide Hills of Canada and Labrador to glaciers. The valley of the Saguenay, which is a deep cut caused by denudation along a line of fracture traversing the Laurentian rocks, shows near its mouth distinct "roches moutonnées" smoothed on the northern side, and very deep grooves and striæ cut in hard gneiss with a direction of S. 10 E., magnetic, which is nearly at right angles to the ordinary striation of the St Lawrence valley. I think it quite possible that these appearances may have been caused by a local glacier, and if so, there may have been glaciers along the whole line of the Laurentide Hills, with their extremities reaching to the sea or strait then filling the St Lawrence valley.

† Comparisons of the Icebergs of Belleisle and the Glaciers of Mont Blanc, Canadian Naturalist, 1867.

1. Glaciers, sometimes less uniform.
2. The river deposits often.
3. The striæ they have been more often abrading action.
4. In the boulders. In streams and
5. The deposits of glaciers can glaciers push the
6. It is of the can find, and small
7. Glaciers may supplies of peren
8. Glaciers strike water-borne, may
9. The direction depends on the di
tary, depends upon determined by the
10. When subincarri carry boulders from under any circumsta

The only portion of shells have been found with it, is in the south this kind occurs similar apparently on a smalle
1. Glaciers heap up their debris in abrupt ridges. Floating ice sometimes does this, but more usually spreads its load in a more or less uniform sheet.

2. The material of moraines is all local. Icebergs carry their deposits often to great distances from their sources.

3. The stones carried by glaciers are mostly angular, except where they have been acted on by torrents. Those moved by floating ice are more often rounded, being acted on by the waves and by the abrading action of sand drifted by currents.

4. In the marine glacial deposits mud is mixed with stones and boulders. In the case of land glaciers most of this mud is carried off by streams and deposited elsewhere.

5. The deposits of floating ice may contain marine shells. Those of glaciers cannot, except where, as in Greenland and Spitzbergen, glaciers push their moraines out into the sea.

6. It is of the nature of glaciers to flow in the deepest ravines they can find, and such ravines drain the ice of extensive areas of mountain land. Icebergs, on the contrary, act with greatest ease on flat surfaces or slight elevations in the sea bottom.

7. Glaciers must descend slopes and must be backed by large supplies of perennial snow. Icebergs act independently; and, being water-borne, may work up slopes and on level surfaces.

8. Glaciers striate the sides and bottoms of their ravines very unequally, acting with great force and effect only on those places where their weight impinges most heavily. Icebergs, on the contrary, being carried by constant currents and over comparatively flat surfaces, must striate and grind more regularly over large areas, and with less reference to local inequalities of surface.

9. The direction of the striae and grooves produced by glaciers depends on the direction of valleys. That of icebergs, on the contrary, depends upon the direction of marine currents, which is not determined by the outline of the surface, but is influenced by the large and wide depressions of the sea-bottom.

10. When subsidence of the land is in progress, floating ice may carry boulders from lower to higher levels. Glaciers cannot do this under any circumstances, though in their progress they may leave blocks perched on the tops of peaks and ridges.

The only portion of Acadia in which stratified clays holding marine shells have been found overlying the boulder clay, or in connexion with it, is in the southern part of New Brunswick, where deposits of this kind occur similar to those found in Canada and in Maine, though apparently on a smaller scale. These deposits, as they occur near St
Ophioglypha

Bryozoa, several

Radiata.

Ophioglypha S.

John, occurring moderately occurring, indicate a Bay of Fundy and Maine.

Articulata.

Balanus crenatus.

Mollusca.

Pecten isis.

Mytilus edulis.

Cardium calceum.

Tellina Gigantea.

T. calceus.

Leda Jacksoni.

L. truncatula.

Nucula antarctica.

Mya arenaria.

M. truncatula.

Aphrodite tenuis.

Cardium islatum.

Mesodesma baileyi.

Saxicava disca.

Lyonsia arenaria.

Laevia subulata.

Pandora trilobata.

Natica clausa.

Buccinum undatum.

Fig. 12. Balanus Sennerle, (a) opercula. Fig. 13. Mytilus edulis. Fig. 14. Tellina Granlandica. Fig. 15. Tellina calceum. Fig. 16. Mya truncata. Fig. 17. Nucula antarctica. Fig. 18. Mya arenaria. Fig. 19. M. truncatula. Fig. 20. Aphrodite tenuis. Fig. 21. Cardium islatum. Fig. 22. Mesodesma baileyi. Fig. 23. Saxicava disca. Fig. 24. Lyonsia arenaria. Fig. 25. Laevia subulata. Fig. 26. Pandora trilobata. Fig. 27. Natica clausa. Fig. 28. Buccinum undatum.
John, consist of gray and reddish clays, holding fossils which indicate moderately deep water, and are, as to species, identical with those occurring in similar deposits in Canada and in Maine. They would indicate a somewhat lower temperature than that of the waters of the Bay of Fundy at present, or about that of the northern part of the Gulf of St Lawrence. They correspond to the Leda clay of Canada and Maine.

Mr. C. F. Hartt has given, in Prof. Bailey's Report on New Brunswick, the following list of fossils from these beds. I have affixed an asterisk to the species found also in the Leda clay and Saxicava sand of Canada.

Articulata.

Balanus Hameri,* Asc., Lawlor's Lake.
B. crenatus,*

Mollusca.

P. tenuestratus, Migh.,
Mytilus edulis, Linn.*
Cardium pinnulatum, Con.
Tellina Greelandica* (= T. Balthica Linn.), Lawlor's Lake, etc.
T. calcarea* (= Macoma sabulosa, Stp.), Duck Cove, etc.
Leda Jacksoni (= L. pernula *), Lawlor's Lake.
L. truncata,* Duck Cove; Lawlor's Lake; R. R. Depot, Saint John.
Nucula antiqua (var. of N. tenuis.),*
Mya arenaria,*
M. truncata,*
Aphrodite (Serripes) Greelandica, Beck, Duck Cove, etc.
Cardium islandicum,* Linn.
Mesodesma, R. R. Depot.
Saxicava distorta, Say. (= S. rugosa, Linn.)*
Lyonsia arenosa, Duck Cove.*
Laena neritoidea,* Gould, Duck Cove.
Pandora trilineata,
Natica clausa, Sou,*
Buccinum undatum,* Linn, Duck Cove.
Bryozoa, several species undetermined, Taylor's Island, Lawlor's Lake, etc.

Radiata.

Ophioglypha Sarsi, Lut., Saint John, Duck Cove.*
Toxopneustes drobachiensis (Echinus granulatus, Say.),* Red Head, Lawlor's Lake.

Plants.—Algae, three species, undetermined.—Manawagonis.
In some specimens sent to me by Mr Matthew, I find, in addition to the forms above enumerated, some microscopic organisms, more especially *Polystomella striatopunctatia* (umbilicata of Walker), and several species of *Cythere*; and among the Bryozoa I recognise *Puta-lipora, Tubulipora serpens* and *Crisia eburnea*, all in small fragments.

In the absence of fossils, the drift of Nova Scotia contrasts strongly with the Post-pliocene clays and sands of the lower St Lawrence and the St John. These deposits abound in marine shells, and mark the stages of recession of the sea as the American land rose from the great depression of the period of the boulder formation, in which nearly the whole continent was submerged. The absence of the fossiliferous marine clays in Nova Scotia may indicate a more rapid elevation of the land, not giving time for permanent sea-bottoms; or, on the other hand, a slow rise accompanied by very great denudation. The position of Nova Scotia and the aspect of its boulder clay point rather to the latter conclusion. In this case, remnants may exist; and, judging from appearances in Canada, Maine, and New Brunswick, I should suppose that marine remains are most likely to be found at the junction of the boulder clay with the overlying stratified drift, and in places sheltered by hills or ledges of rock. From papers on this subject, relating more especially to Canada, I may select the following statements as important to the geology of these formations in Acadia as well:—*

The arrangement of the Post-pliocene deposits at Logan's Farm near Montreal, and Beauport near Quebec, confirms the subdivision, which I have attempted to establish, of these beds into an underlying unstratified boulder clay, a deep-water bed of clay or sand (the "Leda clay" of Montreal), and, overlying shallow-water sands and gravels (the "Saxicava sand"). This arrangement shows a gradual upheaval of the land from its state of depression in the boulder clay period, corresponding with what has been deduced from similar appearances in the Old World. "The upheaval of the bed of the glacial sea," says Forbes, "was not sudden but gradual. The phenomena so well described by Professor Forchammer in his essays on the Danish drift, indicating the conversion of a muddy sea of some depth into one choked up with sand-banks, are, though not universal, equally evident in the British Isles, especially in Ireland and the Isle of Man."†

We now have in all, exclusive of doubtfull forms, about one hundred species of marine invertebrates from the Post-pliocene clays of the St Lawrence valley. All, except four or five species belonging to the old shells of the Canadian waters, are the species of the great majority of neighbourhood gulf and marine, especially to the boulder deposits in the St Lawrence, but the remains of the drift, as observed in the Ottawa, are marine deposits.

* The climate and the causes of icebergs are so similar in the two hemispheres, having occurred at the same periods of time in both. But the tests of the early deposits in the two hemispheres differ much, the temperature of the sea being higher in the Old World than in the New. This is shown by the temperature of the water near the ice, and by the fact that the icebergs from the 0° line of 40°, for example, in the St Lawrence, skirts now the coast of Norway. This fact is interesting, as the temperature of the water is the means of determining the place where the icebergs from the drifts have formed.

† Memoirs of Geological Survey.

* Canadian Naturalist and Geologist, vols. ii., iii., and iv.

† Memoirs of Geological Survey.
to the older or deep-water part of the deposit, are known as living shells of the Arctic or boreal regions of the Atlantic. About half of the species are fossil in the Post-pliocene of Great Britain. The great majority are now living in the Gulf of St Lawrence and on the neighbouring coasts; and more especially on the north side of the gulf and the coast of Labrador. In so far, then, as marine life is concerned, the modern period in this country is connected with that of the boulder clay by an unbroken chain of animal existence. These deposits in Lower Canada afford no indications of the terrestrial fauna; but the remains of Elephas primigenius in beds of similar age in Upper Canada, show that during the period in question great changes occurred among the animals of the land; and we may hope to find similar evidences elsewhere, especially in localities where, as on the Ottawa, the debris of land-plants and land-shells occur in the marine deposits.

The climate of this period, as indicated by its marine animals, and the causes of its difference from that which now obtains in the northern hemisphere, have been fertile subjects of discussions and controversies, which I have no wish here to reopen. I desire, however, to state, in a manner level to the comprehension of the ordinary reader, the facts of the case in so far as relates to Canada, and equally to the maritime provinces, and an important inference to which they appear to me to lead, and which, if sustained, will very much simplify our views of this question.

Every one knows that the means and extremes of annual temperature differ much on the opposite sides of the Atlantic. The isothermal line of 40°, for example, passes from the south side of the Gulf of St Lawrence, skirts Iceland, and reaches Europe near Drontheim in Norway. This fact, apparent as the result of observations on the temperature of the land, is equally evidenced by the inhabitants and physical phenomena of the sea. A large proportion of the shell-fish inhabiting the Gulf of St Lawrence and the coast thence to Cape Cod occur on both sides of the Atlantic, but not in the same latitudes. The marine fauna of Cape Cod is parallel, in its prevalence of boreal forms, with that of the south of Norway. In like manner, the descent of icebergs from the north, the freezing of bays and estuaries, the drifting and pushing of stones and boulders by ice, are witnessed on the American coast in a manner not paralleled in corresponding latitudes in Europe. It follows from this, that a collection of shells from any given latitude on the coasts of Europe or America would bear testimony to the existing difference of climate. The geologist

* Reports of Geol. Survey; Lyell’s Travels.
appeals to the same kind of evidence with reference to the climate of the Post-tertiary period, and let us inquire what is its testimony.

The first and most general answer usually given is, that the Postpliocene climate was colder than the Modern. The proof of this in Western Europe is very strong. The marine fossils of this period in Britain are more like the existing fauna of Norway or of Labrador than the present fauna of Britain. Great evidences exist of driftage of boulders by ice, and traces of glaciers on the higher hills. In North America the proofs of a rigorous climate, and especially of the transport of boulders and other materials by ice, are equally good, and the marine fauna all over Canada and New England is of boreal type. In evidence of these facts, I may appeal to the papers and other publications of Sir C. Lyell and Professor Ramsay on the formations of the so-called Glacial period in Europe and America, * and to my own previous papers on the Post-tertiary of Canada.

Admitting, however, that a rigorous climate prevailed in the Postpliocene period, it by no means follows that the change has been equally great in different localities. On the contrary, while a great and marked revolution has occurred in Europe, the evidences of such change are very much more slight in America. In short, the causes of the coldness of the Post-pliocene seas to some extent still remain in America, while they must have disappeared or been modified in Europe.

If we inquire as to these causes as at present existing, we find them in the distribution of ocean-currents, and especially in the great warm current of the Gulf Stream thrown across from America to Europe, and in the Arctic currents bathing the coasts of America. In connexion with these we have the prevailing westerly winds of the temperate zone, and the great extent of land and shallow seas in northern America. Some of these causes are absolutely constant. Of this kind is the distribution of the winds, depending on the earth's temperature and rotation. The courses of the currents are also constant, except in so far as modified by coasts and banks; and the direction of the drift-scratches and transport of boulders in the Postpliocene both of Europe and America show that the Arctic currents at least have remained unchanged. But the distribution of land and water is a variable element, since we know that in the period in question nearly all northern Europe, Asia and America, were at one time or another under the waters of the sea; and it is consequently to

* Lyell's Travels in North America; Ramsay on the Glaciers of Wales, and on the Glacial Phenomena of Canada. See also Forbes on the Fauna and Flora of the British Islands, in Memoirs of Geological Survey.
CHANGES OF CLIMATE.

79

this cause that we must mainly look for the changes which have occurred.

Such changes of level must, as has been long since shown by Sir Charles Lyell, modify and change climate. Every diminution of the land in Arctic America must tend to render its climate less severe. Every diminution of land in the temperate regions must tend to reduce the mean temperature. Every diminution of land anywhere must tend to diminish the extremes of annual temperature; and the condition of the southern hemisphere at present shows that the disappearance of the great continental masses under the water would lower the mean temperature, but render the climate much less extreme. Glaciers might then exist in latitudes where now the summer heat would suffice to melt them—as Darwin has shown that in South America glaciers extend to the sea level in latitude 46° 50', and at the same time the ice would melt more slowly and be drifted farther to the southward. Any change that tended to divert the Arctic currents from our coasts would raise the temperature of their waters. Any change that would allow the equatorial current to pursue its course through to the Pacific, or along the great inland valley of North America, would reduce the British seas to a boreal condition.

The boulder formation and its overlying fossiliferous beds prove, as I have in a previous paper endeavoured to explain with regard to Canada, and as has been shown by other geologists in the case of other parts of America and of Europe, that the land of the northern hemisphere underwent in the Post-tertiary period a great and gradual depression and then an equally gradual elevation. Every step of this process would bring its modifications of climate, and when the depression had attained its maximum there probably was as little land in the temperate regions of the northern hemisphere as in the southern now. This would give a low mean temperature and an extension to the south of glaciers, more especially if, at the same time, a considerable Arctic continent remained above the waters, as seems to be indicated by the effects of extreme marine glacial action on the rocks under the boulder clay. These conditions, actually indicated by the phenomena themselves, appear quite sufficient to account for the coldness of the seas of the period; and the wide diffusion of the Gulf Stream caused by the subsidence of American land, or its entire division into the Pacific basin,* would give that assimilation of the

* This is often excluded from consideration, owing to the fact that the marine fauna of the Gulf of Mexico differs almost entirely from that of the Pacific coast; but the question still remains, whether this difference existed in the Later Tertiary period, or has been established in the Modern epoch, as a consequence of changed physical conditions.
American and European climates so characteristic of the time. The climate of western Europe, in short, would, under such a state of things, be greatly reduced in mean temperature; the climate of America would suffer a smaller reduction of its mean temperature, but would be much less extreme than at present; the general effect being the establishment of a more equable but lower temperature throughout the northern hemisphere. It is perhaps necessary to add, that the existence on the land, during this period of depression, of large elephantine mammals in northern latitudes, as, for instance, the mammoth and mastodon, does not contradict this conclusion. We know that these creatures were clothed in a manner to fit them for a cool climate, and an equable rather than a high temperature was probably most conducive to their welfare, while the more extreme climate consequent on the present elevation and distribution of the land may have led to their extinction.

The establishment of the present distribution of land and water, giving to America its extreme climate, leaving its seas cool, and throwing on the coasts of Europe the heated water of the tropics, would thus affect but slightly the marine life of the American coast, but very materially that of Europe, producing the result already referred to in the above pages, that the Canadian Post-pliocene fauna differs comparatively little from that now existing in the Gulf of St Lawrence; though in so far as any difference subsists, it is in the direction of an Arctic character. The changes that have occurred were perhaps all the less that so soon as the Laurentide Hills to the north of the St Lawrence valley emerged from the sea, the coasts to the south of these hills would be effectually protected from the heavy northern ice-drifts and from the Arctic currents, and would have the benefit of the full action of the summer heat,—advantages which must have existed to a lesser extent in western Europe.

It is farther to be observed, that such subsidence and elevation would necessarily afford great facilities for the migration of Arctic marine animals, and that the difference between the Modern and Post-pliocene faunas must be greatest in those localities to which the forms of temperate regions could most readily migrate after the change of temperature had occurred.

It has been fully shown by many previous writers on this subject, that the causes above referred to are sufficient to account for all the local and minor phenomena of the stratified and unstratified drifts, and for the driftage of boulders and other materials, and the erosion that accompanied its deposition. Into these subjects I do not propose to enter; my object in these remarks being merely to give the reasons for many different effects of the great driftage of ice and in western Europe, in particular, of long and of lower Europe, in the north.

The Post-pliocene Period has yielded, however, to a newer type of conglomerate, which varies from the stratified and unstratified, and is occasionally observed in the coast sections of the more southerly parts of the country. It has been well observed by Mr. Murchison in the counties of St Lawrence and Oxford, and consists of a bank of coarse pebbles, quartz, sand, and clay and other materials, which, in other instances, have been thrown off the Arctic drifts, and which have been deposited in the upper part of the new strata, as is shown by the conglomerate rests of the older drifts. This conglomerate rests are of the older type, in other instances, that deposited the older pebble rock, and are beds of fine lam on which the are a very thick bed
for my belief stated in previous papers on this subject, that the difference of climate between Post-pliocene and Modern America, and the less amount of that difference relatively to that which has occurred in western Europe, may be explained by a consideration of the changes of level which the structure and distribution of the boulder clay and the overlying fossiliferous beds prove to have occurred.

The stratified sand and gravel of Nova Scotia rests upon and is newer than the unstratified drift, and is probably also newer than the stratified marine clays above referred to. Its age is probably that of the Saxicava sand. The former relation may often be seen in coast sections or river banks, and occasionally in road-cuttings. I observed some years ago an instructive illustration of this fact, in a bank on the shore a little to the eastward of Merigomish harbour (Fig. 22). At this place the lower part of the bank consists of clay and sand with angular stones, principally sandstones. Upon this rests a bed of fine sand and small rounded gravel with layers of coarser pebbles. The gravel is separated from the drift below by a layer of the same sort of angular stones that appear in the drift, showing that the currents which deposited the upper bed have washed away some of the finer portions of the drift before the sand and gravel were thrown down. In this section, as well as in most others that I have examined, the lower part of the stratified gravel is finer than the upper part, and contains more sand.

In some cases we can trace the pebbles of the gravels to ancient conglomerate rocks which have furnished them by their decay; but in other instances the pebbles may have been rounded by the waters that deposited them in their present place. In places, however, where old pebble rocks do not occur, we sometimes find, instead of gravel, beds of fine laminated sand. A very remarkable instance of the connexion of superficial gravels with ancient pebble rocks occurs in the county of Pictou. In the coal formation of this county there occurs a very thick bed of conglomerate, the outcrop of which, owing to its
comparative hardness and great mass, forms a high ridge extending from the hill behind New Glasgow across the East and Middle Rivers, and along the south side of the West River, and then, crossing the West River, re-appears in Roger's Hill. The valleys of these three rivers have been cut through this bed, and the material thus removed has been heaped up in hillocks and beds of gravel, along the banks of the streams, on the side toward which the water now flows, which happens to be the north and north-east. Accordingly, along the course of the Albion Mines Railway and the lower parts of the Middle and West Rivers, these gravel beds are everywhere exposed in the road-cuttings, and may in some places be seen to rest on the boulder clay, showing that the cutting of these valleys was completed after the drift was produced. Similar instances of the connexion of gravel with conglomerate occur near Antigonish, and on the sides of the Cobequid Mountains, where some of the valleys have at their southern entrances immense tongues of gravel extending out into the plain, as if currents of enormous volume had swept through them from north to south.

The stratified gravels do not, like the older drift, form a continuous sheet spreading over the surface. They occur in mounds and long ridges, sometimes extending for miles over the country. One of the most remarkable of these ridges is the "Boar's Back," which runs along the west side of the Hebert River in Cumberland. It is a narrow ridge, perhaps from ten to twenty feet in height, and cut across in several places by the channels of small brooks. The ground on either side appears low and flat. For eight miles it forms a natural road, rough indeed, but practicable, with care, to a carriage, the general direction being nearly north and south. What its extent or course may be beyond the points where the road enters on and leaves it, I do not know; but it appears to extend from the base of the Cobequid Mountains to a ridge of sandstone that crosses the lower part of the Hebert River. It consists of gravel and sand, whether stratified or not I could not ascertain, with a few large boulder-stones. Another very singular ridge of this kind is that running along the west side of Clyde River in Shelburne county. This ridge is higher than that on Hebert River, but, like it, extends parallel to the river, and forms a natural road, improved by art in such a manner as to be a very tolerable highway. Along a great part of its course it is separated from the river by a low alluvial flat, and on the land side a swamp intervenes between it and the higher ground. These may serve as illustrations of the "boars' backs" or "horse backs" and gravel ridges which occur in many other places, and are sometimes ac-

panied, and oval, of various sizes.
panied, particularly where they are crossed by gullies, by circular and oval mounds, as regular as if thrown up artificially.

Just as we attribute the formation of the older or boulder drift to the action of water and ice, while the land was subsiding beneath a frozen sea, so we may assign as the cause of the superficial gravels the action of these same waters while the country was being elevated above their level. Many of the mounds of gravel have evidently been formed by currents of water rushing through and scooping out the present valleys. Some of the more regular ridges are apparently of the nature of the gravel beaches which are thrown by the sea across the mouths of bays and coves, and may mark the continuance of the sea-level unchanged for some time in the progress of elevation. Others may have been pressed up by the edges of sheets of ice, in the manner of the ridges along the borders of our present lakes. That the action of ice in some form had not ceased, we have evidence in the large boulders sometimes found on the summits of the gravel ridges.

In the island of Cape Breton the bones of a large elephantine quadruped, evidently a species of Mastodon, have been found in connection with the superficial gravel. This gigantic creature probably inhabited our country at the close of the Glacial or Drift period, and may have been contemporaneous with some of the present animals, though probably extinct before the introduction of the human race. The existence of this huge quadruped does not imply a tropical or even very warm climate, since in a skeleton found in Warren county, New Jersey, fragments of twigs, lying in such a position as to show that they had formed part of the food of the creature, were found by microscopic examination to have belonged to a species of cypress, probably the common white cedar of America; so that the animal probably browsed as the moose does at present, and could live in any wooded region.* One specimen found in the state of New York measured twenty-five feet in length and twelve feet in height. In Nova Scotia the animal must have attained to similar dimensions, for a thigh-bone, now in the museum of the Mechanics' Institute in Halifax, though apparently somewhat worn, measures three feet eleven inches in length. This huge bone and some fragments of a tusk, were the only remains of this animal that I had seen before the publication of the first edition of this work. A molar tooth has since been found in Cape Breton by Dr Honeyman, and I am now enabled by his kind assistance to figure the thigh-bone and tooth from photographs (Figs. 23 and 24). The species appears to be the Mastodon giganteus.

* Lyell, "Manual of Geology."
In conclusion of this part of the subject, we may view the Drift period as the close of the great Tertiary era of geologists. In that era there was much dry land in the northern hemisphere, and multitudes of large animals now extinct inhabited it, apparently under a climate milder than at present. Great changes, however, took place in the relative positions of land and water, inducing very important changes of climate, which finally became of an almost Arctic character over all the present temperate regions. The greater part of northern Europe and Asia appear to have subsided beneath the waters of the boulder-bearing semi-arctic ocean, until raised again by successive stages to be the abode of man and the animals of the modern earth. This final elevation, marked by the superficial gravels, appears to have fixed the present contour of the country, though the extinction of the mastodon and the phenomena of submerged forests show that important changes both in inorganic and organic nature have occurred subsequently. We have thus, in tracing back the geological history of Acadia observed first, certain modern formations now in progress, and depending wholly on the present condition of the country. We have seen in connexion with these,
evidences of subsidence of the land over an extensive area in the Modern period. A little farther back, we have observed remains showing that formerly a large elephantine quadruped now extinct inhabited the country, which we find had at a time still more ancient emerged from the bosom of the deep, under which it had long remained, while icebergs and floes were drifting masses of rock over its surface, and scraping and polishing its hills. Lastly, we have found that at a still earlier period it must have been dry land, exposed to the influence of a cold climate, and having in places peat bogs on its surface. This whole history, however, reaches no farther back than the close of the Tertiary period; and by referring to the Table in Chapter II, it will be observed, that between this period and the formation next to be described a great blank occurs, occupied in some other countries by some of the most wonderful monuments of the earth's history.

Note.—Since writing the above, I have received a very valuable memoir on the Glacial Phenomena of Labrador and Maine, by A. S. Packard, M.D. The author, though attaching more importance to the action of glaciers than I am disposed to admit, states many important facts and conclusions bearing on the subject of this chapter. Adopting the term "Syrtsisian" for the marine fauna of Labrador and the northern part of the Gulf of St Lawrence, and "Acadian" for that of the coast from Cape Breton to Cape Cod, he shows the Post-pliocene fauna of Maine and New Brunswick to be Syrtensian, and not, as at present, Acadian. He adds to the list of New Brunswick Post-pliocene fossils,—Cardium pinnulatum, Astarte Banksii, Lepriola hyalina, Membranipora pilosa, and Collepora pumicosa.
CHAPTER VI.

THE TRIAS OR NEW RED SANDSTONE.

GENERAL DISTRIBUTION—RED SANDSTONES—VARIETIES OF TRAP—NEW RED FROM TRURO TO AVON ESTUARY—BLOMIDON TO BRIAR ISLAND.

Between the Drift and the New Red Sandstone, a deposit probably of the same age with the Triassic System of geologists, there is a great hiatus in the geology of Nova Scotia. During all those periods in which the middle and older Tertiaries, the Cretaceous and the Oolite systems were produced, no rocks appear to have been formed within its area, or if they were formed they have been swept away. This remark applies not only to Nova Scotia, but to an immense region extending through New Brunswick, Canada, and the Northern United States; and, in some directions, far beyond the limits of those countries. During those long periods, those regions, thus destitute of the newer Secondary and Tertiary rocks, may have been in the interior of a great continent, or in the fathomless depths of an ocean where no sediment was being deposited; but whatever their condition, they retain no geological monuments of the lapse of time. In passing, then, from the Boulder formation to that which for convenience we may call the New Red Sandstone, to distinguish it from rocks of similar character but greater age, the reader may be reminded by a glance at the Table in Chapter II., that we are passing at one leap over a great part of the earth's geological history.

The distribution of the New Red Sandstone, as shown on the map, indicates that, when it was deposited, the form and contour of the country already made some approach to those which it still retains. Just as the marsh mud lines the coasts of the Bay of Fundy, so do we find the New Red occupying an inner zone, and appearing to have been deposited in a bay a little wider and longer than the present one. It is indeed to this bay district that, in Nova Scotia and New Brunswick, the New Red has been chiefly confined, and it may have been deposited in circumstances not very dissimilar from those of the present marshes, except that the older deposit is accompanied by evidence that
active volcanoes poured out their lavas on the grandest scale in the waters and on the shores of the bay while its sandstones were being formed. While the New Red Sandstone of Nova Scotia is limited to the Bay of Fundy, we have evidence in the wide extent of the same formation in Prince Edward Island, that a similar deposit was in progress in the Gulf of St Lawrence. In the gulf, however, unlike the bay, we do not find the New Red along the coasts, but in an isolated patch separated on all sides from the continent. I may remark here, that the New Red Sandstone, though patches of it are scattered over several parts of North America, is nowhere very extensive. To the southward of Nova Scotia it re-appears in Connecticut, where it extends over a considerable area in the valley of the river; and in New Jersey, where another band commences that extends a great distance to the south-east, some isolated patches occurring as far south as North Carolina.

The aqueous rocks of the New Red Sandstone period in Nova Scotia and Prince Edward Island are principally coarse and soft red sandstones with a calcareous cement, which causes them to effervesce with acids, and contributes to the fertility of the soils formed from them. In the lower part of the formation, there are conglomerates made up of well-worn pebbles of the harder and older rocks.

The volcanic rocks of this period are of that character known to geologists as Trap, and are quite analogous to the products of modern volcanoes; and, like them, consist principally of Augite, a dark green or blackish mineral, composed of silica, lime, and magnesia, with iron as a colouring material. Various kinds of trap are distinguished, corresponding to the varieties of modern lavas. Crystal-line or basaltic trap is a black or dark green rock, of a fine crystalline texture, and having on the large scale a strong tendency to assume a rude columnar or basaltic structure. Amygdaloid or almond-cake trap is full of round or oval cavities or air bubbles, filled with light coloured minerals introduced by water after the formation of the rock. This represents the vesicular or porous lava which forms the upper surface of lava currents, just as the basaltic trap represents the basaltic lava which appears in their lower and more central parts. The only difference is, that in the amygdaloid the cavities are filled up, while in the modern lavas they are empty. In some old lavas, however, the cavities are already wholly or partially filled. A third kind of trap, very abundant in Nova Scotia, is Tufa or Tuff, or volcanic sandstone, a rock of earthy or sandy appearance, and of gray, greenish, or brown colour. It consists of fine volcanic dust and scoria, popularly known as the ashes and cinders of volcanoes, cemented together into
a somewhat tough rock. Modern tufa, quite analogous to that of the trap, is very abundant in volcanic countries, and sometimes sufficiently hard to be quarried as a stone.

As the new red sandstone and trap are formations of one period, and differ only in origin, it will be convenient to consider them together. I shall therefore proceed to describe these two rocks as they appear in connexion in different parts of Nova Scotia, New Brunswick, and Prince Edward Island, and then notice their fossil remains and useful or interesting minerals.

1. Truro and South Side of Cobequid Bay.

In the valley of the Salmon River, four and a half miles eastward of the village of Truro, the eastern extremity of the New Red Sandstone is seen to rest unconformably on hard reddish brown sandstones and shales, belonging to the lower part of the Carboniferous system, and dipping N. 80° E. at an angle of 40°. At this place the overlying formation is nearly horizontal, and consists of soft and rather coarse bright red silicious sandstones. Southward of Truro, at the distance of less than a mile, the horizontal soft red sandstone is seen, in the banks of a brook, to run against hard brownish grits and shales, dipping to the eastward at angles varying from 45° to 50°. Westward of this place, the red sandstones extend in a narrow band, about a mile in width, to the mouth of the Shubenacadie, ten miles distant. This band is bounded on the north by Cobequid Bay, and on the south by highly inclined sandstone, shale, and limestone of the Lower Carboniferous series. In the coast-section, between Truro and the Shubenacadie, the red sandstone presents the same character as at the former place, except that, near the Shubenacadie, some of the beds, which, like most of the red sandstones of Truro, have a calcareous cement, show a tendency to arrangement in large concretionary balls.

West of the mouth of the Shubenacadie, the red sandstone ceases to form a continuous belt, but occurs in several patches, especially at Salter’s Head, Barncote, and Walton. At the latter place, it is seen to rest on the edges of sandstones and other rocks of the Lower Carboniferous system, affording a very fine example of that unconformable superposition which in geology proves the underlying formation to have been elevated and disturbed before the overlying beds were deposited upon it. This appearance is represented in Fig. 25, and was thus described by the writer in a note supplementary to his paper on the New Red Sandstone of Nova Scotia, and communicated to the Geological Society in 1852:—

"I have at Walton and elsewhere seen with amazement, that the overlying beds of the red sandstone of the mouth of the Shubenacadie, have also been superposed upon the lower beds, and that at Walton, the superposition appears very distinct: a good instance of it is seen near the mouth of the river, where the red sandstone has been deposited in a calcareous bed, and the beds are contorted, and somewhat wrinkled in appearance."

"Succeeding the red sandstone, the Carboniferous beds underlie the gravel, and extend far to the east side of the anti-clinorium, and in different parts are in contact with the superimposed unstratified sandstones and shales of the undisturbed sandstone beds of the two former periods."
"I had in the past summer an opportunity of examining these beds at Walton (Petite) and other places, and was much gratified by finding that the New Red might be traced, as a narrow and occasionally interrupted band, from the mouth of the Shubenacadie nearly to the mouth of the Avon; thus connecting as far as possible the distinct patches of New Red described in my former paper. At some points also I found very distinct coast-sections, showing the unconformable superposition of the New Red on the Lower Carboniferous beds. A good instance of this occurs at Petite River.

Near the mouth of the river, the Lower Carboniferous formation appears with the same characters observed at Windsor and on the Shubenacadie. It includes a large body of gypsum, extensively quarried for exportation, and a bed of limestone with veins of oxide of manganese. In the neighbourhood of these beds, the softer rocks have been denuded and do not appear. Still nearer the mouth of the river, however, there is a distinct section, showing black shales, with calcareous bands, dipping at a high angle to the south, and underlaying the beds above mentioned. In a short space these beds become contorted, and then dip steeply to the north.

Succeeding these black shales, in ascending order, the Lower Carboniferous rocks are seen in the section. These beds probably underlie the gypsum and limestone, which would recur on the north side of the anticlinal formed by the black shales if the section extended sufficiently far. Before reaching the extremity of the point on the east side of the river, however, the edges of the beds sink to the level of the sea, and the lower members of the New Red are unconformably superimposed upon them. It is a somewhat instructive fact that the beds of the underlying series are at this place both redder and softer than the overlying New Red Sandstone."

I notice this section particularly, because it gives a clear conception
THE TRIAS OR NEW RED SANDSTONE.

of the manner in which the New Red rests on the older Carboniferous beds, wherever it is in contact with them.

2. Blomidon to Briar Island.

Westward of Walton, the estuary of the Avon River and Minas Basin make a very wide gap in the New Red Sandstone. On the western side of Minas Basin, however, this formation attains its greatest width and grandest proportions; and as this coast affords the finest opportunity in the province for studying all the members of the formation and their mutual relations, I shall describe it in detail with the aid of the section, Fig. 26.

Blomidon is the eastern extremity of a long band of trappean rocks, forming an elevated ridge, named in the greater part of its length the "North Mountains." This ridge is about 123 miles in length, including two insular portions at its western extremity, and does not exceed five miles in breadth, except near Cape Blomidon, where a narrow promontory, terminating in Cape Split, extends to the northward. The trap of the North Mountains presents to the Bay of Fundy a range of high cliffs, and is bounded on the inland side by soft red sandstones, which form a long valley separating the trappean rocks from another and more extensive hilly district occupied principally by metamorphic slates and granite. The trap has protected the softer sandstones from the waves and tides of the bay, and probably also from older denuding agents; and where it terminates, the shore at once recedes to the southward, forming the western side of Minas Basin, and affording a cross section of the North Mountains and the valley of Cornwallis.

At Cape Blomidon, the cliff, which in some parts is 400 feet in height, is composed of red sandstone surmounted by trap. The sandstone is soft, arranged in beds of various degrees of coarseness, and is variegated by greenish bands and blotches. It contains veins of selenite and fibrous gypsum, the latter usually parallel to the containing beds, but sometimes crossing them obliquely. I found no fossils in it; it dips to the north-west at an angle of 16°. Resting on the sandstone, and appearing to dip with it to the north-west, is a thick bed of
we^smmssssm
amy
gene
differ
eapec
in
Jar
some
quartz
amyg(i
having
Ti,o
vertical
tho
fissured,
stone
in
concoale
stone
hai
offnguu
North
V
stone
and
the
coluiH
*tl'll
prese
hand,
the
occupy
Blomidon
'^'
small
'he
coalau
\o"t
IslaRu
°^u
about
15'
offiidon,
e°^e
soild
occupy
the
Jo
°^e
soft
and
f
ConnvaJJis,
'^'''0
comparat'
shows
denudation;
a''e
fragment
fff
et
quent
in
•^'^s
to
the
sou
amygdaloidal trap, varying in colour from gray to dull red, but in
general of grayish tints. It is full of cavities and fissures; and
these, as well as its vesicles, are filled or coated with quartz, in
different states, and with various zeolites, to be noticed hereafter,
especially heulandite, analcime, natrolite, stilbite, and apophyllite, often
in large and beautiful masses of crystals. In its lower part there are
some porous which are scarcely vesicular, and often appear to contain
quartz sand like that of the subjacent sandstone. Above the bed of
amygdaloid is a still thicker stratum of crystalline basaltic trap,
having a rude columnar structure.

The columnar trap of Blomidon, in consequence of its hardness and
vertical joints, presents a perpendicular wall extending along the top
of the precipice. The amygdaloid beneath, being friable and much
fissured, falls away in a slope from the base of this wall, and the sandstone
in some places forms a continuation of the slope, or is altogether
concealed by the fallen fragments of trap. In other places the sandstone
has been cut into a nearly vertical cliff, above which is a terrace
of fragments of amygdaloid.

Northward of Cape Blomidon, the north-westerly dips of the sandstone
and trap cause the base of the former to descend to the sea-level,
the columnar trap, which here appears to be of increased thickness,
still presenting a lofty cliff. Southward of the cape, on the other
hand, the amygdaloid and basalt thin out, until the red sandstones
occupy the whole of the cliff. It thus appears that the trap at
Blomidon is a conformable bed, resting on the sandstone, exactly as
in some places on the opposite shore, to be described hereafter.

The coast section between Blomidon and Horton, as seen near
Percaun River and Bass Creek, and at Starr's Point, Long Island, and
Bout Island, exhibits red sandstones, with north-west dips at angles
of about 15°, and precisely similar in mineral character to those of
Blomidon, except that near Bass Creek some of them contain layers
of small pebbles of quartz, slate, granite, and trap. The whole of
these sandstones underlie those of Blomidon, and resemble those which
occupy the long valley of Cornwallis and the Annapolis River, westward
of this section. In this valley, the red sandstone, in consequence of
its soft and friable nature, is rarely well exposed; but in a few places
in Cornwallis, where I observed it, it has the same dip as on the coast.
The comparatively high level of the sandstone, where it underlies the
trap, shows that the present form of this valley is in great part due to
denudation; and the trap itself must have suffered from this cause,
since fragments of it and of the quartzose minerals which it contains,
are frequent in the valley of Cornwallis, and along the base of the slate
hills to the southward.
We may now consider the relations of the red sandstone of Cornwallis to the other formations bounding it on the south. Near Kentville, seven miles westward of the direct line of section from Blomidon to Horton, the red sandstone, with its usual north-west dip, rests against clay-slate having a high dip to the N.N.E., and belonging to a series of similar rocks apparently equivalents of the Silurian system. In tracing the boundary of the slate eastward of this place, along the south side of Cornwallis River, its junction with the red sandstone is not again observed; and at Wolfville the slates support hard gray sandstones, composed of the materials of granite, with some beds of brownish sandstone. These rocks were observed in one place to dip to the N.E., and in another to the N.W. They are separated from the red sandstones of Bout and Long Island, and Starr's Point, by a wide expanse of marsh, and by the estuary of the Cornwallis River. In Lower Horton, and between that place and Halfway River, gray sandstones, similar to those of Wolfville, are seen to support black shales and dark sandstones, with *Lepidoderma* and other fossil plants of carboniferous forms, and dipping to the N.E., N., and N.W. These beds continue to the mouth of the Avon estuary, where they form the cliffs of Horton Bluff, at the northern end of which they are seen dipping to the south. They are then concealed by boulder clay, which with marsh forms the shore for nearly a mile. Beyond this, in a small point called Oak Island, are seen a few beds of coarse red sandstone with some finer red beds and grayish bands. These rocks dip to the N.W., and form a continuation, and the eastern extremity, of the New Red Sandstone of the Horton Islands and Cornwallis.

In describing this section, I have merely copied my notes upon it, and have purposely refrained from drawing any inferences or giving any explanations. To begin with Blomidon—the crystalline trap at its summit, which rises abruptly in huge irregular columns, is an ancient current of molten rock or lava, which has flowed over and cooled upon the surface on which it now rests. It slopes gently toward the north-west, as if it had flowed toward the bay, but there is no volcanic dike or other evidence of the ejection of lava from beneath on that side, and it is more than probable that the orifice from which it was poured forth was to the westward along the range of which Blomidon is the eastern extremity, or northward toward Cape Split. From the appearance of the mountain-top that rises above the vertical cliff, there may have been more than one overflow of the volcanic matter. Before this great bed of basaltic trap flowed forth, the surface on which it rests had been thickly covered with volcanic ashes and scoria, which, consolidated by pressure and by infiltration of mineral materia
BLOMIDON TO BRIAR ISLAND.

s matters, now form the thick bed of amygdaloid and tuff, intervening between the columnar trap and the red sandstone. This is precisely what we find to be the case in modern volcanic eruptions. The first violent explosions in such cases usually eject immense quantities of dust and fragments of old lavas, which are blown or ejected to great distances, or if they fall into the sea, as was most probably the case at Blomidon, are scattered in layers over its bottom. Over these ejected scoria and ashes the lava currents which issue subsequently are poured. We need not be surprised that we do not now perceive any regular volcanic mountain or vent at Blomidon, for independently of the action the waters may have exerted on it when being formed, we know that great denudation has taken place in the Drift period, and under the wasting action of the present fusts and tides. The minerals mentioned as occurring in the trap are all either silica or silicates,—that is, compounds of silica with the alkalis potash and soda, or the earths, as alumina, lime, etc. They are produced by the solvent action of water, which, percolating through the trap, dissolves these materials, and redeposits them in fissures and cavities. Below the amygdaloid, we have a thick series of beds of red sandstone—mechanical detritus deposited by water, and probably in great part derived from the waste of the sandstones of the Carboniferous system. The gypsum veins which traverse it were probably deposited by waters which had dissolved that mineral, in passing through the great gypsum-beds which occur in the older system last mentioned.

The history of this fine precipice is then shortly as follows. In the Triassic era, thick beds of sandstone were deposited off the coasts of Horton, just as the red mud and sand of the flats are now deposited. Volcanic phenomena on a great scale, however, broke forth from beneath the waters, scoria and dust were thrown out, and spread around in thick beds, and currents of lava were poured forth. Subsequently the whole mass was elevated, to be again submerged under the boulder-bearing sea, by which, and the present atmospheric and aqueous agencies, it was worn and wasted into its present form. Still the work of decay goes on; for yearly the frost loosens immense masses from its brow, and dash them to the beach, to be removed by the ice and the tides, and scattered over the bottom of the bay. The rains and melting snows also cut huge furrows down its front. These agencies of destruction as yet, however, only add to the magnificence of this noblest of all our sea-cliffs. The dark basaltic wall crowned with thick woods, the terrace of amygdaloid, with a luxuriant growth of light green shrubs and young trees that rapidly spring up on its rich and moist surface, the precipice of bright red sandstone, always clean
and fresh, and contrasting strongly with the trap above and with the trees and bushes that straggle down its sides, and nod over its deep ravines,—constitute a combination of forms and colours equally striking if seen in the distance from the hills of Horton or the shore of Parrsboro, or more nearly from the sea or the stony beach at its base. Blomidon is a scene never to be forgotten by a traveller who has wandered around its shores or clambered on its giddy precipices.

From the shore of Blomidon, we may follow the trap formation in a continuous ridge without a break to Annapolis Gut. On the south side, the trap slopes down in rounded and abrupt eminences into the red sandstone valley. On its summit it is somewhat level, though divided into a number of long rolling ridges, probably the effect of denuding agents on the edges of beds of trap of unequal hardness. The bay shore presents to the sea a range of cliffs and precipices often overhanging or vertical, or rolled down into shapeless heaps of rubbish by the frost and the undermining action of the waves. Huge landslips occur every spring from these causes, covering acres of the shore with their ruins, and affording a rich harvest for the mineralogist who may visit the shore after one of these falls. The amount of debris annually thrown down and removed in this way is enormous. The cliffs are usually composed of alternate layers of soft and hard trap and tufa, they are traversed by innumerable fissures, and the general dip is seaward. In addition to these circumstances, the ice annually removes large quantities of fragments from the shore, so that a cliff does not long continue to be protected by the masses that have fallen from it. Hence the whole shore wastes rapidly, with the exception of those places where beds of hard basaltic trap run down to the sea level, and form inclined planes against which the sea rages in vain.

A very remarkable deviation from the ordinary regularity of the coast line of the trap occurs at Cape Split, which forms a prolongation of the Blomidon shore to the north-westward. The dip of the Blomidon basalt gradually brings it down to the sea-level, and toward Cape Split it either thickens, or portions which have retired from the cliff at Blomidon come forward into the shore precipices; for toward the cape a cliff more than 300 feet in height seems to be composed of compact and columnar trap, which extends in a promontory and series of islands and reefs far out into the bay. The appearances at this place render it possible that a trappean dike or dikes, indicating the point or line of ejection of the great basaltic bed of Blomidon, may appear in these cliffs toward Cape Split. I have not, however, been able to study them so closely as to ascertain decisively whether this is the case. There seems no reason to doubt, at least, that the line from
line from the summit of Blomidon to Cape Split marks the direction of one of the greatest lava streams of the region.

At the extremity of the long continuous range extending westward from Blomidon, in the cliff forming the east side of Annapolis Gut, we find the trap, as at the former place, forming a thick bed resting on the red sandstone, and dipping to the northward; and there can be no doubt, from the appearances observed at several places along the coast, that the same arrangement prevails throughout the entire ridge.

Annapolis Gut is a deep channel separating the trap of the promontory of Granville from the western prolongation of the formation. This channel forms the only outlet of Annapolis Basin and the rivers emptying into it. It is of great depth, and the tides rush through it with terrible rapidity. The trap on its west side is more largely developed than on the Granville side. It attains a greater width and height, and contains a larger mass of compact and basaltic trap. This circumstance, in connexion with the narrowing of the valley by a spur of metamorphic rocks on the south, has probably caused the currents of the Drift period to excavate the present outlet. Had it not been for these circumstances, the waters of the Annapolis River would probably have flowed into St Mary's Bay; and the Annapolis Basin, probably the finest sheet of salt water in the province, and its remarkable and picturesque outlet, would not have existed. The sandstone near the town of Digby is somewhat hard, and contains concretions of transparent calc spar. It passes under the southern edge of the trap, but cannot be seen toward the centre of the ridge, where the precipitous side of the "Gut" consists of compact and basaltic trap extending downward to the water-level. In one place, I observed basalts with its pillars nearly horizontal,—an evidence that here a dike of molten rock had been ejected from beneath. Toward the entrance of the Gut on the Digby side, the coast becomes low, and amygdaloid is seen in low cliffs and on the slopes of the hills, while sheets of compact trap run downward into the sea with scarcely any abrupt cliff or bank.

In Digby Neck, the sandstone is well exposed on the side fronting St Mary's Bay, and compact and amygdaloidal trap rest upon it, and dip northward toward the Bay of Fundy. This long promontory, though only from two to three miles in width, consists of two ridges, one forming the cliffs that front St Mary's Bay, the other sloping toward the Bay of Fundy; while between them is a narrow and almost level valley, with several little lakes and ponds arranged in a line along its bottom. The rock in this valley appears to be amygd-
daloid, and it is probably owing to this circumstance that the valley has been scooped out, while the edges of the beds of more compact trap remain as ridges. This at least is the explanation which appears most probable from the structure of all parts of the ridge that I have visited, except the very singular and romantic spot named Sandy Cove. At this place a deep cove penetrates about one-fourth across the ridge from the south, between precipitous cliffs of trap resting on amygdaloiid, and apparently with a southerly dip; or, at all events, without that decided dip to the north which prevails over the greater part of this trappican ridge. Opposite the southern cove, there is on the north side of the ridge a shallower cove, and between is a little lake, on either side of which rise lofty beeling cliffs of basaltic trap, which appear to be parts of a thick bed dipping to the northward. I have marked in my notes the query—Can this be a volcanic crater? and I find that the same thought has occurred to other geologists who have visited the spot. It may have been so; but it is perhaps more probable that the ridge has here been cracked across by a fissure caused by earthquake disturbances; and that the currents of the Boulder formation period have passed through and widened the chasm. Whatever the causes of its present appearance, Sandy Cove is more like something a poet or painter might dream of, than like an actual reality in our usually tame province of Nova Scotia.

Though the trap ridge is very narrow at Digby Neck, it appears that this rock occupies a considerable breadth beneath the waters of the Bay of Fundy. I have already mentioned that the "Neck" consists of two ridges, with a valley between. Now under water there are three similar ridges, the outer being nine miles distant from the shore. They are thus described by Mr Perley, in his Report on the Fisheries of New Brunswick; and his statements were corroborated by information which I obtained from gentlemen resident on this coast:—

"From Black Rock down to Briar Island, along the whole south shore, there are three fishing banks or ledges, lying parallel to the shore, outside each other; their respective distances from the coast have acquired for them the designations of the three-mile ledge—the five-mile ledge—and the nine-mile ledge. Between these ledges there are sixty fathoms of water, but on the crown of each ledge, thirty fathoms only. The three-mile ledge, and the five-mile ledge, extend quite down to Briar Island; but the nine-mile ledge can only be traced down the bay about fourteen miles below Digby Gut, abreast of Trout Cove, where it ends in deep water. Below Digby Gut, the three-mile ledge and five-mile ledge are composed of hard gravel and
red clay; above the gut, the three-mile ledge has a rough, rocky bottom, on which anchors are frequently lost. Each of these ledges is about a mile in width; the outer one something more; between them the bottom is soft mud."

The trap of Digby Neck is remarkable for the large quantity of jasper and other coloured varieties of quartz contained in it. Red jasper is especially abundant; amethyst, stilbite, and lammonite are also frequent. I have collected all these minerals near Sandy Cove, as well as micaceous specular iron ore, a mineral which I have not observed elsewhere in the trap district, though it abounds in our more ancient igneous and altered rocks, and is also a not infrequent product of modern volcanic action; the iron being apparently sublimed in a state of vapour from the intensely heated mass of molten rock beneath. This is probably its origin at Sandy Cove, where it occurs in brilliant little crystalline plates embedded in a quartzose matrix, and projecting from the sides of cavities in the fissures of the trap. Its occurrence here lends some countenance to the conjecture already stated, that a focus of igneous activity may have been in or near this place. It is not in sufficient quantity to be of importance for mining purposes.

At the extremity of Digby Neck, we find another deep transverse ravine cut through the ridge, and separating Long Island, which geologically is a perfect continuation of the Neck. The sides of this strait, which is named Petite Passage, as far as I examined them, consist principally of amygdaloid, the cavities of which have been lined with bright green chlorite before they have been filled with crystalline zeolitic matter.

The water of Petite Passage is beautifully clear, the tides rush through it with great force, and its rocky bottom is covered with seaweeds; the finer and more beautiful varieties of which are very abundant on this outlying tract of rocky coast. It is probably the abundance of these seaweeds on the "ledges" before mentioned, that supports the marine creatures that attract to these coasts the cod, torsk, pollack, haddock, halibut, and herring that abound in summer, and furnish a comfortable subsistence to the numerous fishermen who inhabit Long Island and Briar Island. The great Albecore or King Mackarel, Thynnus vulgaris; the Sea Wolf, Anarhicus lupus; and the Sturgeon, Accipenser oxyrhinchus, are also caught in these waters and in St Mary's Bay, but are not much valued by the fishermen.

On reaching the extremity of Long Island, another strait, the Grand Passage, appears. On the opposite side of this, we see the thriving village of Westport, on Briar Island, the ultima thule of Nova Scotia in this direction, and one of the most active and intelligent
fishing communities in the province. Briar Island is the extreme western end of the trappean ridge, which is, however, prolonged beyond the land in a submarine ledge. It consists entirely of basaltic trap, very regularly divided into columns, which may be seen both as a pavement on any parts of the beach, and in lofty precipices which rise to their greatest height on the south-west side of the island, where they form a perpendicular wall several hundred feet in height, and adorned with buttresses, outlying towers, and pinnacles, such as basaltic cliffs alone can produce in their full perfection. I was so fortunate as to be detained several days at Briar Island by a south-west gale, and had the pleasure of seeing the Atlantic swell bursting in all its grandeur on these iron-bound shores (Fig. 27).

Fig. 27.—Basaltic Cliffs, West End of Briar Island.

The red sandstone is seen to underlie the trap of Digby Neck for several miles below the head of St Mary's Bay, but beyond this I did not again observe it. Gesner states, however, that a small patch of it can be observed at low tide beneath the trap of Briar Island. This interesting fact I had no opportunity of verifying, owing to the stormy state of the weather during my visit.
CHAPTER VII.

THE TRIAS OR NEW RED SANDSTONE—Continued.

TRURO TO CAPE D'OR—GENERAL REMARKS—MINERALS OF THE NEW RED SANDSTONE AND TRAP.

Recommencing at Truro, we may now consider the stripe of New Red Sandstone, with occasional masses of trap, which extends with several interruptions as far as Cape d'Or. Northward of Truro, the red sandstone meets and overlies unconformably the Carboniferous grits, shales, limestone, and gypsum of the North River and Onslow Mountain. Its boundary in this direction is about three miles distant from the bay, and it occupies the low country; the Carboniferous rocks rising from under its edges into hills of considerable elevation. From the North River it extends in a band about three miles in width to De Bert River, where an apparently insulated patch of Lower Carboniferous rocks projects through it. These last appear at the bridge, and consist of limestone, with fossil shells characteristic of the Lower Carboniferous period, gypsum, and hard brownish sandstone. They dip at a high angle to the north-east, while the New Red Sandstone, which laps around them, dips at a small angle to the south-west. This limestone and gypsum, as well as other rocks of the same age, were long believed to belong to the Triassic period, and it was only after their true age had been ascertained by careful comparison of a number of sections, and the identification of the fossil remains with those of the Carboniferous period in other countries, that their true geological position was appreciated. This very locality at the De Bert River, owing to the similarity of the Lower Carboniferous sandstones to those of the New Red, and to the circumstance that the former have been ground down and their debris mixed up with the latter, is at first sight one of the most deceptive in the province, and might readily lead a geologist unacquainted with other more distinct sections into an error on this subject.

As the section at this place is remarkably obscure, I copy from my
notes the following memoranda of the appearances. On the south side of the river, near the bridge, there are gray and brown shales, red sandstone, red grit, and conglomerate, with high dips and disturbed. These are evidently Lower Carboniferous, and quite different from the horizontal soft red sandstones which appear lower down on the same bank. On the north side, at the end of the bridge, are dark red grit and conglomerate, grayish conglomerate, marly and shaly beds with gray calcareous concretions, and a vein of calcareous spar. They dip N.E. and N.N.E. 38°. The limestone and gypsum seen a little below the bridge are associated with these beds, the whole being Lower Carboniferous, as indicated by the fossils of the limestone. In the road-cutting, soft red sandstone and conglomerate overlie these beds, and though they have a steep false bedding, I believe they are New Red and unconformable. In the same road-cuttings, these upper beds are seen to be made up of the debris of the lower, with which they are confusedly intermixed at their confines, the underlying marls in some places rising like veins into the sandstone above. At Folly River the New Red is soft and fine grained, with greenish stains and layers, and has a very slight northerly dip. In the point opposite the village, sandstones, apparently the continuation of the older formation seen at the bridge, dip to the N.E. at a very high angle.

Within this islet of Lower Carboniferous rock, the New Red Sandstone extends up the Folly River, which runs into the same estuary with the De Bert, for about five miles. Its dip increases until it amounts to 50°, and the lowest beds rest against the disturbed Carboniferous rocks which occupy the bed of the river between this place and the base of the Cobequid Mountains. Near their junction with the older rocks, the red sandstones become coarse and pebbly.

Westward of Folly River, the belt of red sandstone gradually decreases in width, and begins to contain in its lower part thick beds of conglomerate, made up of pebbles derived from the older rocks to the northward. Near Portapique River, and somewhat removed from the coast, there is an eminence that I have not visited, but I was informed by a gentleman, very familiar with this part of the country, that it consists of trap. If so, this is the first appearance of that rock in this direction.

The new road along the bank of Great Village River, between that village and the Acadian iron mine, exhibits an interesting section of this formation, consisting of red sandstones and red conglomerates with imperfectly rounded pebbles, and often with oblique or false bedding. They often rise into cliffs of considerable height, and have
a moderate dip to the southward. About three miles from the Great Village they terminate, resting unconformably on the edges of Carboniferous rocks dipping at high angles to the north.

Economy Point, as well as a detached reef named the Brick Kilns lying off the point, consists of New Red Sandstone, which here has in consequence a considerable breadth. It has a slight dip to the south. In the banks of Economy River, the red sandstone and conglomerate which, near the coast, dip to the southward at a low angle, undulate as they approach a hill of hard Lower Carboniferous rocks at no great distance from the shore. Behind these they again appear with a south-west dip, and are again succeeded by Lower Carboniferous rocks which continue to the base of the hills. The ridge of older rock which here divides the red sandstone, is probably a point or promontory connected with the mass of the Carboniferous rocks to the westward.

In Gerrish's Mountain, six miles west of Economy River, the red sandstone and conglomerate are overlaid by amygdaloidal trap, and having been protected by it from denudation, rise into an eminence nearly 400 feet high. At Indian Point, the southern extremity of Gerrish's Mountain, the trap and red sandstone form a bold precipitous cliff, and are continued along the picturesque rocky chain of the Five Islands, in two of which the red sandstone is seen to underlie the trap.

The isolated trap eminences at this place are probably the remains of a continuous lava current, and it is interesting that the direction of the chain of islets corresponds with that of the great trap ridge on the opposite side of the bay. To a traveller who has passed along the level shores of Londonderry and Onslow, and toward the close of day ascends the steep side of Gerrish's Mountain, the view which greets him at the summit is of the most grand and striking character. The rocky chain of the Five Islands, and the pretty inlet and settlement on the shore within them, lie at his feet. In front are the waters of Minas Basin stretching far to the westward. On the one hand is the rugged and picturesque trappean shore extending toward Parrsboro', with the Cobequid Mountains ranged behind it. On the other, Blomidon and Cape Split tower in the distance. I may remark here, that for grandeur and beauty of coast scenery, this part of Minas Basin and the Minas Channel are not surpassed by any part of the eastern coast of North America.

It will be seen, on consulting the map, that at the Five Islands three great geological formations approach each other, so that within a very limited space the Trap, the New Red, the Carboniferous system,
and the older metamorphic rocks may be studied, and specimens of their characteristic minerals obtained. Hence, at various times, this locality has had the reputation of producing useful minerals of different descriptions. The latest instance of this led to the formation of a copper mining company in London, which, after a very fair promise of success, was broken up, owing to a deficiency of the ore, which on trial was found by no means to warrant the reports that had been published respecting it. The trap which forms the summit of Gerrish's Mountain is a huge bed resting on red sandstone, on which at the high cliff of Indian Point it is seen to rest. The trap at this place is traversed by a number of narrow and irregular veins of magnetic iron ore, mixed with the gray sulphuret and oxide of copper. Specimens of this substance were sent to me, many years since, by the late George Duncan, Esq. of Truro, and I was somewhat struck by the singular appearance and composition of the mineral, which was stated to be found in great quantity. From my knowledge of the superficial character of the trap, and the smallness and irregularity of the metallic veins found in it, I rather discouraged Mr Duncan from speculating on it, though some specimens seemed sufficiently rich to be useful as copper ores. It appears, however, that a very favourable report was given by an English mining engineer, and operations were commenced in consequence, but were soon abandoned.

Between Five Islands and Swan Creek, ten miles distant, an excellent coast section, rising in many places into lofty cliffs, shows the New Red Sandstone and Trap, as well as the underlying Carboniferous strata. As this section is an interesting specimen of the complicated appearances that may result from the eruption of volcanic rocks through stratified deposits, I shall give a detailed description of the arrangements observed.

At the mouth of Harrington River, opposite the Five Islands, the Carboniferous rocks approach the shore very closely; and as seen in the west side of the river, consist of black shales and dark-coloured sandstones with Cordaites and other fossil plants. They dip at high angles to the south, and are met by the New Red Sandstone dipping gently to the southward. The sandstones of the newer formation here contain little conglomerate, and are variegated by numerous greenish bands and blotches. They occupy the shore for some distance, and then contain a thick bed of trap conglomerate, consisting of large partially rounded fragments of amygdaloidal and compact trap, united by a hard brownish argillaceous cement. At a short distance westward, another bed of trap conglomerate of the same kind appears in the cliff. It is overlaid by a bed of dark clay, filled with angular...
fragments of black shale constituting a kind of breccia. The sandstone underlying this bed of trap contains small nodules of selenite and narrow veins of reddish fibrous gypsum. No other volcanic rocks occur in the coast section near these trap conglomerates. Westward of this place, the section is occupied for about three miles by soft red sandstones with greenish bands, dipping generally to the south-west: some of them are divisible into very thin layers, whilst others are compact and form beds several feet in thickness.

Near Moose River, the red sandstones meet black shales and hard gray sandstones of the Carboniferous system, containing *Cordaites*, *Ferns*, and *Lepidodendra.*

At this place the junction of the two groups of rocks was not, at the time of my visit, well exposed in the cliff, and had the appearance of a fault; but as seen in the horizontal section on the beach, the red sandstone with a south-west dip seems to overlie unconformably the carboniferous strata, dipping at a high angle to the E.N.E. On the west side of Moose River the Carboniferous strata include three large masses of trap which have altered the grits and shales in contact with them, causing them to assume reddish colours. Beyond the last of these masses of trap, the shales and grits, there dipping to the north and north-east, have some red sandstone resting on their edges, and are succeeded by another great mass of trap, forming a lofty cliff, and in part at least resting on soft red sandstone which it must have overflowed when in a fluid state. At the western side of this mass, or rather bed of trap, its upper surface is seen to dip to the W.S.W., and is conformably overlaid by red sandstones similar to those already described. These continue with various dips to a cove where there is a break in the section, westward of which the coast exhibits the interesting and complicated appearances which I have endeavoured to represent in Fig. 28.

* These fossil plants will be described in treating of the Coal Measures.
The lower part of the cliff, on the western side of the cove above mentioned, consists of hard, black, and reddish shales and grits, like some of those seen near Moose River, with a steep dip to the E.N.E. Resting on the edges of these are a few beds of red conglomerate and sandstone with greenish bands, dipping to the south-west, and apparently a remnant of more extensive beds. An enormous mass of trap conglomerate forms a high cliff towering above this little patch of sandstone, and is seen a little farther on to contain a wedge-shaped bed of red sandstone, and at its western extremity rests on red sandstone mixed with fragments of trap.* Here the trap conglomerate seems to be cut off by a fault, and abuts against a great trappean mass, composed, in ascending order, of amygdaloidal trap, a wedge of red sandstone extending over part of the surface of the amygdaloid, a great bed of crystalline trap, and a bed of trap conglomerate. The western side of this mass rests on an apparently denuded surface of soft red sandstones, with S.S.W. dip. These are overlaid by another trappean mass, consisting of beds which appear to dip conformably with the underlying sandstones. At its western side it abuts against greatly disturbed red sandstones succeeded by other red sandstones dipping to the southward, and extending as far as Swan Creek.

On the west side of Swan Creek, the soft red and variegated sandstones are seen to dip to the north at an angle of 30°, and are underlaid by a bed of trap conglomerate, which rests against disturbed strata of a composition different from any previously occurring in this section. They consist of laminated, compact, and brecciated gray limestone, a bed of white gypsum, hard reddish purple and gray marls and sandstones, some of them with disseminated crystals of specular iron ore. I saw no fossils in these beds, but as they are identical in mineral character with some parts of the gypsiliferous member of the Carboniferous group, and have evidently been disturbed and altered before the deposition of the overlying trap conglomerate and red sandstone, I have no doubt that they belong to the Carboniferous system, the sandstones and shales of which, with some trappean rocks, occupy the cliff between this place and Partridge Island, five and a half miles distant. The New Red Sandstone in the vicinity of Swan Creek appears to form a small synclinal trough, occupying an indentation in the Carboniferous rocks, and probably extending only a short distance westward of the mouth of the creek. The two islands near

* This section was examined in 1846. When I revisited the place in 1850, the front of this mass of trap conglomerate had fallen, and formed a huge slope of fragments.
Swan Creek are detached masses of trap, resting on or rising through red sandstones, which at low tide are seen to extend between them and the shore. The red sandstone and trap, occurring in the section between Five Islands and Swan Creek, appears to be a very narrow band, extending parallel to the coast; and as the section is nearly in the general direction of the strike of the formation, it is probable that some of the trappean masses above described are portions of beds disconnected by faults and denudation.

Many beautiful crystallized minerals occur in the trap rocks of the sections described. The masses near Moose River contain cavities coated with opaque white varieties of quartz, in stalactitic and other imperfectly crystalline forms. Opposite the Two Islands, the fissures of the trap are lined with fine crystals of analcime and natrolite; and the fissures and vacant spaces of the trap conglomerate in the same neighbourhood contain a reddish variety of chabasite (Acadiolite) in rhombohedrons, often of large size.

At Clarke's Head, immediately west of Swan Creek, the Lower Carboniferous rocks are well exposed, including beds of limestone and gypsum, with some igneous rocks of porphyritic character, and probably much older than the Triassic period. On the top of the cliff, a bed of compact trap is seen to rest on the edges of the disturbed lower Carboniferous rocks, over which it has flowed as a lava stream.

The trap conglomerate or breccia, noticed in describing the above section, is a rock of very singular character. It consists of large fragments, often more than a foot in diameter, of amygdaloid, cemented together by a hard brownish substance. The boulder-like fragments of trap which make up this rock have probably been blown out of a volcanic orifice, and then rolled into beds by the sea, and finally cemented by a paste made up of fine volcanic mud or ashes.

Beyond Clarke's Head, the coast extending toward Cape Chiegeceo is occupied by Carboniferous rocks, for the most part in a very much disturbed condition, and it is only here and there that we meet with a small patch of New Red, and its overlying trap, the remnants of a formation once continuous throughout the whole distance.

The first of these isolated patches is Partridge Island, a high rock of trap resting at its west side on red sandstone. Though called an island, it is connected with the shore, which consists of Lower Carboniferous sandstones and shales in a vertical and contorted condition, by a shingle beach. The island itself presents a high cliff to the bay, and slopes downward on the land side. In approaching it from the east, we see a cliff of columnar trap extending from the shore to the
THE TRIAS OR NEW RED SANDSTONE.

summit of the rock. By scrambling at low tide around the south side, we find that this, like the basalt of Blomidon, is a thick irregular bed, and that amygdaloid and tufa succeed it in descending order. On the western side these last rocks occupy nearly the whole of the cliff, and may, when examined from a distance, be seen to consist of several beds distinguishable by different shades of colour. In some lights this difference is very perceptible. On this side the basaltic trap still appears, but it forms only a thin bed, capping the amygdaloid and tufa. Under all these beds, and in the north-west corner of the island, the sandstone peeps forth, dipping to the south-east.

The trap of Partridge Island contains a variety of interesting crystallized minerals. A honey-yellow variety of stilbite, crystallized in fine sheaf-like aggregations of crystals, is especially abundant, forming veins running up the face of the cliff. Being one of the most accessible and easily explored portions of the formation, this place has been much ransacked by mineralogists and amateurs; still large quantities of fine specimens may generally be seen going to waste on its beach. Amethyst, agate, chabazite, heulandite, apophyllite, and calc spar, may also be studied in some of their most beautiful forms at Partridge Island. The whole of these minerals have been introduced by the action of water, trickling through the numerous fissures of the porous amygdaloid and tufa, rocks which perhaps, more than any others, are fitted to yield to water thus permeating them the materials of crystallized silicious compounds.

Westward of Partridge Island, vertical and contorted Carboniferous rocks occupy the shore as far as Cape Sharp, three miles distant. This promontory, which, like Partridge Island, presents a precipitous front to the bay, and slopes toward the land side, consists of trap resting on red sandstone. Here, however, trap conglomerate takes the place of the finer tufaceous matter seen at Partridge Island. It will be observed that though the red sandstone is not at these places seen very distinctly to rest on the Carboniferous rocks, the former underlies the trap at a gentle angle, and dips southwards, or from the latter, while these are contorted and disturbed in the most extreme manner, serving at least to confirm the evidence, noticed at other places, of the later date of the New Red. These contorted Carboniferous sandstones and shales must have formed a coast line, at the time when the red sand was washing in the sea, and the trap and scoriae being belched forth from submarine vents.

Beyond Cape Sharp, with the exception of the isolated mass of Spencer's Island, which I have not visited, we see nothing of the trap or red sandstone till we reach Cape d'Or, the last and noblest mass on this coast. The Trias, of which this red sandstone is the oldest, and the Devonian and Carboniferous, are separated by a salient in the paleozoic rocks, which slate beds and thick clays occupy. Carboniferous rocks occupy the western masses of the peninsula, in three parts. The first of these masses, often called the \\
Cape Breton red sandstone, is some distance east of Cape Sharp. At first sight they seem to have been more disintegrated, and considered less interesting than the minerals, of which this beau tiful island is an example. The coarse trap at the Cape is particularly notable, and indeed, with that of Cape d'Or, is the principal feature of the formation. This trap should be carefully distinguished from igneous crystalline rocks, as it is intricately mixed with them. The aggregate mass of trap rock is all that is visible from the sea, and is often produced by a line of cliffs which are seen, as well as by a paper on the geology of the island, shown that it is produced by a sea cliff.

The copper mine of Cape Breton is of great importance, and is located in the mass.
this coast. At Cape d'Or, as at the Five Islands, a great mass of trap rests on slightly inclined red sandstone, and this again on disturbed Carboniferous rocks, while, behind and from beneath these last, still older slates rise into mountain ridges. Cape d'Or thus forms a great salient mass standing out into the bay, and separated from the old slate hills behind by a valley occupied by the red sandstone and Carboniferous shales. Cape d'Or differs from most of the trappean masses which have been described in the arrangement of its component parts. The upper part of the cliff consists of amygdaloid and tufa, often of a brownish colour, while beneath is a more compact trap, showing a tendency to a columnar structure. The whole forms a toppling cliff, more shattered and unstable in its aspect than usual.

Cape d'Or derives its name from the native copper which is found in masses, varying from several pounds in weight down to the most minute grains, in the veins and fissures which traverse the trap. It is sometimes wedged into these fissures, along with a hard brown jasper, or occupies the centre of narrow veins of quartz and calc spar. At first sight, these masses and grains of pure copper appear to have been molten into the fissures in which we find them. On more careful consideration of all the circumstances, and those of the associated minerals, it seems more probable that the metal has been deposited from an aqueous solution of some salt of copper, in a manner similar to that of the electrotype process. Why this should have occurred in trap rocks more especially does not appear very obvious; and, indeed, when we take a piece of native copper from Lake Superior or Cape d'Or, with the various calcareous and silicious minerals which accompany it, nothing can be more difficult than to account on chemical principles for these assemblages of substances, either by aqueous or igneous causes. Nature's chemistry is often thus inscrutable in its details, for the behaviour of substances, when brought into contact with each other in the bowels of the earth, is often very different from that which they display in the laboratory; and, besides, nature's processes are not limited by time, and long continued chemical actions often produce effects which would hardly be inferred from experiments which are limited for their performance to hours or days. I have, in a paper on the cupriferous trap rocks of Maimause in Lake Superior,* shown that the native copper of that locality must also be accounted for by aqueous causes.

The copper of Cape d'Or is not likely to become of mining importance, as it does not appear in large quantity in any one portion of the mass, and this latter is itself not of very great extent. The

* Canadian Naturalist, vol. ii.
valuable discoveries, however, which have been made on the shores of Lake Superior have in late years caused increased importance to be attached to the appearance of copper in trap rocks, and perhaps this and other cupriferous localities in the trap of Nova Scotia may deserve a more careful examination than they have yet received.*

The only remaining portion of the New Red Sandstone and Trap formation is the little insulated spot of Isle Haut, lying off Cape Chignecto. I have not landed on this island; but, viewed from the sea, it appears to present nearly on all sides lofty cliffs of trap.

4. South Coast of New Brunswick.

The following notices of the detached patches of Trias which occur on the south coast of New Brunswick, are taken from a contribution of Mr. Matthew to Professor Bailey's Report on Southern New Brunswick.

Formerly, large areas of the Lower Carboniferous red sandstones of New Brunswick were regarded as Triassic, but on more careful examination it appears that this formation is limited to three small patches on the coast of the Bay of Fundy. It is probable, however, that these are but remnants of a more extensive area removed by denudation, or still beneath the waters of the bay, and perhaps contiguous with the red sandstone district of the counties of King's and Annapolis in Nova Scotia.

The most important of these Triassic patches is that near Quaco Head, where the beds consist of soft red sandstones with layers of quartzose pebbles, and an overlying coarse conglomerate of a grey colour. They rest unconformably on limestone and conglomerate of Lower Carboniferous age. A few fragments of fossil wood were found in them by Mr. Matthew, and, though not well preserved, their structure is evidently that of coniferous or pine trees, and the cell walls show but one row of discs,—a character which belongs to the pines of the genera Picea and Pinus, found in Mesozoic rocks, and not to the older pine trees of the Coal formation. This fossil wood I regard as a valuable confirmation of the opinion that these red sandstones are really Triassic, as such wood is not found in any older formation. At Quaco the beds dip N. N. E., at angles varying from 25° to 45°, and their thickness is estimated by Mr. Matthew at 800 feet. They show much oblique lamination, and are probably not far from the original margin of the New Red Sandstone area in this direction. The oxide of manganese

* Since the first edition of this work was published, explorations have been undertaken at Cape d'Or, and also on the opposite side of the bay, but as yet without profitable results.
occurs in irregular beds and pockets in the conglomerate at Quaco, and has probably been derived from veins of the mineral which occur in the Lower Carboniferous rocks.

Westward of Quaco the Trias occurs near Gardener's Creek, in a patch about one mile and a half long and half a mile wide. The character of the deposit is similar to that at Quaco, but the upper or conglomerate member is wanting.

Eastward of Quaco, but more than thirty miles distant, another small area of Triassic sandstone has been recognised at Salisbury Cove. The beds dip E.N.E., at an angle of 10°, and are of a paler red than at Quaco.

These remnants of New Red Sandstone on the New Brunswick side of the Bay of Fundy concur, with the similar deposits in Nova Scotia, in showing that the depression occupied by that bay had already assumed nearly its present form; and this, together with the fact that the Carboniferous rocks had been disturbed and hardened before the deposition of these later beds, affords, as Mr Matthews has well remarked, strong evidence that the New Red Sandstones of the Bay of Fundy are Triassic rather than Permian.

It will be observed that, in the notes referring to the coast sections of the New Red Sandstone, I have given especial attention to its relations to the older rocks, especially those of the Carboniferous system. I have done so, because much doubt formerly existed as to the precise limits of this formation. The earlier writers on the geology of Nova Scotia and New Brunswick associated it with the red sandstones and gypsoms of the Carboniferous period, and described the whole as "New Red;" and it was not until the first visit of Sir Charles Lyell that the great beds of gypsum and limestone of Windsor, the Shubenacadie, and other places, with their associated sandstones and marls, where recognised as Lower Carboniferous. Even after Sir Charles had published his results, these were dissented from both by Logan and Gesner, though both these geologists subsequently convinced themselves, and admitted that they had been in error; and the latter even went so far as to believe that the red sandstones of Blomidon and Cornwallis were also Carboniferous. It then became a question whether there were really any rocks of the Triassic period in the province, and to determine this point, the writer undertook, in 1846, a careful examination of the red sandstone and trap on both sides of the bay, the results of which were published in the Proceedings of the Geological
Society of London.* In this paper, the relations of the New Red to
the older formations in this province were for the first time accurately
defined, by ascertaining its structure, and its actual superposition on
Carboniferous strata, in the cliffs on the north side of Cobequid Bay
and Minas Basin, and applying the facts thus obtained to the larger
area of New Red on the south side of the bay, in the manner indicated
by the following quotation:—

"It appears from the facts above stated, that the red sandstones of
Cornwallis and Horton, though not seen in contact with the Carbon-
iferous rocks, extend parallel to their disturbed strata with uniform
north-west dips, and passing beyond them with the same dip, rest
unconformably on the older slaty series. This arrangement, I think,
satisfactorily proves that these red sandstones and the overlying trap
are really newer than the Carboniferous shales of Horton, and uncon-
formable to them."

"Eastward of the estuary of the Avon, the country as far as the
Shubencadie River is occupied by a deposit of reddish, gray, and
purple sandstones and marls, with large beds of gypsum and limestones
abounding in marine shells. This gypsisiferous series is much fractured
and disturbed, and is in many places associated with dark shales con-
taining fossil plants, like those of Horton Bluff, and thin seams of coal.
This association of the gypsisiferous series with dark fossiliferous shales
occurs at Halfway River, where coarse brown and gray sandstones,
with imperfect casts of fossil trunks of trees, and a thick bed of anhy-
drite and common gypsum, rest conformably on the continuation of the
dark beds of Horton Bluff. The carboniferous date of this gypsi-
siferous series has been fully established by Mr (now Sir Charles)
Lyell; and though it contains red sandstones with veins of gypsum
like those of Blomidon, these never extend to so great a thickness as
that of the Cornwallis sandstones, without alternating with fossiliferous
shales or limestones, or with beds of gypsum. For this reason, in
connexion with the undisturbed condition of the Cornwallis sand-
stones, their apparent unconformability to the Carboniferous shales of
Horton, and their identity in mineral character and association with
trappean rocks, with the red sandstones of Swan Creek and Five
Islands, I have no hesitation in separating them from the gypsisiferous
series and including them in the New Red Sandstone formation."

From the same paper, I quote the following general statements as
to the age and mode of formation of the New Red Sandstone and Trap,
as affording in the most condensed form the conclusions at which I
had then arrived:—

"I am not aware that any rocks equivalent in age to the red sandstones which have been described occur in any other part of Nova Scotia. Red sandstones, not unlike those of Cornwallis and Truro, occur in some parts of the newer Coal formation, as seen on the shores of the Gulf of St Lawrence; but they alternate with beds of slate and gray sandstone, containing fossil plants of carboniferous species. Prince Edward Island, in the Gulf of St Lawrence, is chiefly composed of soft red sandstones, little disturbed, and similar in mineral character to the New Red Sandstone of Nova Scotia; but they contain in their lower part silicified wood and other vegetable fossils, which are not unlike some of those found in the newer Coal formation. It is, however, probable that the greater part of these red sandstones of Prince Edward Island are post-carboniferous. It is also probable that the New Red Sandstone of Connecticut, and some other parts of the United States, which is believed to be a Triassic deposit, may be of the same age with the formation above described. At present, however, from the want of fossils in the New Red Sandstone of Nova Scotia, it must be regarded as a post-carboniferous deposit of uncertain age.

The red sandstones now described appear to have been deposited in an arm of the sea, somewhat resembling in its general form the southern part of the present Bay of Fundy, but rather longer and wider. This ancient bay was bounded by disturbed Carboniferous and Silurian strata; and the detritus which it received was probably chiefly derived from the softer strata of the Carboniferous system. The arenaceous nature of the New Red Sandstone, as compared with the character of these older deposits, indicates that the ancient bay must have been traversed by currents, probably tidal like those of the modern bay, which washed away the argillaceous matter so as to prevent the accumulation of muddy sediment. When we consider the large amount of land in the vicinity of the waters in which the New Red Sandstone was deposited, the deficiency of organic remains in its beds is somewhat surprising, though this is perhaps to be attributed rather to the materials of the deposit and the mode of its accumulation, than to any deficiency of vegetable or animal life at the period in question.

The volcanic action which manifested itself in the bed and on the margin of the bay of the New Red Sandstone is one of the most remarkable features of the period. It has brought to the surface great quantities of melted rock, without disturbing or altering the soft arenaceous beds through which it has been poured, and whose surface it has overflowed. The masses thus accumulated on the surface have greatly modified the features of the districts in which they occur; especially the great ridge extending westward from Cape Blomidon.
It is worthy of note, that this ridge, probably marking the site of a line of vents of the New Red Sandstone period, and occurring in a depression between two ancient hilly districts, so nearly coincides in direction with these older lines of disturbance. The trap rocks associated with the New Red Sandstone do not precisely coincide in mineral character with any that I have observed in other parts of Nova Scotia, though it is possible that some of the igneous rocks which have penetrated and disturbed the Carboniferous rocks of various parts of this province may belong to the New Red Sandstone period, or are of a date not long anterior to it."

The red sandstone formation affords fine loamy friable soils, especially adapted to the culture of fruit and of the potato. The red sandstone valleys of Annapolis and King's are celebrated for their apple orchards, which furnish large quantities of excellent fruit for exportation to the other parts of the colonies, and even to the United States and Great Britain. The same districts are well adapted to the growth of Indian corn, large quantities of which are annually produced; and in those years in which the potato has failed over nearly the whole of America, it has remained unjured in the red sandy loams of Cornwallis, the farmers of which have in consequence realized large sums by supplying the markets of the New England states. The calcereous matter which serves as a cement to the sandstone, and the alkalis derived from the fragments of trap which have been scattered through the soil in the Drift period, add much to the fertility of these districts.

The agricultural capabilities of the trap are very different from those of the red sandstone. The soil, formed of decomposed trap, is very rich in the mineral ingredients most necessary to cultivated plants. It produces in its natural state a most luxuriant growth of timber, and yields excellent crops when recently reclaimed from the forest; but, perhaps from its porous and permeable texture, it is said not long to retain its fertility. I fear, however, that very bad methods of farming have generally been applied to it. The situation and exposure of the trap are singularly different from those of its contemporary the red sandstone. The latter usually appears in low and sheltered valleys. The trap, on the other hand, forms steep acclivities and high table-lands, exposed to the full force of the storms and changes of an extreme and variable climate; while its ranges of rugged cliffs, with their cascades, their terrible landslips, and the wild beating of the winds and waves upon their bare fronts, present nature in an aspect altogether different from that which she wears in the quiet valleys of the red sandstone. These differences are, even in this

The red sandstone deposits are extensively used for building materials, the red sandstone being particularly adapted to this purpose. It is used for houses, roads, bridges, and other public and private buildings. The red sandstone is also used for the manufacture of cement, and is a valuable source of lime. It is also used for the manufacture of lime and cement, and is a valuable source of lime. It is also used for the manufacture of lime and cement, and is a valuable source of lime.
Magnetic Iron Ore—in octahedrons and massive; Partridge Island, North Mountains of King's.

Specular Iron Ore—in tabular crystals; Sandy Cove.

Native Copper—in irregular masses; Cape d'Or, Briar Island, and Peter's Point.

Gray Sulphuret of Copper, Green Carbonate of Copper, Oxide of Copper, associated with Magnetic Iron, at Indian Point, also Cape d'Or; not in fine specimens.

Quartz—occurs in a great variety of beautiful forms, among which
are Amethyst and Transparent Quartz in six-sided pyramids, Agate, Chaledony, Carnelian, and Jasper. The best localities for these minerals are Blomidon, Scott's Bay, Digby Neck, and Partridge Island. A fine variety of Moss Agate occurs at the Two Islands, and a sort of Quartz Sinter in imperfect crystals and beautiful coralloidal forms in the neighbouring promontory of M'Kay's Head. Large quantities of fine Agates and Jaspers, applicable to ornamental purposes, may be found at Cape Blomidon and Digby Neck; and the Amethyst of the same localities is sometimes in sufficiently large crystals to admit of being cut for ring-stones, seals, etc.

Opal—occurs at a few localities, in the plain variety of semi-opal; and very frequently, in the form of white chalky Cachelong, forms the basis of fine crystallizations of amethyst, having lined the cavities of the trap before the latter was deposited.

Heulandite—Hydrous Silicate of Alumina and Lime, in fine rhombic prisms, colourless and light flesh colour, at Blomidon, Black Rock, Partridge Island, etc. Minute yellow crystals are found at Two Islands.

Stilbite—Hydrous Silicate of Alumina, Lime and Soda, or Potash, in radiated and sheaf-like aggregations of crystals of honey-yellow and brown colours, at Partridge Island, Sandy Cove, Blomidon, Black Rock, etc. Fine groups of white crystals are found at Black Rock in King's County and its vicinity.

Mesotype.—The variety or species *Natrolite*, the Hydrous Silicate of Alumina and Soda, is found in small prismatic crystals and in radiated masses of crystals, at Blomidon, Two Islands, M'Kay's Head, Scott's Bay, etc. The variety *Scolecite*, or Hydrous Silicate of Alumina and Lime, is found at the same localities, also in radiating and prismatic forms. The variety *Mesolite*, or lime and soda Mesotype, is also found at various localities.

Laumonite—Hydrous Silicate of Alumina and Lime, in whitish and light red prismatic crystals, at Peter's Point, Black Rock, Sandy Cove, etc. This mineral, very beautiful when freshly taken from the rock, loses water and becomes opaque and brittle when exposed to air and light. I have found that this change takes place very rapidly when the specimens are exposed to sunlight, and is much retarded by keeping them in darkness. Immersion in gum-water is also a preventive.

Chabazite—Hydrous Silicate of Alumina, Lime, Soda, and Potash. The flesh red, brownish red, purplish red, and yellowish red...
varieties, which have been named *Acadiolite*, are found abundantly at Two Islands in trap conglomerate. Their red colour is due to the peroxide of iron which abounds in the cement of the conglomerate and the neighbouring red sandstone. Grayish and white varieties are found at the same place, also at Cape d'Or and Digby Neck. The usual form is the primary rhombohedron; the six-sided pyramid occurs rarely at Cape Blomidon. According to Marsh, the variety Gmelinite is found at Blomidon.

Analcime—Hydrous Silicate of Alumina, Soda, and Lime. Trapezohedrons of white and dull reddish colours occur at Blomidon, Two Islands, McKay's Head, etc.

Thomsonite—Hydrous Silicate of Alumina, Lime, and Soda or Potash. I have a small specimen in radiating crystals from the North Mountains of King's County.

Prehnite—Hydrous Silicate of Alumina, Lime, and Iron. Recorded by Gesner as found at Black Rock. I have not seen it.

Apophyllite—Hydrous Silicate of Lime and Potash is found at a number of places, but in none very plentifully. Green and white crystals, aggregated in plates or in square prisms, occur at Blomidon, Peter's Point, Two Islands, and Cape d'Or. The finest specimens that I have seen are from the latter place, and present rosette-shaped groups of crystals. They were collected by the late Professor Chipman of Acadia College, and are now, I believe, in the museum of that institution.

Calcareous Spar—Carbonate of Lime is found in fine rhombohedral crystals of white and yellowish colours, and also in the imperfect scalenohedrons known as Dogtooth spar, at Partridge Island, Black Rock, Two Islands, etc.

To the above list I may add *Paroelite*, a mineral allied to Scolecite, discovered by Prof. How at Port George, and mentioned by Marsh as occurring at Cape d'Or and Blomidon.* Prof. How has also noticed *Gyrolite* as occurring in Apophyllite near Cape Blomidon,† and has described *Centralasite, Cerinite, Cyanolite,* and *Mordenite,* from the Trap of Nova Scotia.‡

† Ibid., vol. xxxii.
The New Red Sandstone—Continued.

Prince Edward Island—Age of its Sandstones—Fossil Plants—
Reptilian Remains—Useful Minerals and Soil.

Prince Edward Island, which stretches for 125 miles along the northern coast of Nova Scotia and New Brunswick, has everywhere a low and undulating surface, and consists almost entirely of soft red sandstone and arenaceous shale, much resembling the New Red of Nova Scotia, and like it having the component particles of the rock united by a calcareous cement. In some places the calcareous matter has been in sufficient abundance to form bands of impure limestone, usually thin and arenaceous. Over the greater part of the island these beds dip at small angles to the northward, with, however, large undulations to the south, which probably cause the same beds to be repeated in the sections on the opposite sides of the island. This is the general character of the island in all parts of it that I have explored, with the exception of a few limited spots on the south side, which present brown and gray sandstones and shales, not unlike some of the upper parts of the Coal Formation of Nova Scotia, and containing a few fossil plants. These are apparently the lowest and oldest beds observed, and may possibly belong to a series underlying unconformably the ordinary red sandstone of the island. The determination of their true geological age is important, as affording data for ascertaining that of the red sandstone. I shall therefore give a somewhat detailed account of these beds as they appear at Orwell or Gallows Point on the south coast, about ten miles east of Charlottetown.

In approaching this place, the red sandstone forms long undulations sloping gently toward the shore, and the coast displays a series of low points, terminated by red sandstones, which, though not hard, have better resisted the wearing action of the waves than the softer strata which have occupied the intermediate creeks. Passing through Cherry Valley, the country has the same appearance until we enter the}

the red the red

positive positive

Cape.

Their

at an

shore

from

which

in low

water-wet

contains

thicknes

fossil pla

strata is

and in one

has disappear

and

fossils.

various qu

building pe

large fossi

prodigie

by the wo

which, when

displays the

have been p

petrifying pl

red-coloured

specimens th

some of th

the woody str

a period whi

in which drif

since been dr

in another of

compressed
to

shining coa,
the by-road to Orwell or Gallows Point, when the soil loses its bright red colour, and assumes a grayish tint, and more argillaceous composition, indicating to the geological traveller a change in the composition of the rocks beneath. On reaching the extremity of the Cape, a good section of a considerable variety of rocks may be seen. Their dip is to the E. S. E. by compass (variation about 19 deg. W.), at an angle of only 6 degrees; consequently in proceeding along the shore to the westward, lower and older rocks appear cropping out from beneath those which overlie them. Commencing with those which are higher in order, red and brown sandstones, of soft and rather coarse texture, occupy a considerable portion of the shore, projecting in low reefs into the sea, and rising to the height of a few yards in a water-worn cliff. Beneath these appear harder gray sandstones, containing gray and brown impure limestone, in beds a few inches in thickness. One of these beds contains a number of fragments of fossil plants, in a very imperfect state of preservation. Beneath these strata is a bed of sandstone, containing small nodules of red ochre, and in one place the impression of a large fossil tree, whose wood has disappeared, leaving a mould which has been filled with oolitic clay. Proceeding in the same direction, we find beds of considerable thickness consisting of gray and brown clay, apparently without coal or fossils. Beneath these are several beds of brownish sandstone of various qualities, one stratum appearing to be sufficiently hard for building purposes. Embedded in one of these layers appear some large fossil trees, one of them nearly three feet in diameter; they are prostrate and much flattened by pressure, and the place once occupied by their wood is now filled with a hard dark-coloured silicious stone, which, when polished in thin slices, and examined by the microscope, displays the structure of the original wood. These trees appear to have been partially decomposed before they were submitted to the petrifying process, and the roots caused by decay are now filled with red-coloured crystals of sulphate of barytes. In some of the specimens the fissures are coated with silicious crystals, and portions of some of the trunks consist of a soft carbonaceous ironstone retaining the woody structure. These fossil trees carry back our thoughts to a period when Prince Edward Island was a tract of submarine sand, in which drift trees were embedded and preserved, and which has since been indurated and partially elevated above the level of the sea.

In another of these sandstone beds are the remains of a large tree compressed to the thickness of an inch, and converted into friable shining coal, coloured in some places with green carbonate of copper. These beds must belong either to the very newest portions of the
Coal Formation, which in some particulars they closely resemble, or to the lower part of the New Red Sandstone; and in either case the sandstones of the greater part of Prince Edward Island will be New Red. Unfortunately I could not observe whether the latter are superimposed conformably or unconformably on the lower beds, and the fossils are hardly sufficiently well characterized to indicate to which epoch they belong. With the view of obtaining from them all the information they are capable of affording, I have examined the fossil wood of this locality, and some specimens found lying loose on the surface at Des Sables and other places in the island, with the following results:

Thin slices of the specimens from Orwell Point show under the microscope in the transverse direction a dense tissue of quadrangular cells, arranged in rows, with numerous but narrow medullary rays. Longitudinal slices in the direction of the medullary rays show elongated parallel cells, with traces of hexagonal discs on the walls of the cells, there being two or more rows of discs in each cell, though these structures are not very distinct. These characters are those of coniferous wood (that of the pine tribe), and of that particular type of coniferous trees which appears in the northern hemisphere only in the Palaeozoic and Mesozoic rocks. The specimens from other parts of Prince Edward Island show similar structures, some of them even more distinctly.

In so far as I can make it out, the structure is that of the genus Dadoxylon, and approaches to that of D. materiarium, the most common fossil pine of the Upper Coal Formation in Nova Scotia. The evidence of this fossil wood thus tends to indicate an older geological period than that of the New Red Sandstone,—assuming the latter to be of Triassic age,—and would give some countenance to the belief that these beds of the south coast of Prince Edward Island at Des Sables and GalloWS Point, if not Permian, may represent the upper beds of the Newer Coal Formation, to which, as they appear in Eastern Nova Scotia, these rocks bear considerable resemblance. The beds of the Newer Coal Formation in Eastern Nova Scotia are usually only slightly inclined, and are arranged in flat synclinals and anticlinals. It is quite possible that one of the latter crossing the strait may appear rising from under the New Red Sandstone. This view, if established, would be of importance in answering the question whether coal is likely to be found in Prince Edward Island, a question to which we may return in the sequel. Whatever the age of these beds, they are probably the oldest known in the island, and the red sandstones resting on them may be assumed to be Triassic.
A very interesting fossil, which greatly aids in fixing this geological age for the red sandstones of Prince Edward Island, has recently been discovered. It is a portion of the jaw of a large carnivorous reptile, apparently closely allied to the Thecodontosaurus of the English New Red Sandstone. This creature must have rivalled in dimensions the modern alligators, but must have belonged to a different group of reptiles, represented in the present world only by lizards of moderate or small dimensions. It was, in short, one of that giant reptile aristocracy which constituted the dominant animal type in the Middle or Secondary period of geological time, which in consequence has long been known as the peculiar "age of reptiles."

The specimen was found by Mr D. McLeod of New London, on the north side of the island, in the bottom of a well, at the depth of twenty-one feet nine inches, and imbedded in the ordinary soft red sandstone of that part of the island. The discoverer was desirous of disposing of the specimen; and the writer being convinced that it would prove of great interest to naturalists, if examined and described by a competent anatomist, offered to negotiate its sale.

By the advice of Sir Charles Lyell, then in America, it was offered to the Academy of Natural Sciences, Philadelphia; for which it was finally purchased for the sum of thirty dollars. It was described and figured in the Proceedings of the Society by Dr Leidy, from whose elaborate paper I extract the following description, which, with the aid of Fig. 29, will serve to give some idea of its character:

"The specimen consists of the right dental bone, considerably broken, attached by its inner surface to a mass of matrix of a red granular sandstone, with large, soft angular red chalk-like stones"
imbedded in it.* The fossil has seven large teeth protruding beyond the alveolar margin of the jaw; and it is hard, brittle, and cream-coloured, and stands out in beautiful relief from its dark-red matrix. The jaw indicates a lacertian reptile, and, in comparison with that of other known extinct and recent genera, is remarkable for its great depth in relation to its length.

"The depth of the dental bone is five inches, whilst its length in the perfect condition appears not to have exceeded seven and a quarter inches; for in the specimen the middle part of the posterior border is so thin and scale-like, that I am disposed to think it here came in contact with the supra-angular and other neighbouring bones.

"The teeth, in their relation to the dental bone, are placed on the inner side, and rest against the alveolar border, which rises in a parapet external to them. Whether this parapet is supported by abutments between the teeth, as in *Megalosaurus*, I cannot clearly ascertain, from the inner side of the jaw being so closely adherent to the matrix. The dental bone, if it be considered complete in its length in the specimen, is capable of containing a series of twelve teeth.

"As the teeth were worn away, or they were replaced by others produced at their inner side, as is indicated in the specimen by a young tooth, which is situated internal to, and is concealed by, the largest mature tooth. The enamelled crowns of the fully protruded teeth are exserted at their base for several lines above the alveolar border of the jaw. They are compressed, conoidal, and recurved; but compared with those of *Megalosaurus* they are not so broad, compressed, nor recurved, and they are more convex externally, and are less so internally. They resemble much in form those of the recent *Monitor ornatus*, but are less convex internally. The anterior and posterior acute margins of the crowns are minutely crenulated; and the crenulations commence just below the tip, and descend as far as the enamelled base."

Dr Leidy then proceeds to describe the teeth minutely, remarking that the first in the series is narrow, and not crenulated, and that it is separated from the second by a space sufficiently large to have held another tooth. "The second tooth seen in the figure is the largest and longest of the series; and its enamelled crown, when perfect, was about an inch and three quarters long by seven lines in breadth at the base. Its fang can be seen in the wide fissure of the jaw, descending two inches from the alveolar border; and, being broken, it is observed to be hollow as far as the enamelled crown."

The third tooth has not fully protruded, and the fourth, fifth, and sixth, have nearly the

* These are probably concretions.—J. W. D.
same size and form, and are highly perfect piercing and cutting instruments, with sharp and finely crenulated edges. The space between the fourth and fifth tooth is sufficient to contain one additional tooth, and that between the sixth and seventh is sufficient for two, and has in it a young tooth just appearing above the jaw. There is an impression of an eighth tooth on the matrix. The whole jaw may thus, when perfectly filled, have accommodated twelve teeth on each side of the mouth; in predaceous reptiles, however, the teeth are often broken and are renewed, so that in adult animals they are never uniform or complete.

From the extraordinary depth of the dental bone relatively to its length, and from its northern locality, Dr. Leidy has named the animal to which it belonged *Bathygnathus borealis*. He adds: "This interesting fossil is the second authentic discovery of saurian bones in the New Red Sandstone of North America; the first being those found near Hosse's Creek, in Lehigh county, Pennsylvania, by Dr. Joel Y. Shelley, and described by my friend Mr. Isaac Lea, under the name of *Clepeysaurus Pennsylvanicus*.

The remains of this ancient reptile must have been drifted by the sea, and embedded in the sand now forming the red sandstone of New London. Probably its bones, after the decay of the body, were scattered over the bottom, to be buried under the next layers of sand spread over it. What information can we derive from the fragment which has been handed down to our time, respecting the structure and habits of the creature, and the age of the rock in which it was embedded? The teeth prove decisively that the animal to which they belonged was fitted for capturing and devouring other animals. It is difficult to imagine an instrument better fitted for cutting and tearing asunder than a jaw furnished with these sharp and serrated teeth. The size of the teeth, and the shortness and depth of the jaw, indicate an amount of power sufficient for the destruction of large animals, perhaps fishes, smaller reptiles, or even clumsy and gigantic wading birds, all of which are known to have existed as far back as the New Red period. Among living carnivorous reptiles, those which, like the crocodile, are clumsy and less agile in their movements, have elongated snouts to enable them the more easily to secure their prey; those which, like the serpents, can move with extreme rapidity, have comparatively short jaws. We may therefore infer that this creature was furnished with means of very rapid movement, either on land or water. It could spring or dart on its prey. If we had the remains of its extremities, we could determine what its means of movement were, and whether the sea or the land was its sphere of
activity. Without these nothing very certain can be determined on these subjects. The apparent thinness and density of the bone, however, and its width of surface, convey the impression that it was intended to combine great strength with great lightness, and therefore that it belonged to a creature of terrestrial habits. Probably considerations of this kind, though he does not state his reasons, induced Dr Leidy to hazard the conjecture, "Was this animal probably not one of the bipeds which made the so-called bird-tracks of the New Red Sandstone of the valley of the Connecticut?" This conjecture of an eminent anatomist, itself shows how singular and anomalous among reptiles is this fossil fragment.

Had this fossil been specifically identical with any reptile whose remains have been found in other countries the age of whose rocks has been determined, it might have given conclusive evidence as to the true geological age of the red sandstones of New London. It is, however, a new species of a new genus, quite distinct therefore from any species found elsewhere. Still it gives some important testimony. It belongs to a group of large and highly organized carnivorous reptiles now extinct, and which occupied in the Secondary period of geology a place afterwards taken by the carnivorous mammalia. No reptiles of equal grandeur and perfection have existed since the beginning of the Tertiary period; and so far as we know, none were created before the very close of the Palaeozoic period. Between these eras, therefore, we may place our fossil; but this gives a very wide range. There is, however, a difference of facies or general appearance between the reptiles of different times of this long reptilian dynasty, which enables us to distinguish between them, just as an antiquary might distinguish a coat of armour of the time of John of Gaunt from one of the time of Henry the Seventh. Now, as already hinted, the reptile in question appears to have most nearly resembled the Thecodontosaurus and Palæosaurus, reptiles of the Triassic system of England, than any other known animals; hence it confirms the view generally adopted on other grounds, that this is the age of the Prince Edward Island New Red, and its corresponding formation in Nova Scotia. At the time when the first edition of this work was published, it was held by British geologists that the dolomitic conglomerates of Bristol, in which the remains of the two saurians above named are found, belonged to the Permian period; and I stated accordingly that the affinities of Bathynathus seemed to be with reptiles of that period. More lately, however, the officers of the Geological Survey of Great Britain have satisfied themselves that the beds in question belong to the Trias.
The red sandstone of Prince Edward Island is not known to contain any useful minerals except limestone, which occurs in thin beds in several places. Indications, apparently of no economic value, of ores of copper and manganese occur in a few places. The red sandstone everywhere supports a fine, friable, loose, loamy soil, which renders Prince Edward Island one of the finest agricultural districts in the lower provinces—a distinction which well compensates the want of valuable minerals. I have not observed, in any of my excursions in the island, any traces of igneous action; but Dr Gesner, in the report of a survey undertaken for the provincial Government, mentions the occurrence of a limited mass or dike of trap on Hog Island, an isolated spot which I have not visited, in Richmond Bay; and which I have accordingly coloured in the map with the tint appropriate to that rock. This fact, though not of any importance in establishing the age of the formation, affords an additional analogy between it and the New Red of Nova Scotia.

The question of the possible occurrence of coal in Prince Edward Island has always been of much interest to its inhabitants, and I believe that a grant of money has been made by the Legislature to promote boring in search of mineral fuel. In answer to this question, it may be stated, in the first place, that since the rocks of Prince Edward Island, or the greater part of them, are certainly newer than the Coal Formation, there is a reasonable probability that the coal-measures exist under the island. On the other hand, the New Red Sandstone being of considerable thickness, and the upper unproductive coal formation of Nova Scotia being also of great thickness, it is probable that such coal-beds as may exist under Prince Edward Island are at a very great depth. Again, it is very obvious that, if boring operations are to be undertaken, the chances of success would be very different in different parts of the island. Toward the north side the whole thickness of the red sandstone would have to be bored through, probably to the extent of several hundreds of feet, before reaching even the Upper Coal Formation. On the other hand, at those places on the south side where fossil plants occur, it is even possible, as above stated, that the upper beds of the Newer Coal Formation actually crop out from beneath the red sandstone. In this case the chances would be much better; but since the Upper Coal Formation of Pictou, without productive coals, is estimated at about 3000 feet in thickness, the valuable coals would still be out of reach, unless this upper member should prove thinner than on the mainland, of which we have as yet no evidence.

The question would be complicated by supposing the possible
unconformability of the New Red Sandstone and Coal Formation; but as the dips of the latter are very low on the Nova Scotia and New Brunswick shore, it is probable that the two formations are conformable, or very nearly so.

On the whole, though I would scarcely venture to advise the expenditure of any large sum in boring for coal in Prince Edward Island, I would say that, should it be determined to incur such expenditure, the most promising places at present known to me are in the vicinity of Orwell Point and of Des Sables. Boring in these places would at least afford the satisfaction of knowing what underlies the red sandstone, and whether any chance exists of the discovery of coal under it. It is proper to state, however, that I have not explored the south shore of the island very extensively, and that there seems no good reason why equally favourable localities might not exist at Bedeque or at Wood Islands, or at other localities west and east of these places. Careful preliminary exploration of every place supposed to be promising should be made by some competent person familiar with the structure of the Upper Coal Formation in Nova Scotia or New Brunswick, before incurring any expense in boring.

In a MS. section of the north coast of New Brunswick by the late Professor Robb, he indicates at the extremity of Cape Tormentin a small patch of red micaeous sandstone overlaid by red marly rock, and dipping to the east at an angle of 15°. This I regard as very probably an outlier of the red sandstone of Prince Edward Island; and, if so, it affords the only known point of contact of this formation with the Carboniferous rocks of the mainland. I have only seen Cape Tormentin from the sea, and therefore cannot speak distinctly of the nature of the junction; but the red rocks probably rest unconformably on the end of an anticlinal undulation of the coal formation. Were I about to make a geological survey of Prince Edward Island, I would make these rocks of Cape Tormentin one of my first studies, and would consider myself fortunate if I could establish their claim to be considered, in a geological point of view, a portion of Prince Edward Island.
The text on the page is not legible due to the quality of the image. However, it appears to be discussing geological formations and their stratigraphic relationships. The diagram likely illustrates the distribution and sequence of different rock layers, possibly from the Mississippian and Triassic periods, as indicated by the labeled sections and formations.
CHAPTER IX.

THE PERMIAN BLANK.

One whole period of the earth's Palaeozoic history appears to be represented by no monuments in Acadia. The base of the Trias everywhere rests unconformably on the upturned beds of the Carboniferous, and the Permian system, represented in England by the great magnesian limestone and its associated beds, and in Germany by the Zechstein and the sandstones and shales above and below it, is absent from our series of formations. The same gap occurs, in so far as known, throughout Eastern North America. It is only west of the Mississippi, in Kansas, and on the eastern slope of the Rocky Mountains, that the Permian beds have been recognised. There they consist of limestones, sandstones, marls, and conglomerates, with beds of gypsum resting conformably on the Carboniferous beds, and separating them from the Trias. Their fossils are closely allied to those of the Upper Coal Formation, and very different from those of the Trias,—the latter constituting the beginning of the great Mesozoic division of geological time, the former the close of the Palaeozoic.

The lapse of time represented by these Permian beds, and which, though probably shorter than the Carboniferous period, must have been of long duration, is indicated in Acadia only by the disturbances which the Carboniferous beds have suffered before the deposition of those of the Trias, unless we can regard any portion of the great series of beds which I have named the Upper Coal Formation as equivalent in time to the Permian.

It may be well shortly to inquire if we can bridge over this vacant space by any considerations based on the well-known systems of formations which constitute its boundaries. We have here first the well-established fact, that the long and quiet period of the Coal Formation was succeeded in Eastern America by an epoch of physical disturbance, in which the Carboniferous rocks were greatly tilted and contorted, and in many places subjected to more or less alteration. The time occupied by these processes we cannot precisely measure;
but there is every reason to believe that it was of long duration. Again, in connection with this, the relations of the Trias to the Carboniferous show that the latter must have experienced much denudation by aqueous agency prior to the deposition of the former. Lastly, the study of the distribution of the Trias over the shores of the Bay of Fundy shows, as already stated, that, previous to the Triassic period, that Bay had already assumed in some measure of its present form, and, consequently, that the Carboniferous beds had already in part been elevated into land. All these facts give us evidence of lapse of time—of time occupied in this locality not by aqueous deposition, but by physical movements, probably of elevation, and by denuding action. That this time corresponded to that of the Permian elsewhere, no one who believes in the contemporaneousness of the Carboniferous of America with that of Europe can doubt. The possibility, however, still remains that Permian beds may have been deposited in some parts of the area, and may have been removed by denudation, or may be covered by the Trias or by the sea. This is, however, only a mere possibility, so long as no traces of these beds can be discovered.

Again, it is possible that the conditions of the Upper Coal Formation may have continued longer in America than in Europe, and, consequently, that this part of the Carboniferous may synchronize with the Permian of Europe and with that of Western America. This raises the question of "Homotaxis," as it has been called, or similarity of arrangement as distinguished from actual contemporaneity. An able paleontologist has said that, "for anything that geology or paleontology can show to the contrary, a Devonian flora and fauna in the British Islands may have been contemporaneous with Silurian life in North America, and with a Carboniferous fauna and flora in Africa. Geographical provinces and zones may have been as distinctly marked in the Palaeozoic epoch as at present." I must maintain, however, that no such uncertainty exists as to the Carboniferous period. In America, its flora was homogeneous from Newfoundland to Alabama, and from the Atlantic Coast to the Rocky Mountains, evidencing a uniformity of climate unparalleled in modern times. Its succession of zones of vegetation, from that of the lower coal-measures upward, is preserved over all this area; and when we find it existing in all its detail in Europe, and with a majority of the species the same, it would be most rash to suppose that the times of this succession were not identical. Further, it seems impossible to doubt that this uniformity was caused by prevalent climatal conditions which could not have been local; as, for instance, by a
different distribution of land and water, as supposed by Sir Charles Lyell, and by a larger proportion of carbonic acid in the atmosphere, as suggested by Tyndall and Hunt. For these reasons, and others to which I shall refer in a succeeding chapter, there is no room left for homotaxis, as distinguished from contemporaneity, in the case of the Carboniferous; and if so, there can be little in that of the Trias. The Permian was thus a real period in Eastern America, but a period without extant monuments, except those which relate to merely mechanical movements of the sediments previously formed,—a period of breaking down, not of building up.

Still the Permian in Eastern America must have been a time of life and activity. If, as seems most probable, this country was, at the close of the Carboniferous period, raised up to a height somewhat similar to that of the continent in the present day, this Permian land must have been inhabited by plants and animals. We can imagine it clothed with a flora similar to that of the European Permian, and inhabited by the Proterosaurus and other animal forms of the period, and we can imagine those changes going on by which the Paleozoic flora and fauna were replaced by those of the Mesozoic period. In the singular little deposit of Miocene plants at Brandon in Vermont, we have evidence that this was the case in those Tertiary periods of which, as already stated, we have no formations in Acadia; and perhaps there may yet be found some patch of Permian rock, formed in some lake or estuary, which may reveal to us the history of this as yet unrecorded passage in the geological history of our country.
CHAPTER X.

THE CARBONIFEROUS SYSTEM.

GENERAL REMARKS—SYNOPTICAL TABLE—GEOGRAPHICAL ARRANGE-
MENT—CARBONIFEROUS DISTRICT OF CUMBERLAND—SOUTH JOGGINS
SECTION.

I HAVE had frequent occasion to state that the lower beds of the
Triassic sandstones rest on the edges of the upturned strata of the
great geological series now to be described. In entering, therefore,
on the Carboniferous system, we go at least one whole period back in
the history of the earth, to a time when the rocks that formed the
shore of the red sandstone sea were themselves being deposited in the
form of sediment, in waters which washed the sides of the Cobequid
Hills and the other old metamorphic ranges.

The Carboniferous system is of inestimable importance in an eco-
nomical point of view, from the number and value of its useful min-
crals. It is also of exceeding interest to the geologist, in consequence
of the many remarkable monuments which it contains of the changes
of the earth's surface, and of the character of its inhabitants, during a
long and important period. None of the geological formations sur-
passes it in either of these respects; and in Nova Scotia and the
neighbouring colonies there is none which approaches to an equality
with it. It is also a very thick group of beds, and these are very
varied in their character. For these reasons, I shall commence my
description with a synoptical view of its various members, as they
have now been ascertained in Nova Scotia. An examination of this
condensed summary will enable the reader much more clearly to
comprehend the statements hereafter to be made.

Physical Characters and Subdivisions of the Carboniferous.

The total vertical thickness of the immense mass of sediment constit-
tuting the Carboniferous system in Nova Scotia may be estimated from
the fact that Sir W. E. Logan has ascertained, by actual measurement at
the Joggins, a thickness of 14,570 feet; and this does not include the
lowest member of the series, which, if developed and exposed in that locality, would raise the aggregate to at least 16,000 feet. It is certain, however, that the thickness is very variable, and that in some districts particular members of the series are wanting, or are only slenderly developed. Still the section at the Joggins is by no means an exceptional one, since I have been obliged to assign to the Carboniferous deposits of Pictou, on the evidence of the sections exposed in that district, a thickness of about 16,000 feet; and Mr R. Brown of Sydney has estimated the Coal formation of Cape Breton, exclusive of the Lower Carboniferous, at 10,000 feet in thickness.

When fully developed, the whole Carboniferous series may be arranged in the following subordinate groups or formations, the limits of which are, however, in most cases not clearly defined:

1. **The Upper Coal Formation**, containing coal formation plants, but not productive coals.
2. **The Middle Coal Formation**, or coal formation proper, containing the productive coal-beds.
3. **The Millstone-grit Series**, represented in Nova Scotia by red and gray sandstone, shale, and conglomerate, with a few fossil plants and thin coal seams, not productive.
4. **The Carboniferous Limestone**, with the associated sandstones, marls, gypsum, etc., and holding marine fossils, recognised by all palaeontologists who have examined them as carboniferous.
5. **The Lower Coal Measures**, holding some, but not all, of the fossils of the Middle Coal formation, and thin coals, not productive; but differing both in flora and fauna from the Upper Devonian, which they overlie unconformably.

In regard to their mineral character, thickness, organic remains, and geographical distribution, these several formations may be described as follows:—

(a.) **The Upper Coal Formation.**—Consists of sandstones, shales, and conglomerates, with a few thin beds of limestone and coal. *Calamites Suckovi, Annularia galioides, Cordaites simplex, Alethopteris nervosa, Pecopteris arborisces, Dadoxylon materiarium, Lepidodendron parvus, and Sigillaria scutellata*, are among its characteristic vegetable fossils. Its thickness is 3000 feet or more; and its shales and sand-
stones are frequently reddened by the peroxide of iron, though usually not of so bright a red as the New Red Sandstone, and always alternating, at short intervals, with gray beds. It occupies a considerable breadth in the county of Cumberland north of the Cobequid Mountains, in Northern Colchester, and in Pictou. It is well exposed on the Joggins coast, and on the coast of Northumberland Strait west of Pictou Harbour.

(b.) The Middle Coal Formation, or coal measures proper.—This series includes the productive beds of coal, and is destitute of properly marine limestones. Beds tinged with peroxide of iron are less common in this formation than in any of the others. Dark-coloured shales and gray sandstones prevail, and there are no conglomerates. Sigillaria and Stigmaria of many species are the most conspicuous and abundant fossils; but ferns, Cordaites, and Calamites are also extremely abundant, and all the genera of Carboniferous plants are represented. Many beds, especially those in the vicinity of layers of coal, contain minute Entomostraca, shells of the genus Anthracomya (Naia-dites), Spirorbis carbonarius, and remains of ganoid and placoid fishes. The thickness of this formation may be estimated at 4000 feet. It is largely developed in Cumberland, Pictou, and the eastern and western sides of the island of Cape Breton, and it occupies a great breadth in New Brunswick.

(c.) The "Millstone-grit" Formation.—This name, though not in all cases lithologically appropriate, has been borrowed from English geology to designate the group of sandstones, shales, and conglomerates, destitute of coal, or nearly so, and with few fossil plants, which underlies the coal measures. In its upper and middle part it includes thick beds of coarse gray sandstone holding prostrate trunks of coniferous trees (Dadoxylon Acadianum). In its lower part, red and comparatively soft beds prevail. This formation is exposed in the same localities mentioned above for the Middle Coal formation, and especially in the south Joggins section, where it attains to the enormous thickness of between 5000 and 6000 feet.

(d.) The Lower Carboniferous Marine Formation.—The essential features of this formation are thick beds of marine limestone, characterized principally by numerous brachiopods, especially Productus Cora, P. semireticulatus, Athyris subtilis, and Terebratula sufflata,* with other marine invertebrates. Associated with these limestones are beds of gypsum, and they are enclosed in thick deposits of sandstone, clay, and marl, of prevailing red colours.

SUBORDINATE GROUPS OR FORMATIONS.

The thickness of this formation seems to be very variable, and in some districts it is represented almost entirely by conglomerates, while in others it abounds in limestone and gypsum. It is very largely developed in Hants and Colchester counties, and rises from beneath the Millstone-grit in Cumberland, Pictou, and Cape Breton. Smaller areas occur in several other parts of the province of Nova Scotia, and it is extensively developed in New Brunswick. It affords all the gypsum exported from Nova Scotia and New Brunswick.

(c.) The Lower Carboniferous Coal Measures, or Lower Coal Measures.—In some localities these resemble in mineral character the true coal measures. In others they present a great thickness of peculiar bituminous and calcareous shales. They usually contain in their lower part thick beds of conglomerate and coarse sandstone, which in some places prevail to the exclusion of the finer beds. The characteristic plants of these beds are Lepidodendron corrigatum and Cyclopterus Acadianus, with Dadoxylon antiquus, and Aethopterus heterophylla. They also contain locally great quantities of remains of fishes, and many Entomopterans, among which are Leaia Leidy and an Estheria, also Leperditia subrecta, Portlock, Beyrichia colliculus, Eichw., and a Cythere, † probably new.

This formation is not everywhere distinguishable at the base of the Carboniferous, and is variable in its characters. It is seen in southern Cape Breton, in the county of Sydney, and in Hants; but its most remarkable and interesting exposures are at Horton Bluff and at Hillsborough, and other places in southern New Brunswick. In the last-mentioned locality, it affords the remarkable bituminous mineral known as Albertite.

The last two groups are probably equivalent to the "Sub-carboniferous" of Western geologists; but independently of the objection to the use of a term which would seem to imply a formation under, and distinct from, the Carboniferous, and of undetermined age, I find in Nova Scotia no reason, either palæontological or stratigraphical, for any greater distinction than that implied in the term Lower Carboniferous, by which these groups will collectively be designated in this volume. The Lower Coal measures are, it is true, more distinct in their flora from the Middle Coal measures than the latter from the Upper Coal formation; but still many species are common to the two former, and the difference is small as compared with that between the Lower Carboniferous and the Upper Devonian. The Devonian

† Prof. Jones of Sandhurst has kindly determined these species.
rocks are also in this region unconformable to the Carboniferous, having been disturbed and altered prior to the deposition of the latter; while no want of conformity, except of the local character hereafter to be noticed, occurs in the Carboniferous. Geinitz has shown ("Isis," 1866) that my lower, middle, and upper coal formations are equivalent to three of the zones into which he divides the coal formations of Saxony.

Conditions of Deposition of the Beds.

It is evident that very various geographical conditions are implied in the deposit of this vast thickness of sediment. The Acadia of the Carboniferous period must not only have differed much from that which now is, but it must have presented very different appearances in the different portions of the Carboniferous time itself.

The conditions of deposit thus implied in the mineral character and fossils of the several formations above described, would appear to be of three leading kinds:—(1.) The deposition of coarse sediment in shallow water, with local changes leading to the alternation of clay, sand, and gravel. This predominates at the beginning of the period, recurs after the deposition of the marine limestones in the formation of the "Millstone-grit," and again prevails in the upper coal formation. (2.) The growth of corals and shell-fish in deep clear water, along with the precipitation of crystalline limestone and gypsum. These conditions occurred during the formation of the Lower Carboniferous limestone and its associated gypsum. (3.) The deposition of fine sediment, and the accumulation of vegetable matter in beds of coal and carbonaceous and bituminous shale, and of mixed vegetable and animal matters in the beds of bituminous limestone and calcareo-bituminous shale. These conditions were those of the middle coal formation.

Within the limits of Nova Scotia, these conditions of deposition applied, not to a wide and uninterrupted space, but to an area limited and traversed by bands of Silurian and Devonian rocks, already partially metamorphosed and elevated above the sea, and along the margins of which igneous action still continued, as evidenced by the beds of trap intercalated in the Lower Carboniferous;* while about the close of the Devonian period still more important injections and intrusions of igneous matter had occurred, as shown by the granitic dykes and masses which traverse the Devonian beds, but have not penetrated the Carboniferous.† There is evidence, however, in the

† Dawson, Canadian Naturalist, 1860, p. 142.
Carboniferous rocks of the Magdalen Islands and of Newfoundland, and in the fringes of such rocks on parts of the coast of Nova Scotia* and New England, that the area in question was only a part of a far more extensive region of Carboniferous deposition, the greater part of which is still under the waters of the Atlantic and of the Gulf of St Lawrence.

There is ample proof that most of the coarser matter of the Carboniferous rocks was derived from the neighbouring metamorphic ridges; but much of the finer material was probably drifted from more distant sources. There seems no good reason to doubt that in the Carboniferous period, and especially in those portions of it in which the areas now under consideration were in the condition of shallow seas or swampland flats, the greater part of the Laurentian and Silurian districts of North America existed as land; while the great number of coal formation plants common to Europe and America may indicate the existence of intermediate lands now submerged. From such lands, undergoing waste during the long Carboniferous period, the materials of the shales and finer sandstones may have been derived.

Taking this view of the source of the sediment, we should infer that the time of the formation of the marine limestones was that of greatest depression of the land, when the local ridges of older rock were mere reefs and islets, and when sediment from more distant lands was deposited only at intervals. We should also infer that the time of the formation of the coal-beds was that of greatest elevation, when the former sea-bottoms had become land-surfaces or flats, exposed only to occasional inundation, and when rivers were bearing downward from large continental regions great quantities of fine silt. Farther, the conditions of the millstone-grit and of the newer coal formation must have been of an intermediate character, requiring wide sea areas receiving great quantities of sediment; and on this account, as well as because of their shallowness, unfavourable to marine life, while the areas of vegetable growth were also of limited extent.

It would also follow that when the lower coal measures and conglomerates were formed, the land was slowly subsiding; that in the time of the marine limestones it attained to its greatest depression, and long remained nearly stationary; that in the Millstone-grit period there was re-elevation, and that in the period of the middle coal formation and Newer Coal formation there was again subsidence, slow and interrupted at first, but subsequently of greater amount. From the absence of Permian deposits, it may be inferred that elevation again took place at the close of the Carboniferous period, to such an

* Jukes's "Newfoundland;" infra, chap. xiii.
extent as to preclude further deposition in the area in question; while the red sandstone and trap of Mesozoic age indicate the recurrence at that time of conditions somewhat similar to those of the beginning of the Carboniferous period.

The general phenomena of deposition above indicated, apply to all the Carboniferous areas of Nova Scotia and New Brunswick, and, so far as known, to those of the Magdalen Islands and of Newfoundland. But, as I shall point out in the sequel, numerous local diversities occur, in consequence of the interference of the older elevated ridges with the regularity of deposition. In some places the entire Lower Carboniferous series seems to be represented by conglomerates and coarse sandstones. In others, the Lower Coal measures, or the marine limestones, or both, are extensively developed. These local diversities are, on a small scale, of the same character with those which occur on a large scale in the northern and southern Appalachian districts and western districts of the United States, and in the different coal areas of Great Britain and Ireland, as compared with each other and with the Carboniferous districts of America. On the whole, however, it is apparent that certain grand features of similarity can be traced in the distribution of the Carboniferous rocks throughout the northern hemisphere.

It is further to be observed, that in Nova Scotia and New Brunswick, as well as in Eastern Canada, disturbances occurred at the close of the Devonian period which have caused the Carboniferous rocks to lie unconformably on those of the former; and that in like manner the Carboniferous period was followed by similar disturbances, which have thrown the Carboniferous beds into synclinal and anticlinal bends, often very abrupt, before the deposition of the Triassic Red Sandstones. These disturbances were of a different character from the oscillations of level which occurred within the Carboniferous period. They were accompanied by volcanic action, and were most intense along certain lines, and especially near the junction of the Carboniferous with the older formations.

I have noticed an apparent case of unconformability between members of the Carboniferous system near Antigonish. In the county of Pictou, the arrangement of the beds suggests a possible unconformability of the Upper Coal formation and the Coal measures.†

In New Brunswick, Prof. Bailey ‡ has observed indications of local unconformability of the Coal formation with the Lower Carboniferous.

† Ibid., vol. x. p. 42.
But the strict conformity of all the members of the Carboniferous series in the great majority of cases, shows that these instances of unconformability are exceptional. In the section at the Joggins more especially, the whole series presents a regular dip, diminishing gradually from the margin to the middle line of the trough, where the beds become horizontal.

The most gradual and uniform oscillations of level must, however, be accompanied with irregularities of deposition and local denudation; and phenomena of this kind are abundantly manifest in the Carboniferous strata of Nova Scotia. I have described a bed in the Pictou Coal-field which seems to be an ancient shingle-beach, extending across a bay or indentation in the coast-line of the Carboniferous period.* At the Joggins, many instances occur of the sudden running out and cutting off of beds;‡ and Mr Brown has figured a number of instances of this kind in the Coal formation of Sydney.¶ They are of such a character as to indicate the cutting action of tidal or fluvial currents on the muddy or sandy bottom of shallow water. In some instances the layers of sand and drift-plants filling such cuts suggest the idea of tidal channels in an estuary filled with matter carried down by river-inundations. Even the beds of coal are by no means uniform when traced for considerable distances. The beds which have been mined at Pictou and the Joggins show material differences in quality and associations; and small beds may be observed to change in a remarkable manner, in their thickness and in the materials associated with them, in tracing them a few hundreds of feet from the top of the cliff to low-water mark on the beach. I have no doubt that, could we trace them over sufficiently large areas, they would all be found to give place to sandstones, or to run out into bituminous shales and limestones, according to the undulations of the surfaces on which they were deposited, just as the peaty matter in modern swamps thins out toward banks of sand, or passes into the muck or mud of inundated flats or ponds.

Geological Cycles.

The foregoing considerations bring, in a very distinct manner, before us two different, and at first sight irreconcilable, general views which we may take of any given geological period. First, we must regard every such period as presenting during its whole continuance the diversified conditions of land and water with their appropriate inhabitants; and secondly, we must consider each such period as forming a

‡ Ibid., vol. x. p. 12.
¶ Ibid., vol. vi. p. 125 et seq.
geological cycle, in which such conditions to a certain extent were successive. As we give prominence to one or the other of these views, our conclusions as to the character of geological chronology must vary in their character; and in order to arrive at a true picture of any given time, it is necessary to have both before us in their due proportion.

We know that the marine animals of the Lower Carboniferous seas continued to exist in the time of the Coal formation, and that some of them survived until the Permian period, proving to us the existence of deep seas even in that age which we regard as specially characterized by swampy flats supporting land-plants. In like manner we know that some of the species of land-plants found in the lowest coal measures continued to exist in the time of the upper coal formation, proving that there was some land suitable for them throughout the epoch of the deep-sea limestones. Regarded from this point of view, any exceptional beds with land-plants in the marine parts of the formation, or beds with sea-shells in the parts where land conditions predominate, acquire a special interest; and so likewise do regions in which, as in some parts of the Appalachian Coal-field, the marine limestones are absent, and those in which, as in some parts of the Western States, marine conditions seem to have continued throughout the whole period. In Nova Scotia, so far as my present knowledge extends, the marine limestones of the Lower Carboniferous cut off the flora of the Lower Coal measures, apparently by a long interval of time, from that of the Middle Coal formation; and in like manner the fossils of the marine limestones cease at the time of the Millstone-grit, and only in one instance, that of a small bed of limestone near Wallace Harbour, partially reappear in the Upper Coal formation.*

I have, however, ascertained that the marine limestones may be divided into an upper and a lower member, and that there is some reason to suppose that in some parts of Nova Scotia where the true coal measures are not developed, the upper member may, in part at least, represent them.† On the other hand, I have not as yet been able to bridge over the gulf which separates the flora of the Lower Carboniferous coal measures from that of the Middle Coal formation, an interval which may include much of the "Lower Coal Measures" of Rogers in the Pennsylvania Coal-field.

Turning to that broader view which takes the prevalent conditions of each portion of the period as characteristic, notwithstanding the

† Quart. Journ. Geol. Soc., vol. xv. pp. 63 et seq. My friend Mr C. F. Hart, who has more recently studied the marine limestones, has obtained facts which seem to indicate the possibility of a more minute subdivision than any hitherto attempted of these beds. Vide chapter on L. C. Limestones, infra.
local existence of dissimilar conditions, we not only find, as already stated, that the sequence in Nova Scotia coincides generally with that in other parts of America and in Europe, but that, viewed in this aspect, the Carboniferous period constitutes one of four great physical cycles, which make up the Palaeozoic age in Eastern America, and each of which was characterized by a great subsidence and partial re-elevation, succeeded by a second and very gradual subsidence. Viewed in this way, the Lower Carboniferous conglomerate and Lower Coal measures correspond analogically with the Oriskany sandstone, the Oneida and Medina sandstones, and the Potsdam and Calciferous sandstones. The Carboniferous limestone corresponds with the Corniferous limestone, the Niagara limestone, and the Trenton group of limestones. The coal measures correspond with the Hamilton group, the Salina group, and the Utica shale. The Upper Coal formation corresponds with the Chemung, the Lower Helderberg, and the Hudson-River groups. The Permian is not represented in Eastern America; but, as developed in Europe, it clearly constitutes a similar cycle. These parallelisms, which deserve more attention from geologists than they have yet received, may be tabulated thus:—

Tabular View of Cycles in the Palaeozoic Age in Eastern America.
(For the several formations are arranged in descending order.)

<table>
<thead>
<tr>
<th>Character of Group</th>
<th>Lower Silurian</th>
<th>Upper Silurian</th>
<th>Devonian</th>
<th>Carboniferous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shallow, subiding marine area, filling up with sediment</td>
<td>Hudson-River, Lower Helderberg group.</td>
<td></td>
<td></td>
<td>Upper coal formation.</td>
</tr>
<tr>
<td>Subsidence, followed by slow subsidence, land-surface, etc</td>
<td>Salina group.</td>
<td></td>
<td></td>
<td>Hamilton group.</td>
</tr>
<tr>
<td>Marine conditions; formation of limestones, etc</td>
<td>Trenton, Black Niagara and R. and Chazy limestones.</td>
<td></td>
<td></td>
<td>Corniferous limestone.</td>
</tr>
<tr>
<td>Subsidence; disturbances; deposition of coarse sediment</td>
<td>Potsdam and Oneida and Calciferous sandstone-gr.</td>
<td></td>
<td></td>
<td>Oriskany sandstone.</td>
</tr>
</tbody>
</table>

In the Permian of Europe, the Stinkstein, the Rauchwacke, the Zechstein, and the Rothliegendes might form a fifth parallel column. Of course such parallelism might be variously expressed, by reckoning a smaller or larger number of groups. Independently of these different modes of statement, however, I believe that the basis of such comparisons exists in nature, and that it will prove possible to sub-

* Dr Sterry Hunt has directed attention to them in a paper "On Bitumens," Silliman's Journal [2], xxxv, p. 166, and in the "Geology of Canada," 1863, p. 627; and Dana refers to them in his "Manual of Geology." Eaton and Hall had previously noticed these parallelisms.
divide geological time into determinate natural cycles, the parts of which are analogous to those of similar cycles. A further question to be solved is, whether such cycles corresponded in all parts of the world, or whether, as is more likely, the earth might be divided into areas in which in each cycle elevation and subsidence were contemporaneous. So far as the present subject is concerned, I merely desire to show that the Carboniferous rocks of Nova Scotia represent a complete cycle of the earth's history, and correspond in time with the Carboniferous of Europe, and in value with the other great divisions of the Palæozoic age.

Summary of facts relating to the mode of accumulation of Coal.

With regard to this important subject, I would rather invite attention to the details to be presented in subsequent pages, than make any preliminary general statements. It is, however, necessary to notice here the several views which have prevailed as to the probable accumulation of coal by driftage or growth in situ, in water or on land. I have already, in previous publications,* stated very fully the conclusions at which I have arrived on some portions of this subject, and I would now sum up the more important general truths as follows:—(1.) The occurrence of *Stigmaria* under nearly every bed of coal, proves beyond question that the material was accumulated by growth in situ; while the character of the sediments intervening between the beds of coal proves with equal certainty the abundant transport of mud and sand by water. In other words, conditions similar to those of the swampy deltas of great rivers are implied. (2.) The true coal consists principally of the flattened bark of *Sigillaria* and other trees, intermixed with leaves of ferns and *Cordaites*, and other herbaceous debris, and with fragments of decayed wood constituting "mineral charcoal," all these materials having manifestly alike grown and accumulated where we find them. (3.) The microscopical structure and chemical composition of the beds of cannel-coal and earthy bitumen, and of the more highly bituminous and carbonaceous shales, show them to have been of the nature of the fine vegetable mud which accumulates in the ponds and shallow lakes of modern swamps. When such fine vegetable sediment is mixed, as is often the case, with clay, it becomes similar to the bituminous limestone and calcareo-bituminous shales of the coal measures. (4.) A few of the uncercalays which support beds of coal are of the nature of the vegetable mud above referred to; but the greater part are argilaceous beds by the decay of vegetable life, and the solution of them in sea-water have been proposed. In the case of *Sigillaria*, and other aquatic plants, there is one material that is almost indispensable for the solution of the matter, though it is of no use to the plant itself. None of these views, however, resemble the facts, as far as the evidence of the fossil remains, can be supposed to support. I must admit, however, the vegetable remains are not rare in submarine strata, though they are far less common than elsewhere, where we must suppose the conditions for the growth of trees as fossile the same. They exist as fossils in the swamps of modern times, and confirm all the theories of the true mode of accumulation of coal.

It seems necessary, however, to cut through the confusion of insertion of the word "true" coal-bed, and regard it as a separate formation. It seems obvious that the Carboniferous rocks of Nova Scotia are essentially different from those of other regions, and that they have been accumulated under conditions which are not in any way analogous to those of the Coal measures of Europe.

arenaceous in composition, with little vegetable matter, and bleached by the drainage from them of water containing the products of vegetable decay. They are, in short, loamy or clay soils, and must have been sufficiently above water to admit of drainage. The absence of sulphurets, and the occurrence of carbonate of iron in connexion with them, prove that, when they existed as soils, rain-water, and not sea-water, percolated them. (5.) The coal and the fossil forests present many evidences of subaerial conditions. Most of the erect and prostrate trees had become hollow shells of bark before they were finally imbedded, and their wood had broken into cubical pieces of mineral charcoal. Land-snails and galley-worms (Xylobius) crept into them, and they became dens or traps for reptiles. Large quantities of mineral charcoal occur on the surfaces of all the larger beds of coal. None of these appearances could have been produced by subaqueous action. (6.) Though the roots of Sigillaria bear some resemblance to the rhizomes of certain aquatic plants, yet structurally they are absolutely identical with the roots of Cycads, which the stems also resemble. Further, the Sigillariae grew on the same soils which supported Conifers, Lepidodendra, Cordaites, and ferns—plants which could not have grown in water. Again, with the exception, perhaps, of some Pinnulariae and Asterophyllites, there is a remarkable absence from the coal measures of any form of properly aquatic vegetation. (7.) The occurrence of marine or brackish-water animals in the roofs of coal-beds, or even in the coal itself, affords no evidence of subaqueous accumulation, since the same thing occurs in the case of modern submarine forests. For these and other reasons, some of which are more fully stated in the papers already referred to, while I admit that the areas of coal accumulation were frequently submerged, I must maintain that the true coal is a subaerial accumulation by vegetable growth on soils wet and swampy, it is true, but not submerged. I would add the further consideration, already urged elsewhere, that, in the case of the fossil forests associated with the coal, the conditions of submergence and silting-up which have preserved the trees as fossils, must have been precisely those which were fatal to their existence as living plants—a fact sufficiently evident to us in the case of modern submarine forests, but often overlooked by the framers of theories of the accumulation of coal.

It seems strange that the occasional inequalities of the floors of the coal-beds, the sand or gravel ridges which traverse them, the channels cut through the coal, the occurrence of patches of sand, and the insertion of wedges of such material splitting the beds, have been regarded by some able geologists as evidences of the aquatic origin
of coal. In truth, these appearances are of constant occurrence in modern swamps and marshes, more especially near their margins, or where they are exposed to the effects of ocean-storms or river-inundations. The lamination of the coal has also been adduced as a proof of aqueous deposition; but the microscope shows, as I have elsewhere pointed out, that this is entirely different from ordinary aqueous lamination, and depends on the superposition of successive generations of more or less decayed trunks of trees and beds of leaves. The lamination in the truly aqueous cannel and carbonaceous shales is of a very different character.

It is scarcely necessary to remark, that in the above summary I have had reference principally to the appearances presented by the coal formation of Nova Scotia; though I believe that in a general way the conclusions stated will hold good in other countries, as has indeed been shown by the admirable researches on this subject of Bronguait, Goeppert, Newberry, Binney, Rogers, Lesquereux, and others, whose publications on this subject I have read with interest, and have tested in their application to the phenomena presented to me in the coalfields of Nova Scotia. I may add, that, in my opinion, the phenomena of the Stigmata underclays, to which attention was first directed by Sir W. S. Logan, furnish the key to the whole question of the origin of coal, and that the comparisons of coal-deposits, by Sir Charles Lyell, with the "cypress-swamps" of the Mississippi, perfectly explain all the more important appearances in the coal formation of Nova Scotia.

In the above pages I have endeavoured to state some general results of the study of the Carboniferous rocks which may be useful as introductory to their more detailed investigation. I now proceed to consider the local distribution of these rocks in Acadia, and their subdivision into areas more or less distinct.

The reader must understand that the actual superposition and arrangement of all this great thickness of beds, are ascertained by the examination of coast and river sections, in which portions of the series are seen tilted up, so that they can, by proceeding in the direction toward or from which they incline, be seen to rest on each other. There is one coast section in Nova Scotia so perfect that nearly the whole series is exposed in it. On the other hand, there are large areas in which the lower portion alone exists, and perhaps never was covered by the upper portions; and there are other areas in which the upper members have covered up the lower, so that they appear only in a few comparatively limited spots.

The area occupied by Carboniferous rocks in Nova Scotia and New Brunswick is so much older in place than any of the Carboniferous rocks that have been referred to in the United States, that it is convenient to consider it separately.

1. The Coal Measures of Nova Scotia

2. The Coal Measures of Acadia

3. The Coal Measures of the New Brunswick Plains

4. The Coal Measures of the Appalachian Mountain Range

5. The Coal Measures of the Valley of the Delaware

6. The Coal Measures of the Valley of the Hudson

7. The Coal Measures of the Valley of the Mohawk

8. The Coal Measures of the Valley of the Susquehanna

9. The Coal Measures of the Valley of the Potomac

New View

It may be observed that the Coal Measures of Nova Scotia appear at various times in the various sections of the Carboniferous rocks. The Carboniferous rocks in Nova Scotia are divided into four great series, the higher and imperfectly known, and the lower and imperfectly known, and the middle and imperfectly known. The Carboniferous rocks in Nova Scotia are divided into four great series, the higher and imperfectly known, and the lower and imperfectly known, and the middle and imperfectly known. The Carboniferous rocks in Nova Scotia are divided into four great series, the higher and imperfectly known, and the lower and imperfectly known, and the middle and imperfectly known. The Carboniferous rocks in Nova Scotia are divided into four great series, the higher and imperfectly known, and the lower and imperfectly known, and the middle and imperfectly known. The Carboniferous rocks in Nova Scotia are divided into four great series, the higher and imperfectly known, and the lower and imperfectly known, and the middle and imperfectly known.
Brunswick is very extensive; and it is divided by ridges of the older metamorphic rocks into portions which may for convenience be considered separately. These are—

1. The New Brunswick Carboniferous district, the largest in point of area in the Acadian provinces.

2. The Cumberland Carboniferous district, bounded on the south by the Cobequid Hills, and continuous on the north-west with the great Carboniferous area of New Brunswick.

3. The Carboniferous district of Minas Basin and Cobequid Bay, and its outliers, including the long band of Carboniferous rocks extending along the south side of the Cobequids, and that reaching along the valley of the Musquodoboit River.

4. The Carboniferous district of Picton, bounded on the south and east by metamorphic hills, and connected on the west with the Cumberland district and that last mentioned.

5. The Carboniferous district of Antigonish county, bounded by two spurs of the metamorphic hills.

6. The narrow band of Carboniferous rocks extending from the Strait of Capescaul westward through the county of Guysboro'.

7. The Carboniferous district of Richmond county and southern Inverness.

8. The Carboniferous district of Inverness and Victoria counties.

9. The Carboniferous district of Cape Breton county.

New Views promulgated by Professor Lesley. Comparison with the Carboniferous of Europe.

It may be proper here to refer to points raised by J. P. Lesley, Esq. of Philadelphia, in a Report on the Glace Bay Coal-field,* which appear at variance with the view above given of the constitution of the Carboniferous system in Nova Scotia. As Mr Lesley deservedly ranks high as an authority in the Coal formation, and as his views on this subject, though originating, in my opinion, in misconception and imperfect opportunities for observation, were widely circulated in the United States, and were introduced into an official Report in Nova Scotia, it would be wrong to pass them by without notice. Professor Lesley says:—“Sir William Logan, Sir Charles Lyell, Professor Dawson, and other geologists, who have described the Coal measures of Nova Scotia and New Brunswick, agree in assigning to them an almost incredible thickness.” He then proceeds to compare, on lithological grounds, the shales of Division 5 of Logan’s section at the Joggins, with the Lower Carboniferous or Vespertine (No. X1.).

of Pennsylvania; and consequently would place the Millstone-grit and the Lower Carboniferous limestones and Lower Coal measures on the parallel of the Devonian rocks. Such a sweeping change, merely on the ground of similarity of mineral character, and in opposition to the evidence of fossils, and to the fact of the true Upper Devonian occurring in its proper place in New Brunswick, would, unless advocated by a geologist of the standing of Professor Lesley, scarcely deserve notice. In the circumstances, however, I considered it my duty to send to the Society in whose proceedings Professor Lesley's paper appeared, and of which I have the honour to be a Fellow, the following statement of objections to Professor Lesley's views, which I give in full, with Professor Lesley's rejoinder and my further explanations, because the points involved are of much importance and incidentally bring out several very interesting considerations in regard to the Coal formation. Their importance in a practical point of view may be judged from the fact to be noticed in the sequel, that Professor Lesley's conclusions induced him to diminish by one half the thickness of the Coal formation of Cape Breton, as ascertained by Mr Brown, and thus to ignore altogether the extension to the eastward of the Sydney coal-beds in rear of those of Glace Bay. I have to thank Professor Lesley for the courtesy with which, as Secretary to the Philosophical Society, he attended to my communications, and the fairness with which he met my objections; and although I know that he must be (I hope I may say, have been) in error in this point, it is scarcely necessary to say that there is no one for whose geological acumen I entertain more respect.

Note on Mr Lesley's Paper on the Coal Measures of Cape Breton.

The new facts and general considerations on the Nova Scotia coal-field contained in this paper are of the highest interest to all who have worked at the geology of Nova Scotia. I think it my duty, however, to take exception to some of the statements, which, I think, a larger collection of facts would have induced Mr Lesley himself to modify. My objections may be stated under the following heads:—

(1.) It is scarcely safe to institute minute comparisons between the enormously developed coal measures of Nova Scotia and the thinner contemporary deposits of the West, any more than it would be to compare the great marine limestones of the period at the West with the slender representatives of that part of the group to the eastward.

(2.) There is the best evidence that the coal measures of Nova Scotia never mantled over the Devonian and Silurian hills of the Province, but were, on the contrary, deposited in more or less separate areas at their sides.
(3.) Any one who has carefully compared the coal measures of the Joggins with those of Wallace and Pictou, must be convinced of the hopelessness of comparing individual beds, even at this comparatively small distance. *A fortiori* detailed comparisons with Pennsylvania and more distant localities must fail.

(4.) I do not think that any previous observer has supposed that the coal measures of Eastern Cape Breton represent the whole of the coal formation of Nova Scotia. The "Upper Coal measures" of my papers on Nova Scotia are certainly wanting, and probably the Sydney Coal-field exhibits no beds higher than No. 4 of Logan’s Joggins section.

(5.) The whole of the coal-beds in the Joggins section belong to the *Upper* and *Middle* coal measures. It is quite incorrect to identify No. 6 of Logan’s section with the *Lower* Coal measures. These do not occur at the Joggins, but are found in Nova Scotia, as in Virginia and Southern Pennsylvania, at the base of the system, under the marine limestones. The Albert beds are the equivalents of these lower measures, and not of the Pictou coal. In my paper on the Lower Carboniferous coal measures (*Journal of Geological Society of London*, 1858), will be found a summary of the structure of the Lower Coal measures, as shown at Horton Bluff, and elsewhere. The term "true coal measures," quoted by Mr. Lesley, does not mean in my description the Middle Coal measures, but merely that part of them holding the workable coal-seams.

(6.) Whatever may be the value of M. Lesquereux’s applications of the fossil flora to the identification of coal-seams in the West, I am prepared to state, as the result of an extensive series of observations, still for the most part unpublished, that in Nova Scotia the flora is identical throughout the whole enormous thickness of the Middle coal measures, and that the differences observable between different seams are attributable rather to difference of station and conditions of preservation than to lapse of time. It is indeed true, as I have elsewhere explained, that the assemblages of species in the Lower, Middle, and Upper Coal measures may be distinguished; but within these groups the differences are purely local, and afford no means for the identification of beds in distant places.

(7.) I do not desire to offer any opinion on the questions raised by some American geologists as to the extension of the term Carboniferous to the Chemung group; but I know as certain facts, that the flora of the Lower Coal measures, under the marine limestones and gypsasums of Nova Scotia, is wholly Carboniferous, and that the *flora*, on which alone I consider myself competent to decide, of the Chemung of New
York, as now understood by Professor Hall and others, and also of
the groups in Pennsylvania, named by Rogers Vergent and Ponent
(? IX. and X. of Mr Lesley), is as decidedly Devonian, and quite
distinct from that of the Carboniferous period.*

For Mr Lesley's ability as a stratigraphical geologist I have the
highest respect; and with reference to the present subject, would
merely desire to point out that he may not have possessed a sufficient
number of facts to warrant some of his generalizations, on which in
the meantime I would, for the reasons above stated, desire geologists
to suspend their judgment.

The following is the rejoinder of Professor Lesley, omitting some
general discussions not important to the subject in hand:—

"Professor Dawson's first objection is a begging of the very ques-
tion. Whether the coal measures of Nova Scotia are 'enormously
developed'? That, in one little spot of the earth's surface like Nova
Scotia, and that, too, midway between the great coal areas of America
and those of Europe, wherein the thickness of coal measures proper
ranges from 2000 to 5000 feet, if they even attain the latter size, there
should be an anomalous deposit of 25,000 feet, is incredible. What
the great Bohemian paleontologist, by unerring instinct, said to us
after our thirty years' war over the Taconic system, there must be a
mistake somewhere, I must repeat to those who so 'enormously develop'
the Nova Scotia coal measures. And my intention in the paper on
Nova Scotia coal was only to suggest one formula on which the error
might be discussed. I distinctly repudiated the safety of instituting
'minute comparisons.' My comparison of the Cape Breton coals and
the column at Pittsburg was carefully made in the most general
manner, and the resemblance called a coincidence. But the value of
the comparison remains; for it affords a new argument in favour of
the family likeness of those parts of the general coal measures of dif-
ferent countries, which have a right to the specific title of 'productive
coals.' The argument also remains good, that if 2000 feet of coal
measures in Missouri can be recognised in 2000 feet of coal measures
in Kentucky, Virginia, and Eastern Pennsylvania, the very same
system of beds, bed for bed, being demonstrated first by stratigraphy,
and then by paleontology (and such is the fact), why not in Nova
Scotia?

"I have no doubt that some of the coal measures of the British
Provinces may have been 'deposited in more or less separated areas
at the sides of the Devonian and Silurian hills,' as Professor Dawson

November, 1862.
says (2). But I confess to a complete scepticism of the great extent which has been assigned to this unconformability of the coal measures upon the lower rocks; first, because most of the Island of Cape Breton, and much of the surface of Nova Scotia and New Brunswick, are confessedly unvisited and almost unknown; secondly, because the incredible thickness assigned to the coal measures throws doubt upon the positions assigned to the unconformable horizons; thirdly, because the coal-beds themselves stand almost vertical in many places round the shores; fourthly, because the mountains of Nova Scotia, with apparently conformable Carboniferous limestones, have apparently an Appalachian structure and aspect, have suffered vast denudation, exhibit cliff outcrops and section ravines, and may just as well have carried coal upon their original backs as we can prove that our Tussey, Black Log, Nescopeck, Mahoning, Buffalo, Tuscarora, Brush, and other Silurian and Devonian mountains did. There is an immense unconformable chasm in the column west of the Hudson River, and the Catskill Mountains over it have no coal upon their backs; but the coal comes in regularly enough on them at the Lehigh (a less distance than from Sydney to St. Peters, or from Pictou to Windsor), and the unconformability in the Upper Silurian and Devonian has already disappeared.

"Professor Dawson's fourth objection would be good, if I had really supposed the coal measures of eastern Cape Breton to represent the whole of the coal measures of Nova Scotia." But I only suggested that they may prove to be the equivalents of the system of productive coal measures; that is all. Between the Monongahela and the Ohio, our column of productive coals is capped by another of barren shales and soft sandstones of unknown height, by one estimate 3000 feet thick; and part of this column may represent the so-called Permian measures, which, in Kansas, cap conformably the coal measures. Having no knowledge of the fossils, I have no desire to oppose the conclusions of Professor Dawson, as to the part of the column of the Joggins in which the Ice Bay coals apply, but hope that his accurate handling of them will secure some certainty about it. It was the grouping of the beds, and not the fossils, which I wished to bring into prominent notice; because the doctrine of isolated basins, when unfounded or overapplied, is as injurious to lithological truth as the careless identification of surface aspect may at any moment prove to paleontology. I willingly leave to accomplished palaeontologists like Professor Dawson, the discussion of the grand generalization embodied in his sixth objection; but I may be permitted to believe that it has had its birth in the doctrine of isolated basins, and
that the two must stand or fall together. It also seems to me to involve radical inconsistencies; for if I comprehend it, it asserts (1.) That the flora of the whole coal measures (25,000 feet?) is identical; that is, the vertical distribution of each and all the plants is complete from the bottom to the top. (2.) That nevertheless there are differences observable between different coal-beds. (3.) That these are attributable rather to difference of station and conditions of preservation than to lapse of time; that is, if we could take the beds, each one in its whole extent and its fossils in their original condition, there would be no differences observable between different seams after all. (4.) That groups or assemblages of species in the Lower, Middle, and Upper Coal measures may nevertheless be distinguished; that is, while each and every species may be found occasionally in all parts of the column from bottom to top, yet this happens in such a manner as to group some of them more abundantly, or in certain peculiar proportions in the Lower, others in the Middle, and others in the Upper portions of it. (5.) That, after all, however, these groups are not persistent, but differ at different localities, and are as worthless as the specific forms themselves for the identification of a single bed in more than one place.—Is it possible that all this has been made out, or can be made out, except in a country of horizontal coal measures, well opened for study, where the stratification can be established beforehand, and the range of the fossils be undoubted?"

With reference to this rejoinder, as Professor Lesley seemed to have misapprehended some of the points briefly stated in my first letter, I thought it necessary to make the following additional explanations:

"1. Dr Dawson is not aware that he has, at any tone, maintained that the "coal measures proper" of Nova Scotia are 25,000 feet in thickness. In speaking of their enormous thickness, he referred to the actual measurements of Sir W. E. Logan at the Joggins, which give for the whole of the Carboniferous rocks seen in that section, a vertical thickness of 15,570 feet, and for the coal measures proper, or Middle Coal formation, a thickness of rather less than 10,000 feet. The objections based by Mr Lesley on this supposed thickness of 25,000 feet, are therefore quite inapplicable to the views of Dr Dawson.

"2. Dr Dawson does not admit the interpretation of his views as to the unity of the coal flora given by Mr Lesley. The 'inconsistencies' alleged by the latter depend in part on the imaginary thickness of 25,000 feet attributed to the Middle Coal measures. The identity of the flora throughout the Middle Coal formation, and the distinctions between this and the assemblages of plants in the Lower and Upper
Coal formation, admit of being readily ascertained, where good exposures exist, as in Nova Scotia; and it is to be borne in mind that my investigations on this subject have extended over more than twenty years, though many of the details ascertained have not yet been published.

"3. It should be understood that the Carboniferous system in Nova Scotia consists of the following members:—

"(1.) The Upper Coal Formation.
"(2.) The Middle Coal Formation.
"(3.) The Millstone-grit Series, represented in Nova Scotia by red and gray sandstone, shale, and conglomerate, with a few fossil plants and thin coal seams, not productive.
"(4.) The Carboniferous Limestone, with the associated sandstones, marls, gypsum, etc., and holding marine fossils, recognised by all paleontologists who have examined them as Carboniferous.
"(5.) The Lower Coal Measures, holding some but not all of the fossils of the Middle Coal formation, and thin coals, not productive; but differing both in flora and fauna from the Upper Devonian, which, in New Brunswick, they overlie unconformably.

The principal, though not the only point in which Mr Lesley differs from Logan, Lyell, Brown, and Dawson, is his entire omission of No. 5 of the above series, and placing No. 3 in its room, as the representative of the Lower Coal measures of Virginia and Pennsylvania. I have, I think, already made this sufficiently plain in the fifth of my objections, already published; but may add here that fossils as well as stratigraphical position establish the real equivalency of No. 5, and not No. 3, to the Lower Coal formation, as described by Lesquereux in America, and by Geopert in Europe; and that it seems strange that Mr Lesley, while suggesting minor and more dubious parallelisms, declines to admit this identification, established by long and careful investigations of several competent observers, and confirmed by the evidence of fossils."

It will be seen from the above discussion, that the Carboniferous series in Nova Scotia, though limited in area, is of great thickness; and that within the limits of Acadia the strictly marine as well as the coal-bearing portions of this great group of rocks are represented with a completeness not to be found in any one coal area of the United States, where the marine limestones are enormously developed in the west at the expense of the coal measures, and the latter at the expense of the marine members in the east.

In the United States, however, the Lower Coal measure flora has

been recognised by Lesquereux, who has also marked out a number of interesting parallelisms in the beds of the Middle Coal formation. In Illinois and Iowa, the Lower Carboniferous marine limestones present several important subdivisions, and still farther west there appear to be Upper Carboniferous marine beds graduating upward into Permian.

In England the Mountain Limestone, the Millstone-grit, and the Coal Formation, have been the members usually recognised, but recently attention has been attracted to the Lower Coal measures, which are also developed there; and in 1865, I saw in the Museum of the Geological Survey a small collection of undetermined plants from these beds, perfectly corresponding to those of the Lower Coal formation of Nova Scotia. The term Lower Coal measures is, however, in England and Scotland, usually applied to beds corresponding to the lower part of the Middle Coal formation of the above classification. With regard to the Upper Coal formation, its equivalent is recognised in the English and Scottish coal-fields as the overlying barren coal measures, either destitute of coal or with thin and unworkable seams, and which in the Lancashire Coal-field amount to nearly 2000 feet in thickness. In Lancashire these beds are very similar to the corresponding series in Nova Scotia. In the Scottish coal-fields they contain marine limestones—a circumstance which occurs in one instance in Nova Scotia. Much remains to be done in Great Britain for the proper working out of the distinction in the flora of the members of the Carboniferous system, the study of fossil plants of the coal having been much neglected by geologists.

In Germany, where the subject of the coal flora has received greater attention, the subdivisions have been more fully worked out; and I have much pleasure in quoting the following remarks by Professor Geinitz of Dresden, from a review of my paper on the “Conditions of Accumulation of Coal,” in the “Iseis,” 1866:

“In comparing the distribution of this flora with that in the various zones of the Carboniferous of Europe, it is first of all a surprising fact, that there also the zone of the Lower Coal formation must be designated, as in Europe, the Lycopodiaceous zone, since Lepidodendron corrugatum is the most remarkable and predominant plant in it. But this species approaches so closely the Lycopodites polyphyllus, Rom. sp. (Geinitz, Flora of the Hainichen, Ebersdorf Basin), that both of them might be considered as identical, whilst Lep. tetragonum St. (Gein., etc.), and Knorria iricata St. (Gein., etc.), which we must still continue to regard as an independent plant, are likewise quite characteristic of the oldest Coal formation or culm of Europe. The
Cyclopteris Acadica, Daws., of the Lower Coal measures of North America, also is very nearly allied to the Cyclopteris tenuifolia, Göpp., in the German culm.

"The predominance of the Sigillaria and Stigmaria in the Middle Coal formation, proves the identity of this zone with our European zone of Sigillaria; and the analogy with the flora of the principal beds of coal of England and Ireland is particularly striking, especially through the great extension of the Alethopteris lonchitica, which is never wanting there.

"When, finally, Dawson sets forth in a prominent manner, that in the uppermost division of Sir W. Logan's section of the South Joggins, which corresponds with the upper part of the Upper Coal formation, trunks of conifers and Calamites, Cal. Suckorii, etc., and C. approximatus, by the side of Aspidiaria, etc., are the fossils most frequently to be met with, we are enabled to place this zone nearly on a level with the zone of Calamites, or the third band of vegetation in Germany.

"Thus the succession in the flora of the Coal formation, as we have ascertained it for Europe, appears to have been established for America also by Dr. Dawson's profound investigations, and they will probably soon be followed by the discovery of the existence of the two upper zones,—the 'Annularia' and 'Fern' zones."

It will be observed that Professor Geinitz anticipates the separation of two additional zones in the Upper Coal formation. Of these I have as yet no distinct evidence, and the paucity of fossils in these Upper rocks may render it difficult to make such distinctions. Undoubtedly, however, Annularia galoides, Cordaites simplex, and several ferns, as Pecopteris arborescens and Alethopteris nervosa, are characteristic of some of the newest beds known to me in the coal-field of Pictou.
CHAPTER XI.

THE CARBONIFEROUS SYSTEM—Continued.

CARBONIFEROUS DISTRICT OF CUMBERLAND—SECTION AT THE SOUTH JOGGINS.

Though the great triangular area of Carboniferous rocks in eastern New Brunswick is the largest in Acadia, it does not present such admirable facilities for the study of these rocks as those afforded by the coast sections in Western Cumberland; we shall therefore first study these with some minuteness, as typical of the whole Acadian Carboniferous districts, and afterwards notice the larger New Brunswick area.

The rocks of the Cumberland Carboniferous area have a general trough-shaped arrangement, which in the western part of the county at least appears to be very regular. (See General Section.) On the south side, all along the base of the Cobequids, we find conglomerates and other Lower Carboniferous rocks dipping to the north, and forming the southern edge of the trough. Resting on these are the beds of the Coal formation, still dipping to the northward. Toward the centre of the county, we find the rocks of the Upper Coal formation slightly inclined and finally dipping to the south, to form part of the northern side of the trough. Proceeding onward, we find the repetition of the Older Coal formation and Lower Carboniferous series with southerly dips. The latter extends into New Brunswick, where it turns over and dips to the northward, underlyings the great Carboniferous plain of that province. In crossing the county of Cumberland, this regular arrangement of the beds is evidenced by the long parallel ridges that cross the country from east to west, and which are produced by the outcropping edges of beds of firm sandstone, which have resisted wasting agencies better than the softer beds that occur between them. There is, however, reason to believe, as we shall find in the sequel, that in the central and eastern part of the Cumberland trough there are subordinate undulations which prevent the coal-beds from running continuously across the country, and that in some places the Coal forma-
SECTIONS, ETC.—SOUTH JOGGINS COAL FORMATION.

Erect Calamities crushed by Lateral Pressure.

a, Sandstone. b, Shale. c, Irregularly bedded Sandstone and Remains of Plants.

Deposition and Filling up.

Section of Remains of an Erect Tree.

a, Coal. b, Mineral charcoal. c, Coaly remains of bark.

General Section, Minadie to Apple River.

a, Carboniferous. b, Silurian. Figs. 1 to 8 indicate the Subdivisions of Logan's Section of the South Joggins.
tion with
coast
land
the
Trap
complete
fines
describe
corn
The
Joggins
Cumber
coast
constantly
bold of
200
more
marine
Coal found
of coal
plants and
and of

collection
and fresh
In
deliberate
of vertical
interests
of writer
Geological
ascertain
been published
ascending
interpret each
the attention
formation
by an
The other
the coast of
near Anm
tion seems to abut against the older rocks of the Cobequid Mountains, without the intervention of the Lower Carboniferous. On the western coast of the county, the cliffs fronting Chiegneco Bay and Cumberland Basin, and which have been cut and are kept clean and fresh by the same agencies which we have already noticed in treating of the Trap and New Red Sandstone coasts, furnish the best and most complete section of the Carboniferous rocks in Nova Scotia, and one of the finest in the world; and on this account I shall commence with its description, as affording the best guide to the understanding of the more obscure and complicated parts of the formation.

This remarkable section, now well known to geologists as the South Joggins section, extends across almost the whole north side of the Cumberland trough, and exhibits its beds in a continuous series, dipping S. 25° W. at an angle of 19°; so that in proceeding along the coast from north to south, for a distance of about ten miles, we constantly find newer and newer beds; and these may be seen both in a bold cliff and in a clean shore, which at low tide extends to a distance of 200 yards from its base. We thus see a series of beds amounting to more than 14,000 feet in vertical thickness, and extending from the marine limestones of the Lower Carboniferous series to the top of the Coal formation. In the cliff and on the beach, more than seventy seams of coal may be seen, with their roof-shales and underclays, and erect plants appear at as many distinct levels; while the action of the waves and of the tide, which rises to the height of forty feet, prevents the collection of debris at the foot of the cliff, and continually exposes new and fresh surfaces of rock.

In describing this section, I shall take as guides Sir W. E. Logan's elaborate section of the whole coast, including 14,570 feet 11 inches of vertical thickness, and a re-examination of 2800 feet of the most interesting part of the section made by Sir Charles Lyell and the writer in 1852 and 1853, and published in the Proceedings of the Geological Society of London for the latter year, with additional facts ascertained by myself in subsequent visits, and many of which have been published in my more recent papers. I shall proceed in the ascending order, or from the older to the newer beds, and shall interpret each new appearance as it occurs. In this way I hope to give to the attentive reader a more accurate idea of the structure and mode of formation of a coal-field than he could obtain in any other way, except by an examination of the actual coast section described.

The oldest beds of the Lower Carboniferous series do not appear in the coast section, but may be studied at Napan River and other places near Amherst. They consist of sandstones and marly clays, including
thick beds of limestone and gypsum. The mode of formation of this last rock I shall not now notice, as better opportunities will occur hereafter. Respecting the limestones, I may remark that they are marine deposits, formed in an open sea tenanted by various kinds of shell-fish, etc., the remains of which still exist in the limestone. They are principally bivalves of a family (the Brachiopoda) once very abundant, but in the modern world represented by very few species; and the most abundant shell of this kind in these limestones is the Productus Cora, a finely striated species, having one valve very convex externally, and the other very concave. It is found in rocks of the same age in Great Britain. There is also a nautilus, nearly resembling in form the nautilus of recent tropical seas, but smaller in size; and there are numerous fragments of Crinoids, a tribe of creatures allied to modern star-fishes, but furnished with a stem by which they were attached to the bottom, while their radiating arms extended on all sides in quest of prey. These limestones must have been formed in a sea whose waves lashed the slopes of the Cobequid Mountains and ground up the pebbles of old rocks which now form conglomerates on their flanks, while beds of shells were accumulating in its more quiet depths. Its northern boundary may have been the Silurian and metamorphic rocks of Lower Canada and Labrador.

The limestones above described dip to the southward; and if we proceed across the country in the direction of their strike, we find them again with the same fossils on the Hebert River near Minudie; and in the opposite or eastern direction, at several places nearly in a line between the Napan and Pugwash Harbour on the shore of Northumberland Strait, where the limestone with its characteristic marine fossils is largely developed. Leaving in the meantime the rocks that lie to the northward of and under this limestone, we may take that part of it which appears near Minudie as the base of the Joggins section. Following its direction across from Hebert River to the Joggins coast, we find there that it is overlaid conformably by a great series of sandstones and shales, which we shall now proceed to describe, just as we should see them if walking along the coast; and if this process should seem at all tedious to the reader, I beg him to remember that this finely exposed series of beds furnishes the key which will enable us to understand the whole structure of the Coal formation of Nova Scotia and New Brunswick; and further, that this key to facts so important both in geology and in reference to the economical value of the coal-fields, is now for the first time brought in a complete form before the general reader.

Commencing at Seaman’s Brook in Mill Cove, and taking Logan's
Carboniferous District of Cumberland.

Carefully detailed section as our guide, we see in the low cliff and in the shore-reefs beds of reddish and gray sandstone, alternating with reddish shales or beds of hardened and laminated clay. In a few places we find among these beds layers of gypsum and of a coarse sandy limestone. In several of the gray beds there are fragments of trunks and branches of trees, converted into coal, and resembling, what they certainly once were, drift trees embedded in sand-banks. Associated with these remains, we find in four of the beds small quantities of the gray sulphuret and green carbonate of copper, minerals introduced into these beds by waters holding sulphate of copper in solution, which the carbonaceous matter of the fossil wood has deoxidized, and thereby caused its deposition. Such appearances are not infrequent in beds containing fossil plants, but they have not hitherto been found to afford sufficient quantities of copper to be of any practical value. I may also remark here, in connexion with the occurrence of fossil plants in gray rather than in red beds, that in the coal formation, as in the modern marshes and peat-bogs already described, the presence of vegetable matter has often destroyed the red colour of beds tinged with peroxide of iron, and hence the fossils are in some sense the cause of the gray colour of the beds in which they are found. Beds of this kind just described occupy the shore to a distance equal to 2308 feet, as ascertained by the careful measurements of each bed made by Sir W. E. Logan. I may remind the reader, that as these beds dip to the south-west, we are constantly proceeding from older to newer beds.

In the succeeding 3240 feet of beds we find a similar series, with some additional features indicating our approach to the great masses of fossil vegetables entombed in the true coal measures which overlie them. There are here nine seams of coal, all very thin, their total thickness being only ten inches; and under each seam we observe a bed of clay or crumbling argillaceous sandstone, with remains of roots belonging to plants to be noticed hereafter, and which had much to do with the accumulation of the coal. We find also in this thick series of sandstones and shales several bands of hard black limestone, yielding a bituminous and almost animal smell when rubbed or struck, and containing abundance of little diamond-shaped plates with smooth and polished surfaces, which, if we are acquainted with the animals of the Coal period, we recognise as the scales of a singular tribe of fish, the Ganoids, of which numerous species abounded in the Carboniferous period, but which are now represented in America only by the bony pikes of the Canadian lakes, and a few other fresh-water fishes. There is also in this part of the section a far greater prevalence of gray sandstones than in the part previously noticed, and in these gray sandstones...
are immense quantities of fossil plants, most of them trunks of trees confusedly intermingled and flattened more or less by pressure; others long cylindrical reed-like stems (Calamites), or immense creeping roots dotted all over with pits from which their rootlets sprang (Stigmaria). In most of these fossils the bark is converted into hard shining coal, but the wood has decayed away, and the hollow cavity left within the bark, has been filled with sand now hardened into stone like that without. This is a distinct process from petrification properly so called, in which the minute cells of the wood become so filled with mineral matter that the minutest parts of the structure are preserved. Some of the gray sandstones of this part of the section are of great thickness, and in them are the most important quarries of the Joggins grindstones, which are exported to all parts of the United States. These grindstones have been formed from beds of sand deposited in such a manner that the grains are of nearly uniform fineness, and they have been cemented together with just sufficient firmness to give cohesion to the stone, and yet to permit its particles to be gradually rubbed off by the contact of steel. A piece of grindstone may appear to be a very simple matter, but it is very rarely that rocks are so constituted as perfectly to fulfil these conditions, and hence the great demand for the Joggins stone.

This part of the section suggests many interesting inquiries respecting the mode of formation of some of its beds, but I postpone these till we arrive at those portions which show coal measures, properly so called, on a somewhat larger scale.

Proceeding along the coast, we find that the strata last described are overlaid by a series amounting to 2082 feet in vertical thickness, and differing from the last group of beds in containing fewer gray sandstones, no coal-seams or bituminous limestones, and comparatively few fossil plants, and these but imperfectly preserved. This series, then, consists in great part of reddish shales and reddish and gray sandstones. These, and indeed the greater part of the rocks composing the part of the section we have examined, must originally have consisted of beds of reddish sand and mud, spread over the bed of that ancient Carboniferous sea once tenanted by the shells of the Napan limestone, much in the same manner that layers of mud are now deposited in the Bay of Fundy.

We have now, after passing over beds amounting altogether to the enormous thickness of 7636 feet, reached the commencement of the true coal measures, or that part of the section which was examined in detail by Sir Charles Lyell and the writer in 1852 and 1853. Owing to the comparative softness of the rocks of the last group described,
they have in many places been worn down nearly to the level of the
beach, so that they cannot be very distinctly observed. Fortunately,
however, just where the section becomes most interesting, the beds
rise into a high cliff; and every one can be measured, and its mineral
character and fossil contents observed, by any person who is content
to labour diligently, and who is not too apprehensive that he may be
buried under the falling cliffs, which, especially in the spring and in
stormy weather, often send down very threatening showers of stones,
and sometimes terrible landslips. This portion of the section, then, I
shall give in detail, as one of the best specimens in the world of that
more wonderful series of fossiliferous beds constituting the great coal
measures of the Carboniferous period; but before doing so we may
complete this general view of the coast section.

Proceeding along the coast from the Joggins Mines, we find, toward
Ragged Reef, coal measures still exposed, but with fewer and thinner
beds of coal. At Ragged Reef there are again very important and
valuable beds of grindstone. Beyond this all the way to Shoulie
River, the coast shows sandstones and shales belonging to the Upper
Coal Formation. In this we no longer find beds of coal; red sandstones
and shales become more abundant, and the gray sandstones become
coarse and pebbly, holding rounded fragments of quartz and syenite
similar to that of the Cobequid Mountains. Fossils are not abundant;
but Calamites, Stigmaria, Lepidodendra, and large petrified trunks
of the pine trees of the coal formation, still appear. The general
aspect of these beds is, to a great extent, similar to that of the Mill-
stone-grit series, and this upper mass of barren coal measures may
perhaps be defined to be the weight laid upon the coals to press them
into the required consistency. The whole coal formation and its
accompaniments may thus be compared to a huge botanical drying
press. The millstone-grit is the lower board; the true coal measures
represent the plants laid out between leaves of clay and sand instead
of paper, and the Upper Coal Formation is the upper board and weight.

Toward Shoulie River the dip of the beds diminishes to 5°, and
beyond this little stream, which seems to be in the middle of the
synclinal, the dips change to N. E. (North 10° E. was observed on the
bank of the river), and the beds are repeated with these north-easterly
dips, until at Apple River they finally rest against those old rocks of
Cape Chiegnecto, which form the limit of the Cumberland trough in
this direction. I have not visited Apple River; but from Mr Donald
Fraser, an explorer who visited this place under my direction, I learn
that at Mill Brook, south-east of Apple River, there is a bed of coal
one inch in thickness, and dipping to the north at a small angle. It
is associated with coarse sandstones and conglomerate, and probably belongs to the Lower Coal Measures or Millstone-grit series, the marine limestones being apparently absent. At least this is the interpretation I should be inclined to put upon the appearances, in connexion with the fact that along the north side of the Cobequids the marine Lower Carboniferous is either absent or overlapped by the higher members of the series in all the localities which I have explored.

In the first edition of this work, I gave in detail the thickness of 2819 feet explored by Sir Charles Lyell and myself in 1852, omitting the rest. I think it better in the present edition to give a condensed view of the whole, dwelling more particularly on the constitution and accompaniments of the beds of coal, and adopting the numbers and divisions both of the general section of Sir W. E. Logan and of that contained in my paper on the South Joggins already referred to, and in a more recent paper on the "Conditions of Accumulation of Coal." In excuse for occupying so much space with such details, I may plead that this list presents perhaps the most minute anatomy of a coal-field ever given to the public; and that the reader who takes the trouble to examine it with care, will thereby obtain a very accurate conception of the arrangement and accompaniments of beds of coal, and also of their probable mode of accumulation. The fossil plants and animals referred to are described in the chapters devoted to fossils.

It will be observed that in this sectional view the order is *descending*, or the reverse of that followed in the above general sketch.

Sectional View of the Carboniferous Rocks exposed in the Coast of the South Joggins, Cumberland (order descending).

The "*Divisions*" and the numbers attached to the several beds of coal or "Coal groups" are those of Sir W. E. Logan's section of 1845. The numbers of "Subdivisions" in Roman numerals are those of the author's section of 1852.

Division 1.

This extends along the coast from Shoulie River to the vicinity of Ragged Reef, being nearly horizontal at the former place and gradually assuming a decided south-west dip towards the latter. It is 1617 feet in vertical thickness, and constitutes the upper part of the "Upper Coal Formation." It occupies the centre of the great synclinal of the western part of the Cumberland coal area, and represents the newest beds of the Carboniferous system.

The rocks are thick-bedded white and gray sandstones, passing in
some places into conglomerates with quartz pebbles, and interstratified with reddish and chocolate shales. The sandstones predominate.

Fossils are not numerous in these beds. Those found are *Dadoxylon materiarium*, of which there are many drifted trunks in the sandstones, in a blackened and calcified condition, *Calamites Suckovii*, *C. Cistii*, *Calamodendron approximatum*, *Lepidodendron undulatum*, *Lepidophloios parvus*, and *Stigmaria ficoides*. As in the Upper Coal Formation of Pictou, trunks of Conifers and Calamites are the most abundant fossils.

Division 2.

This occurs at Ragged Reef and its vicinity. Its thickness is 650 feet. It constitutes the lower part of the Upper Coal Formation. The rocks are white and gray sandstones with occasional reddish beds, and red and gray shales. The sandstones and shales are nearly in equal proportions. Underclays, or soils supporting erect plants, probably *Sigillaria*, occur at two levels.

Fossils are not numerous. Those collected were *Sigillaria scutellata* and *Stigmaria ficoides*, *Calamites Suckovii*, *Sphenopteris hymenophylloides*, *Alethopteris lonchitica*, *Cyclopteris heterophylla* (?), *Beinertia Gapperti*, and portions of the strobiles of two species of *Lepidophloios*, namely, *Lepidophyllum lanceolatum* and *L. trinerve*.

Division 3.

This extends in descending order from the vicinity of Ragged Reef to M'Cairn's Brook. Its thickness is 2134 feet. It includes the upper part of the "Middle Coal Formation," and is perhaps equivalent, in part at least, to the Upper Coal Measures of Great Britain, and to the Upper Coal Formation of American authors.

It includes 1009 feet of sandstone, almost all of which is gray, and 912 feet of gray and reddish shale and clay. It contains 22 beds of coal, all of small thickness, and most of them of coarse quality. Below, I give each bed of coal in detail, with its roof and floor and its fossils; and the intervening mechanical beds in brackets. The thickness of the roofs and floors is included in that stated for the intervening beds.

<table>
<thead>
<tr>
<th>Coal-group 1</th>
<th>Coal, 1 inch</th>
<th>0.1</th>
</tr>
</thead>
</table>

The roof holds abundance of *Alethopteris lonchitica*. The coal is coarse and earthy, with much epidermal and bast
tissue,* vascular bundles of ferns, and impressions of Sigillaria and Cordaites. It is a compressed vegetable soil or dirt-bed, resting on an argillaceous subsoil with rootlets of Stigmaria.

<table>
<thead>
<tr>
<th>Coal-group 2</th>
<th>ft</th>
<th>in</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal, 1 inch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbonaceous shale, 4 inches</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reddish underclay, Stigmaria.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The coal is coarse, earthy, and shaly. It contains Cordaites, fern stipes, and bast tissue.

<table>
<thead>
<tr>
<th>Coal-group 3</th>
<th>ft</th>
<th>in</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal, 1 inch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reddish sandy underclay, Stigmaria.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The coal is coarse and shaly. No fossils were observed, except stumps and rootlets of Stigmaria in the underclay.

<table>
<thead>
<tr>
<th>Coal-group 4</th>
<th>ft</th>
<th>in</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal, 2 inches</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reddish gray shale,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gray and redish argillaceous underclay, Stigmaria.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The coal is coarse and earthy. No fossils were observed, except Stigmaria rootlets in the underclay. This and the last coal are to be regarded merely as fossil vegetable soils or dirt-beds.

<table>
<thead>
<tr>
<th>Coal-group 5</th>
<th>ft</th>
<th>in</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal, 2 inches</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gray argillo-arenaceous underclay, Stigmaria.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The coal is filled with leaves of Cordaites borassifolia, dividing it into thin papery layers. The underclay has many large branching roots of Stigmaria.

<table>
<thead>
<tr>
<th>Coal-group 6</th>
<th>ft</th>
<th>in</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal, 3 inches</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gray argillo-arenaceous underclay, Stigmaria.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This coal is composed of flattened bark of Sigillaria, of which there are many layers in the thickness of the bed. The species are not distinguishable.

* For explanation as to the nature of these and other structures in the coal, see chapter on "Plants of the Coal Formation."
(Gray sandstone and shale. One underclay with
 Stignaria)
 12.6

Gray argillaceous shale.
Coal, 1 inch.
Gray argillaceous underclay, *Stignaria*, 1 ft. 6 in.
Coal, 2 inches.
Gray argillaceous underclay, *Stignaria*, 4 inches.
Coal, 1 inch.
Gray argillaceous underclay, *Stignaria*.

Coal-group 7

This is an alternation of thin coarse coals or fossil vegetable
soils with *Stignaria* subsoils. The roof-shale contains erect
Calamites, which seem to have been the last vegetation which
grew on the surface of the upper coal.

(Gray and reddish sandstones and shales) 73.0

Coal-group 8
Red and gray shale.
Coal, 1 inch.
Gray hard underclay, *Stignaria*.

This coal contains flattened trunks of *Sigillaria scutellata*,
or an allied species, and of other *Sigillaria*, also abundance of
vascular bundles of ferns and portions of epidermal tissues of
different plants.

(Gray sandstone and red and gray shales, *Stignaria*
in the upper bed, and prostrate *Sigillaria* and
Cordaites in some of the sandstones and shales) 490.0

Coal-group 9
Gray argillaceous shale, ironstone nodules.
Coal, 3 inches.
Argillo-arenaceous underclay, *Stignaria*.

The roof of this coal holds prostrate *Sigillaria* of three species
and *Cordaites borassifolia*. The coal is hard and shining, with
impresions of flattened *Sigillaria*, also of *Cordaites*, *Asterophyllites*,
Carpolites, and vascular bundles of ferns.

(Underclay and reddish gray shale) 6.0

Coal-group 10
Reddish gray shale.
Coal and coaly shale, 8 inches.
Gray argillaceous underclay, nodules of ironstone,
and *Stignaria*, 2 feet.
Coal, stony and compact, 2 inches.
Gray argillaceous underclay, *Stignaria*.

The roof-shale has obscure impresions of plants, apparently
petioles of ferns. The upper coal is thinly laminated and full
of leaves of *Cordaites* and ferns, among which is *Alethopteris
lonchitica*. The lower coal is compact, resembling cannel, and
has many vascular bundles of ferns. It seems to be composed
of herbaceous matter macerated in water and mixed with mud.

(Gray sandstone and shale with nodules of ironstone) 23.0

Coal-group 11
Gray argillaceous shale.
Coal, shaly, 3 inches.
Arenaceous underclay, *Stignaria*.
0.3
An erect ribbed Sigillaria appears in the roof-shale. The coal contains many flattened Sigillaria, also Trigonocarpa, Cordaites, and vascular bundles of ferns.

<table>
<thead>
<tr>
<th>Coal-group 12</th>
<th>Coal, 2 inches</th>
<th>Argillaceous underclay, ironstone, and Stigmaria.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Carbonaceous shale.</td>
</tr>
</tbody>
</table>

This coal is hard and laminated, with many vascular bundles of ferns upon its surfaces.

<table>
<thead>
<tr>
<th>Coal-group 13</th>
<th>Coal, 7 inches</th>
<th>Argillaceous underclay, ironstone, and Stigmaria.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Carbonaceous underclay.</td>
</tr>
</tbody>
</table>

The roof contains erect stumps, not distinctly marked. The coal has indications of bark of Sigillaria, and is hard and shining, with a coarse earthy layer in the middle.

<table>
<thead>
<tr>
<th>Coal-group 14</th>
<th>Coal, 4 inches.</th>
<th>Gray argillo-arenaceous underclay, ironstone, and Stigmaria, 1 foot 6 inches.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Coal, 2 inches.</td>
</tr>
</tbody>
</table>

The upper coal has impressions of bark of trees and Cordaites, especially in its upper part.

<table>
<thead>
<tr>
<th>Coal-group 15</th>
<th>Argillaceous underclay, ironstone, and Stigmaria, 1 ft.</th>
<th>Coal, 1 inch</th>
</tr>
</thead>
</table>

The upper shaly bed is a coal interlaminated with shale, which enables the nature of the coaly matter to be ascertained. It contains flattened Sigillaria of several species, Calamites, Cordaites, Cyperites, leaves of Sigillaria, and Lepidophyllum. The clay parting is the roof of the lower coal, and contains Cyperites and Cordaites. It has been converted into an underclay by the growth of Sigillaria upon it in the formation of the upper bed of coaly shale. The lower coal is compact, but showed an impression of a Calamite.

<table>
<thead>
<tr>
<th>Coal-group 16</th>
<th>Reddish argillaceous shale, 2 inches</th>
<th>Reddish argillaceous shale, 2 inches</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coal and carbonaceous shale, 2 inches</td>
<td>Coal and carbonaceous shale, 2 inches</td>
</tr>
</tbody>
</table>
The roof supports an erect tree, a *Sigillaria*, 8 feet high and 1 foot in diameter. It is also rich in *Cyperites*, *Cordaites*, and *Calamites*. The coal contains *Calamites* and also discigerous tissue of Conifers or *Sigillaria*.

(Gray sandstones and reddish and gray shales, with several Stigmarian underclays, and coaly films or thin vegetable soils. One of the underclays supports large stumps of *Sigillaria*, with *Cyperites*, *Cordaites*, and *Lepidodendron* in the bed around their bases).

Red and gray argillaceous shale.

Coal, 1 inch.

Gray argillaceous arenaceous underclay, *Stigmaria*, 4 ft.

Coal-group 17.......

Coal, 4 inches.

Carbonaceous shale, 4 inches.

Coal, 1 inch.

Gray arenaceous underclay, *Stigmaria*.

The upper layer of coal consists in part of leaves of *Cordaites*. The middle layer has much *Cordaites* and *Cyperites*.

(Underclay and gray shale) 2 3

Gray shale, as above.

Coal-group 18.......

Coal, 3 inches.

Gray arenaceous underclay, *Stigmaria*.

(Gray sandstone, and red and gray shale. Stigmarian soils at two levels) 26 0

Reddish shale.

Coal-group 19.......

Coal, 1 inch.

Red argillaceous underclay, *Stigmaria*.

The roof contains an erect *Sigillaria*. The coal and that of the previous bed were not well seen.

(Gray sandstone and red and gray shales, with many drift-trunks and erect *Sigillaria* at four levels) 222 0

Gray shale.

Coal-group 20.......

Coal, 1 inch.

Red and gray underclay, *Stigmaria*.

This coal contains much *Cordaites*.

(Gray and red shales and gray sandstone. One Stigmarian soil, and resting on it carbonaceous shale with *Cyperites*) 16 3

Gray shale.

Coal, 2 inches.

Coal-group 20a†

Coal, 1 inch.

Underclay, 1 inch, *Stigmaria*.

Coal, 3 inches.

Argillaceous underclay, ironstone, and *Stigmaria*.

These coals contain mineral charcoal, showing scalariform and epidermal tissues. The coals are impure, and were probably concealed at the time of Sir W. E. Logan’s visit.

* By this term I continue, for convenience, to designate the leaves of *Sigillaria*.

† I designate in this way coal-groups not noticed in Logan’s section.
The Carboniferous System.

(Sandstone and red and gray shale, with one Stigmari-"in.
an soil) 93 3

Coal-group 21.... { Coal and carbonaceous shale, 2 inches 0 2
 Gray argillaceous underclay, Stigmaria.

In the bed above the roof-shale are erect Calamites. The coal is an uneven or irregular bed, and consists of flattened Sigillaria, Cyperites, Cordaites, and ferns.

 (Gray and reddish sandstones and shales, with drift-trunks of Dadoxylon materiarium, Sigillaria, and Calamites) 334 0

Coal-group 22.... { Gray and red shale, nodules of ironstone.
 Coal and carbonaceous shale, 2 inches 0 2
 Gray argillo-arenaceous underclay, Stigmaria.

This coal consists of flattened bark of Sigillaria with Cordaites and vascular bundles of ferns. It contains also remains of fishes. Among these was found a tooth of Ctenopteryx. The underclay includes stumps of Stigmaria, as well as rootlets.

 (Gray sandstone and shale, with one Stigmarian soil supporting erect stumps of Sigillaria) 68 0

Total thickness of Division 3, according to Logan's measurements 2159 8

Division 4.

This division of the section extends from McCaugh's Cove to the end of the high cliff beyond "Coal-mine Point." It corresponds to the lower part of the Middle Coal Formation, and probably to the Lower Coal Formation of some American authors. Its thickness, according to the measurements of Sir William E. Logan, is 2539 feet. It is remarkable for the prevalence of gray sandstones and gray and dark-coloured shales. It constitutes the part of the section re-examined by Sir C. Lyell and myself in 1852; and in the memoir which I subsequently published, it is divided into 27 groups or Subdivisions. For facility of reference, these groups are indicated by the Roman numerals in the following pages, beginning with the highest group, XXVII.

XXVII.

Coal-group 1.... { Bituminous limestone and calcareo-bituminous shale, ft. in.
 4 feet. Coal, 1 foot 5 0
 Gray argillo-arenaceous underclay, Stigmaria.

The roof has Naiadites carbonarius and N. elongatus, Spirorbis carbonarius, scales of Rhizodus, and obscure vegetable fragments. The coal contains flattened Sigillaria, Cordaites, Alethopteris lonchitica, Cyperites, Calamites Nova-scotica, and many vascular bundles of ferns.
SECTION OF THE SOUTH JOGGINS.

(Gray sandstone and shale, with six underclays and
163
erect Sigillaria at two levels; also a thin shale

<table>
<thead>
<tr>
<th>ft.</th>
<th>in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>0</td>
</tr>
</tbody>
</table>

One of the sandstones has scales and teeth of a
large fish (? Illichius) and plants covered with

Spiororia

<table>
<thead>
<tr>
<th>Gray argillaceous shale.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal, 3 inches</td>
</tr>
<tr>
<td>Clay, 3 inches</td>
</tr>
<tr>
<td>Coal, 1 inch</td>
</tr>
</tbody>
</table>

Coal-group 2

| Clay, 1 inch. |
| Coal, 1 inch |
| Shale, 4 inches |
| Coal, 3 inches |

(Gray argillo-arenaceous underclay, *Stigmaria*.

The roof has numerous vegetable fragments and flattened
Sigillaria and *Calamites*. One of the coals contains mineral
charcoal, showing bast tissue, scalariform tissue, and fragments
of epidermis. The lower coal has bark of *Sigillaria, Stigmaria*,
and *Cyperites*, also numerous *Trigonocarpa* and vascular bundles
of ferns. The clay partings and the underclay have obscure
rootlets, probably of *Stigmaria*.

| Coal, 3 inches |
| Clay, 1 inch |
| Coal, 1 inch |

(Arenaceous underclay and shale with remains of

Stigmaria

<table>
<thead>
<tr>
<th>Gray argillaceous shale.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal, 3 inches</td>
</tr>
</tbody>
</table>

Coal-group 3

| Hard argillo-arenaceous underclay, *Stigmaria*.

| Coal, 1 inch. |
| Carbonaceous shale, 4 inches. |
| Coal, 1 inch |
| Carbonaceous shale, 8 inches. |

The coal contains obscure flattened plants. The coal is hard
or shaly, with vascular bundles of ferns and bast tissue. The
carbonaceous shales yield *Cordaites borassifolia, Alethopteris
lonchitica, Calamites, Sigillaria*, and *Cyperites*. The gray shale

| Underclay and gray arenaceous shale | Carbonaceous shale, 6 inches. |
|------------------------------------|
| Coal, 9 inches. |
| Gray argillaceous shale. |
| Coal, 1 inch. |
| Carbonaceous shale, 4 inches. |

Coal-group 4

| Coal, 1 inch. |
| Carbonaceous shale, 8 inches. |
| Coal, 2 inches. |
| Gray shale, 1 foot 7 inches. |
| Coal, 8 inches |

<table>
<thead>
<tr>
<th>Argillo-arenaceous underclay, Stigmaria.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 10</td>
</tr>
</tbody>
</table>

The roof contains obscure flattened plants. The coal is hard
or shaly, with vascular bundles of ferns and bast tissue. The
carbonaceous shales yield *Cordaites borassifolia, Alethopteris
lonchitica, Calamites, Sigillaria*, and *Cyperites*. The gray shale

| Coal, 1 inch. |
| Carbonaceous shale, 4 inches. |

(Arenaceous underclay and shale with remains of

Stigmaria

<table>
<thead>
<tr>
<th>Gray argillaceous shale.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal, 3 inches</td>
</tr>
</tbody>
</table>

Coal-group 3

| Hard argillo-arenaceous underclay, *Stigmaria*.

| Coal, 1 inch. |
| Carbonaceous shale, 4 inches. |
| Coal, 1 inch |
| Carbonaceous shale, 8 inches. |

The coal contains obscure flattened plants. The coal is hard
or shaly, with vascular bundles of ferns and bast tissue. The
carbonaceous shales yield *Cordaites borassifolia, Alethopteris
lonchitica, Calamites, Sigillaria*, and *Cyperites*. The gray shale

| Underclay and gray arenaceous shale | Carbonaceous shale, 6 inches. |
|------------------------------------|
| Coal, 9 inches. |
| Gray argillaceous shale. |
| Coal, 1 inch. |
| Carbonaceous shale, 4 inches. |

Coal-group 4

| Coal, 1 inch. |
| Carbonaceous shale, 8 inches. |
| Coal, 2 inches. |
| Gray shale, 1 foot 7 inches. |
| Coal, 8 inches |

<table>
<thead>
<tr>
<th>Argillo-arenaceous underclay, Stigmaria.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 10</td>
</tr>
</tbody>
</table>
parting has erect stumps, apparently of Sigillaria. The upper shales and coals are very pyritous, and decompose when exposed to the weather—an indication that sea-water had access to these beds while the vegetable matter was still recent.

XXVI.

<table>
<thead>
<tr>
<th>(Gray argillaceous sandstone and red and gray shale, with two Stigmarian soils. Footprints, probably of Dendrerpeton, and rain-marks occur in these beds; and it was in one of them that Mr Marsh discovered the vertebrae of Eosaurus Acadianus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ft. in.</td>
</tr>
</tbody>
</table>

XXV.

<table>
<thead>
<tr>
<th>Bituminous limestone, 2 feet.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal, ½ inch.</td>
</tr>
<tr>
<td>Argillo-arenaceous clay, Stigmaria, 6 inches.</td>
</tr>
<tr>
<td>Coaly shale, ½ inch.</td>
</tr>
<tr>
<td>Gray argillo-arenaceous shale, ironstone nodules, Stigmaria, 1 foot 6 inches.</td>
</tr>
<tr>
<td>Coal shale, 1 inch.</td>
</tr>
<tr>
<td>Gray shale, ironstone nodules, Stigmaria, 2 ft. 6 in.</td>
</tr>
<tr>
<td>Coal, 6 inches.</td>
</tr>
<tr>
<td>Argillo-arenaceous underclay, Stigmaria.</td>
</tr>
</tbody>
</table>

The bituminous limestone of the roof contains Naiadites carbonarius and N. elongatus, fish-scales, and cyprids. The upper layer of coal contains impressions of Sigillaria and Lepidodendron, on some of which are shells of Spirorbis. It has epidermal tissues, vascular bundles of ferns, and reticulated vessels. The coaly shales are of the nature of coarse coals, but with numerous thin layers of shaly matter. The lower coal contains petioles of ferns and Cordaites matted together, and numerous Cardiocarp. The two thick clay partings and the underclay are Stigmarian soils.

XXIV.

<table>
<thead>
<tr>
<th>(Gray sandstone and chocolate and gray shales, with two Stigmarian soils)</th>
</tr>
</thead>
<tbody>
<tr>
<td>147 0</td>
</tr>
</tbody>
</table>

XXIII.

<table>
<thead>
<tr>
<th>Carbonaceous shale, passing downward into bituminous limestone, 1 foot 10 inches.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal, 4 inches.</td>
</tr>
<tr>
<td>Argillo-arenaceous underclay, Stigmaria.</td>
</tr>
</tbody>
</table>

The roof contains Naiadites carbonarius, Cythere, Spirorbis, fish-scales, and coprolites. The coal is hard and laminated, and has on its surfaces leaves of Cordaites and vascular bundles of ferns. It is remarkable for containing scattered remains of a number of species of fishes belonging to the genera Ctenop-
tychius, Diplodus, Palaeoniscus, and Rhizodus. The underclay has rootlets of Stigmaria, and the bed below this has large roots of the same.

(Gray sandstone and shale, the latter with nodules of ironstone. Erect trees at one level) 30 0

Gray shale.

Coal, 10 inches.

Carbonaceous shale and coal, 7 inches.

Coal, 2 feet 1 inch.

Carbonaceous shale, 1 foot 6 inches.*

Coal, 1 foot 6 inches

Gray argillo-arenaceous underclay, Stigmaria.

This is the bed worked at the Joggins as the "Main Seam;" and I believe that it improves somewhat in mining it inward from the shore. The roof has afforded Sigillaria catenoides and other species, Alethopteris lonchitica, Cordaites borassifolia, Lepidodendron elegans, Trigonocarpa, Naiadites, Spirorbis, Cythere, fragments of insects. (?) The mineral charcoal contains bast tissue, scalariform, epidermal, and cellular tissues. In the compact part of the coal there is dense cellular and epidermal tissue. The roof is especially rich in Cordaites, sometimes with Spirorbis adherent.

(Gray sandstone and shale, with many ironstone nodules in the shale, and erect Sigillaria and underclays at five levels. One of the latter has large stumps of Stigmaria and a thin coaly layer resting on it) 68 0

Gray shale with nodules of ironstone.

Coal, 2 inches.

Gray shale, 4 inches.

Coal, 3 inches.

Carbonaceous shale, 1 foot 3 inches.

Coal, 1 inch.

Argillaceous shale, ironstone nodules, 4 feet.

Coal, 1 foot 7 1

Dark argillo-arenaceous underclay, ironstone nodules, and Stigmaria.

The roofs of the first and second beds in this group are among the richest in fossils in the Joggins section. They have afforded Pecopteris lonchitica, Cyclopteris, Cyperites, Cordaites borassifolia, Cardiocarpum fluitans, Sigillaria elegans, Lepidophloios Acadianus, Lepidodendron undulatum, Finnularia, Trigonocarpa, etc.; also Diplostylus Dawsoni; † Euryp-terus, Cythere, Naiadites, and Spirorbis attached to plants. The

* Thins in mining to the N.E. The details of this seam have been corrected in this edition from a late report by Mr Rutherford.
lower coal, called locally the "Queen's Vein," has in its mineral charcoal bast-cells, uniporous, rariportous, and multiporous wood-cells, scalariform vessels, epidermal tissue, and vascular bundles of ferns, also stipes of ferns and bark of Sigillaria. The mineral charcoal occurs principally in a thick layer near the bottom of the bed. Its roof has trunks of Lepidodendron, Lepidophloios, and Sigillaria, fossilized by carbonate of iron. The upper part of the lowest underclay is dark and carbonaceous, with Stigmarian rootlets.

XXII.
(Gray sandstones, gray and chocolate shales with ironstone nodules; three underclays and erect Calamites and Sigillaria in three beds). 110 0

XXI.
Coal-group 9...... Gray shale and ironstone nodules. 1 3
Coal-group 10...... Coal and coaly shale, 1 foot 3 inches Argillaceous underclay, Stigmaria.

The roof contains erect Sigillaria, Stigmaria, Calamites, and Cordaites. The coaly shale has fern-stipes and Cordaites. The coal itself is coarse and shaly, and has a layer of mineral charcoal containing bast and epidermal tissue. There are also in the coaly remains of Calamites and Cordaites, and fragments, possibly, of insects.

(Ray and reddish shales with nodules of clay-ironstone, and gray and reddish sandstone. One underclay supporting a coaly film, and erect trees at two levels) 28 6
Chocolate shale.
Coal and coaly shale, 2 inches.
Coal and coaly shale, 6 inches. 1 0
Argillaceous underclay, Stigmaria.

The upper coal contains flattened Sigillaria and Stigmaria. The lower bed is hard and unequal, with curved laminae and obscure traces of petioles of ferns. The mineral charcoal has bast and scalariform tissues.

XX.
(Gray and reddish shales and gray sandstones. Erect Calamites in one bed. Four underclays) 78 6

XIX.
Coal-group 11...... Chocolate shale.
Coal and coaly shale, 8 inches 0 8
Argillaceous underclay, Stigmaria.

The roof has Cordaites, Calamites, and rootlets. The coal contains much mineral charcoal with the structure of dense
SECTION OF THE SOUTH JOGGINS.

aporous bast tissue; it also contains *Cyperites* and many vascular bundles of ferns, with flattened trunks of *Sigillaria*.

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Foot</th>
<th>Inch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal-group 12</td>
<td>Coal and coaly shale, 1 foot</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Coal-group 13</td>
<td>Argillaceous underclay, Stigmaria.</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

The roof contains erect *Sigillaria* and *Calamites*, also *Cordaites* with *Spiorbis* attached, and *Lepidodendron*. The coal has in one layer much *Cordaites*, in others it includes an immense number of specimens of *Sporangites papillata*; it has also bast tissue, epidermal tissue, and discigerous tissue.

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Foot</th>
<th>Inch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal-group 13a</td>
<td>Coal, 8 inches</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Coal-group 14</td>
<td>Argillaceous underclay, Stigmaria.</td>
<td>8</td>
<td>10</td>
</tr>
</tbody>
</table>

The roof has much *Cordaites*. The shaly portions of the coal contain *Sigillaria elegans*, *Aethopteris lonchitica*, *Cordaites borassifolia*, *Lepidodendron*, *Diplotegium*, *Trigonocarpum*, *Stigmaria*, and *Sporangites gibra*, also vascular bundles of ferns and bast tissue.
On the roof of the upper coal was a fine ribbed Sigillaria with Stigmarian roots. In the roof and shaly partings are Sigillaria Brownii, S. Schlotheimiana, and other species, Stigmaria, Lepidodendron, Calamites, Cordaites, Sporangites glabra, Alethopteris lonchitica, Sphenopteris latifolia, Pinnularia, and Cyperites; also Cythere, Naiadites, and fragments of reptilian (?) bones. The coal is pyritous, and exhibits impressions of the bark of Sigillaria; it contains also bast tissue, scalariform tissue of Sigillaria and multiporous tissue of Sigillaria and Calamodendron.

(Sandstone and shale, erect Calamites and Sigillaria with Stigmaria. The erect trees contain reptilian remains of the genera Dendrerpeton, Hylobothius, and Hylerpeton; also Pupa vesta, Xylophus Sigillaria, and remains of insects) 10 0

Coal-group 15.. Coal, 6 inches 0 6

Coal-group 15a... Arenaceous underclay, Stigmaria.

The erect trees above mentioned are rooted in the roof of this coal. It contains Cyperites, Lepidodendron, Trigonocarpus of two species, Sphenophyllum, Alethopteris lonchitica, Cordaites, and Asterophyllites. There are shells of Spirorbis on some of the plants. The coal contains layers of bark of Sigillaria and leaves of Cordaites, and much bast tissue, with scalariform, uniporous, and reticulated tissues, probably of Sigillaria.

(Sandstones and shales; erect Calamites and Stigmaria) 21 0

Coal-group 15a... Coal, 4 inches 0 4

Coal-group 15a... Arenaceous underclay, Stigmaria.

The roof contains Calamites, Sigillaria, Alethopteris lonchitica, Pinnularia, Lepidodendron, Cyperites, Sporangites, and Spirorbis. One Sigillaria extends 30 feet without branching. The roof supports an erect tree. The coal is filled with flattened stems of Sigillaria lying in different directions, also flattened Lepidodendra; and in its mineral charcoal it has beautiful porous and scalariform tissues.

XIV.

(Gray sandstone and gray and red shales. Many prostrate trunks of Sigillaria and Lepidodendron, one underclay, and erect trees at one level) 68 0

Shale with the aspect of underclay.

Coal-group 16... Coal and coaly shale 6 inches 0 6

Coal-group 16... Argilo-arenaceous underclay, ironstone, and Stigmaria.

This bed was not well exposed, and afforded no fossils.
SECTION OF THE SOUTH JOGGINS.

169

<table>
<thead>
<tr>
<th>(Gray sandstone and shale with one underclay)</th>
<th>ft. in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gray shale.</td>
<td>25 6</td>
</tr>
<tr>
<td>Coal-group 17.</td>
<td></td>
</tr>
<tr>
<td>Coal and coaly shale 3 inches</td>
<td>0 3</td>
</tr>
<tr>
<td>Argillo-arenaceous underclay, Stigmaria.</td>
<td></td>
</tr>
</tbody>
</table>

The roof has vegetable fragments and Cordaites. The coal is hard and coarse, and contains flattened broad-ribbed Sigillaria, Cordaites, and vascular bundles of ferns.

| (Shale and sandstone, erect trees at one level) | 31 3 |

XIII.

<table>
<thead>
<tr>
<th>(Gray sandstone and shale with several beds, Stigmaria)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Argillaceous shale.</td>
<td>29 0</td>
</tr>
<tr>
<td>Coal-group 19.</td>
<td></td>
</tr>
<tr>
<td>Coal 8 inches</td>
<td>0 8</td>
</tr>
<tr>
<td>Argillo-arenaceous underclay.</td>
<td></td>
</tr>
</tbody>
</table>

The roof has an erect Sigillaria. The coal is shaly and laminated. It contains much Cordaites, also Lepidodendron, Calamites, and Alethopteris lonchilica. In one layer there are Naiadites, Spirorbis, and scales of fishes.

<table>
<thead>
<tr>
<th>(Gray sandstone and shale)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal and clay partings, 2 feet 4 inches</td>
<td>4 10</td>
</tr>
<tr>
<td>Coal, 1 inch</td>
<td></td>
</tr>
<tr>
<td>Coal-group 20.</td>
<td></td>
</tr>
<tr>
<td>Bituminous limestone, 1 foot 6 inches.</td>
<td>6 7</td>
</tr>
</tbody>
</table>

The roof has Naiadites, scales and teeth of fishes, Cythere, and Spirorbis. The coal is hard and coarse, with vascular bundles of ferns and prostrate Sigillaria.

<table>
<thead>
<tr>
<th>(Shale and sandstone)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal 8 inches</td>
<td></td>
</tr>
<tr>
<td>Coal-group 21.</td>
<td></td>
</tr>
<tr>
<td>Coal, 10 inches</td>
<td>0 10</td>
</tr>
<tr>
<td>Argillo-arenaceous underclay, Stigmaria.</td>
<td></td>
</tr>
</tbody>
</table>

The roof has Naiadites, Spirorbis attached to plants, and small rhombic fish-scales. The coal alternates with limestone at the top, and contains remains of Sigillaria, Sporangites, and vascular bundles of ferns.

<table>
<thead>
<tr>
<th>(Sandstone, and gray and black shale with coaly layers)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gray shale and calcareo-bituminous shale.</td>
<td>21 0</td>
</tr>
<tr>
<td>Coal-group 21.</td>
<td></td>
</tr>
<tr>
<td>Coal, 10 inches</td>
<td>0 10</td>
</tr>
<tr>
<td>Argillo-arenaceous underclay, Stigmaria.</td>
<td></td>
</tr>
</tbody>
</table>

The roof has obscure vegetable fragments and Naiadites. The coal contains vascular bundles of ferns, bast tissue, uniporous cells, and scalariform and reticulated vessels.

<table>
<thead>
<tr>
<th>(Gray sandstone and shale. Two underclays)</th>
<th>20 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gray shale.</td>
<td></td>
</tr>
<tr>
<td>Coal-group 22.</td>
<td></td>
</tr>
<tr>
<td>Coal and coaly shale, 2 inches</td>
<td>0 2</td>
</tr>
<tr>
<td>Argillo-arenaceous underclay, Stigmaria.</td>
<td></td>
</tr>
</tbody>
</table>

This bed was not well exposed.
THE CARBONIFEROUS SYSTEM.

(Sandstone and shale, with one erect tree and two
underclays) 12 0
Coaly and gray shale.
Coal-group 23...... Coal and coaly shale, 4 inches.
Bituminous limestone, 4 inches.
Coal and coaly shale, 7 inches
Argillo-arenaceous underclay, Stigmaria.

The roof has an erect tree, also Cordaites and Spirorbis.
The shale and bituminous limestone contain Sigillaria and
Lepidodendron, also many large furrowed trunks, probably old
Sigillariae or Lepidodendra.

XII.
(Sandstone, shale, and calcareo-bituminous shale,
with three underclays) 26 0
Coal-group 24...... Calcareo-bituminous shale.
Coal and coaly shale, 1 inch
Argillo-arenaceous underclay, Stigmaria.

This bed was not exposed.
(Underclay and shale) 5 0
Gray shale.
Coal-group 25..... Coal and coaly shale, 8 inches
Argillo-arenaceous underclay, Stigmaria.

The roof has Alethopteris lonchitica, Cordaites, and petioles
of ferns. The coal shows bast tissue and remains of Sigillaria
and Calamites.

(Gray sandstone and shale, with erect Sigillaria at
four or five levels, and two Stigmarian under-
clays) 117 8
Coal-group 26 Coaly shale, 4 inches
Argillo-arenaceous underclay, Stigmaria.

This bed was not exposed.
(Underclay and shale) 13 0
Gray shale.
Coal-group 27...... Coal, 3 inches
Argillo-arenaceous underclay, Stigmaria.

This bed was not well exposed.
(Gray sandstone and shale, with bituminous shale
and limestone, and erect Calamites) 64 0
XIII.

(Calcarea-bituminous shale.
Coal and coaly shale, 7 feet.
Underclay, Stigmaria, 4 feet.
Coal and coaly shale, 1 foot.
Coal, 6 inches
Arenaceous underclay, Stigmaria.

This group is a series of thin coaly layers and underclays.
The roof has Naiadites carbonarius and N. elongatus, also
Cythere and scales of fishes. The coal contains bast tissue
and the remains of Sigillaria, Lepidodendron, and
Cordaites. In the coal are also found remnants of tree
stumps, also botanical remains.

Coal-group 28......

The roof has Alethopteris lonchitica, Cordaites, and petioles
of ferns. The coal shows bast tissue and remains of Sigillaria
and Calamites.

(Gray sandstone and shale, with bituminous shale
and limestone, and erect Calamites) 64 0
and different kinds of scalariform and epidermal tissues. In
the lower bed is a coaly stump and an irregular layer of
mineral charcoal, arising apparently from the decay of similar
stumps.

Coal-group 29....	Coal, coaly shale and ironstone, 6 feet.	21 0
	Coal, and coaly shale, 5 feet.	29 0
	Underclay, 6 feet.	

This is a group of unusually thick beds, indicating long
quiescence. The roof includes laminae of coal, some of them
composed of the bark of *Sigillaria catenoides*, also an erect
Sigillaria rooted in the coal below. The coal and coaly shale
exhibit remains of *Sigillaria, Cordaites, Lepidophyllum*, and
Cyperites; and one layer has many hard pyritized fragments of
wood. The mineral charcoal has vascular bundles of ferns,
coarse scalariform tissue, and porous tissue. The underclay
rests on a bed with *Nautilites*.

| Coal-group 29a.... | Coal, 4 feet. | 4 0 |
| (Underclay, *Stigmara*, and gray and carbonaceous
 shales) | | |

The roof has obscure fragments of plants and stumps in the
state of mineral charcoal. The coal shows impressions of flattened trunks, probably *Sigillaria*. This coal contains a great
variety of tissues, especially bast and scalariform of different
kinds, and epidermal. My measurements in this part of the
section differ somewhat from those of Sir W. E. Logan, who,
I suppose, had not a good opportunity of examining the two
last coals. The coal 29a is now mined by an adit from the
shore, called the "New Mine."

Coal-group 30....	Coal, 2 inches.	3 0
	Coal, 3 inches.	
	Coal, 1 inch.	

The roof has bark of *Sigillaria* preserved in ironstone. The
ccoal is pyritous, and consists of layers of mineral charcoal.
alternating with bright coal; it has obscure impressions of plants and bast tissue in the mineral charcoal.

Coal-group 31

- **Gray shale and sandstone.** One underclay, and ft. in. erect *Cordaites* and *Sigillaria* at two levels. 19 0
- **Gray sandstone.**
- **Coal and coaly shale, 1 foot.**
- **Underclay, *Stigmaria*, 1 foot.**
- **Coaly shale, 6 inches.**
- **Coal, 2 inches.**

The roof contains *Sigillaria*, and the coal has flattened impressions of the same. This coal is remarkable as having a roof of sandstone. Its underclay is also peculiar. It is about 9 feet in thickness, and contains *Stigmaria* and nodules of ironstone throughout. It rests on a bituminous limestone containing *Naia* and scales of fishes, and also large roots of *Stigma* evidently *in situ*. This bed gives more colour to the idea of *Stigmaria* having grown under water than any other bed at the Joggins. I believe, however, that it merely implies the drying-up of a pond or creek into a swamp, subsequently inundated at intervals with muddy water.

- **Argillaceous underclay, *Stigmaria*.**
- **Underclay and bituminous limestone, succeeded by sandstone and shale.** 27 8

Coal-group 32

- **Gray shale.**
- **Coal, and coaly shale, 2 feet 4 inches.**
- **Argillaceous underclay, *Stigmaria*.**

This is a series of thin coaly bands alternating with shales. The roof contains trunks of *Sigillaria, Cordaites, Alethopteris*, and *Cyperites*. The coal has numerous flattened trunks of *Sigillaria*.

- **Gray and reddish sandstone and shale.** Five underclays, one with a film of coal and erect *Cordaites* at two levels. 149 0
- **Coaly shale.**
- **Coal, 1 inch.**
- **Argillaceous underclay, *Stigmaria*.**

The roof has flattened trunks and vegetable fragments. The coal is a mere soil, with remains of *Sigillaria* and *Cordaites*, and vascular bundles of ferns.

- **Red and gray sandstone and shale.** 45 0
- **Gray shale.**
- **Coal and coaly and gray shale (underclay).**
- **Argillaceous underclay, *Stigmaria*.**

These layers, though not of sufficient importance to be measured as coal-bands, are most interesting as furnishing examples of the root-clasping layer on *Stigmaria*, and of the overlying *Sigillaria* and coaly shale by which the stumps of *Cordaites* and *Naia* were shadowed. The coaly shale had been impregnated with coprolite, and contained numerous nodules of ironstone and occasional gray sandstone bands.

Coal-group 33

- **Gray shale.**
- **Coal, and coaly shale, 4 feet.**
- **Argillaceous underclay, *Stigmaria*.**

This is a series of thin coaly bands alternating with shales. The roof contains trunks of *Sigillaria, Cordaites, Alethopteris*, and *Cyperites*. The coal has numerous flattened trunks of *Sigillaria*.

- **Gray sandstone and shale.** Five underclays, one with a film of coal and erect *Cordaites* at two levels. 149 0
- **Coal, 1 inch.**
- **Argillaceous underclay, *Stigmaria*.**

These layers, though not of sufficient importance to be measured as coal-bands, are most interesting as furnishing examples of the root-clasping layer on *Stigmaria*, and of the overlying *Sigillaria* and coaly shale by which the stumps of *Cordaites* and *Naia* were shadowed. The coaly shale had been impregnated with coprolite, and contained numerous nodules of ironstone and occasional gray sandstone bands.

* The red sandstone, gray shale, and underclays are succeeded by blue-gray sandstone and *Spirobus* and *Sigillaria*, and by argillaceous sandstone and *Cyatheales*.
examples of what may be termed rudimentary coal-beds. Each layer is plainly composed of prostrate trunks of Sigillaria resting on Stigmarian underclay, and mixed with Cordaites, Alethopteris lonchitica, and vascular bundles of ferns. In one layer is a stump in the state of mineral charcoal. In another there are coprolites, scales of fishes, Spirorbis, and fragments of Crustaceans. In a reddish shale above these beds there is a patch of gray sandstone interlaced with Stigmarian roots, as if the sand had been prevented from drifting away by a tree or stump.

(Reddish and gray sandstones and shales, with three or more underclays, having their coaly layers holding Sigillaria. Erect Sigillaria at two levels) 246 0

Underclay, with ironstone and Stigmaria.

Coal, and coaly shale, 2 inches.

Coal-group 34....

Underclay, with ironstone and Stigmaria, 4 feet.

Coal, and coaly shale, 2 inches

Argillo-arenaceous underclay, Stigmaria.

Only obscure vegetable fragments were observed.

(Gray and reddish sandstone and shale, with Stigmaria) 13 10

Coal-group 35....

Coaly shale, 3 inches

Red and greenish underclay, a few rootlets.

The coaly shale contains many leaves of Cordaites borassifolia.

(Red, gray, and dark shale, sandstone, and bituminous limestone. Three underclays and erect trees at one level)* 67 9

IX.

Bituminous limestone.

Coal shale and Coal, 3 inches.

Coal-group 36....

Reddish shale and ironstone, 2 feet 6 inches.

Coal, 3 inches

Argillo-arenaceous underclay, Stigmaria.

The roof has Stigmaria in situ, and has been a soil or underclay. It also contains Cythere, fish-scales, coprolites, and Spirorbis. In the upper coaly shale are prostrate carbonized trunks.

(Reddish and gray shale, sandstone, and bituminous limestone) 21 6

Bituminous limestone and shale.

Coal, 4 inches.

Underclay, 1 foot 6 inches.

Coal, 6 inches.

Underclay, 1 foot.

Bituminous limestone, 3 inches.

Shale, 3 inches.

Coal, 1 inch

Underclay with Stigmaria.

Coal-group 37....

* The lower 22 feet are included in Subdivision IX. of my former Section.
The roof has *Stigmaria*, also fish-scales, *Naiadites*, and *Cythere*. The shales are pyritized. The coal shows only obscure fragments of plants; but *Sigillaria* in the state of ironstone occur in some of the clays.

VIII.

(***Red and gray sandstone and shale. Two underclays. Many shells of Pupa vetusta and Comulus priscus occur in one of these, about 42 feet below the last coal.***)

| Coal-group | Bituminous sandstone, 6 inches. | 83 0 |

VII.

(Calcaro-bituminous shale.)

| Coal-group | Bituminous limestone, 6 inches. | 123 6 |

The bituminous limestone and shale contain *Cythere*, *Naiadites elongatus* and *N. carbonarius*, coprolites, *Spirorbis*, and *Stigmaria*. The lower coal has *Sigillaria elegans*, *S. scutellata* (?), *S. Brownii*, *Althopteris lonchitica*, *Cordaites borassifolia*, and vascular bundles of ferns.

VI.

(***Red and gray shales and sandstones, and one gray limestone with Cythere. One underclay. Many drift trunks, among which are Sigillaria and Lepidophloios.***)

| Coal-group | Bituminous sandstone, 6 inches. | 0 0 |

This thin coal consists of a layer of flattened trunks, probably of *Sigillaria*, with a quantity of mineral charcoal.

IV.

(***Red and gray shales. One bed with erect Calamites, another with erect Sigillaria.***)

| Coal-group | Gray underclay, with Stigmaria resting on bituminous limestone, with Stigmaria and Cythere. | 65 4 |

III.

(Grey shale and ironstone.)

<table>
<thead>
<tr>
<th>Coal-group</th>
<th>Bituminous sandstone and shale, with coaly flints, 7 inches.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Underclay, 1 foot.</td>
</tr>
<tr>
<td></td>
<td>Coal, 1 inch.</td>
</tr>
<tr>
<td></td>
<td>Coaly shale, 3 inches.</td>
</tr>
<tr>
<td></td>
<td>Underclay, 1 foot.</td>
</tr>
<tr>
<td></td>
<td>Bituminous limestone, 6 inches.</td>
</tr>
<tr>
<td></td>
<td>Coal and coaly shale, 2 inches.</td>
</tr>
<tr>
<td></td>
<td>Argillaceous underclay, ironstone, and Stigmaria.</td>
</tr>
</tbody>
</table>
The bituminous limestone and shale have *Naiadites*, *Cythere*, *Spirorbis*, scales of fishes, and coprolites, and a large spine of *Gyracanthus*, also roots of *Stigmaria*. The upper underclay holds carbonized erect trunks. The lower coal has vascular bundles of ferns and *Cordaites*. The roof supports erect stumps.

(Underclay, with ironstone nodules) 5 0 ft. tn.
Underclay as above.
Coal-group 41... Calearb-bituminous shale and films of Coal 3 4 ft. tn.
Argillaceous underclay, *Stigmaria*.

The bituminous limestone has *Naiadites carbonarius*, *Cythere*, coprolites, and *Spirorbis*. The roof has prostrate *Sigillariae* converted into coaly layers. The underclay has distinct stumps of *Stigmaria*.

(Shales with *Stigmaria* and ironstone, sandstones, bituminous limestone, and carbonaceous shale at bottom) 14 4 ft. tn.
Bituminous limestone.
Coal, 3 inches.
Shale, 1 foot.
Coal-group 42... Coal, 1 foot.
Underclay, *Stigmaria*, 1 foot.
Coal, 2 inches.
Dark argillaceous underclay, *Stigmaria*.

The roof contains *Naiadites*, *Cythere*, and coprolites. The coal is coarse, pyritous, and shaly, and has bark of *Sigillaria*, *Calamites*, and vascular bundles of ferns. It seems to be the edge of a bed, as it thins rapidly in the direction of the bank, or to the east.

II.

(Reddish shale and sandstone with one underclay) 35 0 ft. tn.
Reddish underclay with *Stigmaria*.
Coal-group 43... Coaly shale, 1 inch 0 1 ft. tn.
Reddish underclay, *Stigmaria*.

This bed diminishes to a mere film towards the bank.

I.

(Reddish, gray, and dark shales and sandstone, *Stigmaria* in some beds, and erect *Sigillariae*, *Lepidodendra*, (?) and *Calamites* at one level) 63 0 ft. tn.
Gray shale with ironstone.
Bituminous limestone and shale with ironstone, 10 ft. 1 in. Coal, ½ inch.
Bituminous limestone, *Stigmaria*, ½ inch.
Coal, 5 inches.
Coal-group 44... Bituminous limestone, *Stigmaria*, 2 inches.
Coal, 1 inch.
Bituminous limestone, *Stigmaria*, 2 inches.
Coal, ½ inch.
Argillaceous-arenaceous underclay, traces of rootlets.
The bituminous limestone has scales of fishes, *Spirorbis*, and *Cythere*. The coal has *Cordaites* and vascular bundles of ferns.

(Red and gray sandstone and shale. One underclay, ft. in. and erect *Calamites* at one level) 98 6

Reddish shale.
Carbonaceous shale, 10 inches.
Coaly matter, ¼ inch.

Coal-group 45.....

Coaly matter, ¼ inch.
Underclay, *Stigmaria*, 7 feet.
Coal, 3 inches.
Arenaceous underclay, *Stigmaria*.

In the roof of the lower coal is an erect tree. The coal has vascular bundles of ferns, remains of fern-leaves, and bast tissue. The underclay has many coaly films, apparently flattened bark of trees.

Reddish and gray sandstone and shale 5 6

Total thickness of Division 4, according to Logan's measurements 2539 1

Division 5.

This consists of reddish shales and red and gray sandstones. It contains no coal, and is poor in fossils, only a few drifted trunks appearing in the section. It corresponds to the upper part of the Millstone-grit series. Its thickness, according to the measurements of Sir W. E. Logan, is 2082 feet.

Division 6.

This may be regarded as the middle of the Millstone-grit series. It constitutes a sort of false coal formation, separated from the Middle Coal Formation by the barren beds of Division 5. It contains nine small or rudimentary coal-beds, which, however, are not well seen in the section, and have afforded few facts of interest. It has many thick and coarse sandstones and much red shale, with comparatively few dark-coloured beds. Its total thickness is stated by Sir W. E. Logan at 3240 feet.

Though this group contains little coal, it is to be observed that it has many underclays, indicating soils which supported forests of *Sigillaria*, and that erect *Sigillariae* occur very near the base of the division. The absence of important beds of coal is therefore due to the local physical conditions, and not to the want of the necessary vegetation.

(Sandstones and shales with many drifted trunks of *Dadoxylon*) 539 7

Blackish gray shale.
Calcareous shale, 1 foot.
Black shale, 3 feet.
Coal-group 1.....

Coaly shale, 2 inches 4 2
Argillo-arenaceous underclay, *Stigmaria*.

The absence of important beds of coal is therefore due to the local physical conditions, and not to the want of the necessary vegetation.
(Red and gray sandstone and shale and concretionary limestone, trunks of *Dadoxylon* and other trees. One underclay) 160 ft. 1 in.

Coal-group 2
- **Coaly shale**, 1 inch 0 ft. 1 in.
- Reddish and gray underclay, *Stigmaria*.

(Series of underclays with *Stigmaria*. The beds are reddish or gray, and arenaceous) 190 ft.

- Reddish shale.
- **Coaly shale**, 1 inch.
- Greenish shale, 6 inches.
- **Coaly shale**, 1 inch.

Coal-group 3
- Greenish shale, 2 feet 6 inches.
- **Coaly shale**, 3 inches.
- Greenish shale, 1 inch.
- Coal and coaly shale, 3 inches 3 ft. 9 in.

- Argillo-arenaceous underclay, *Stigmaria*.

The coal contains bast tissue and reticulated, porous, and scalariform tissues of *Sigillaria* and *Calamodendron*.

(Series of underclays as before) 120 ft.

Coal-group 4
- Underclay, *Stigmaria*.
- Coal and coaly shale, 3 inches 0 ft. 3 in.
- Argillo-arenaceous underclay, *Stigmaria*.

(Series of underclays as before) 240 ft.

Coal-group 5
- **Coaly matter**, ½ inch 0 ft. ½ in.
- Greenish underclay, *Stigmaria*.

(Underclay and sandstone, the latter with an erect *Sigillaria*) 100 ft.

Coal-group 6
- **Coaly shale**, 3 inches 0 ft. 3 in.
- Argillo-arenaceous underclay, *Stigmaria*.

(Fifteen feet of underclay, under which a thick sandstone with great quantities of drifted trunks of *Dadoxylon* and *Sigillaria*. Below this alternations of gray and red sandstone and shale) 210 ft.

Coal-group 7
- **Coaly shale**, 6 inches.
- Bituminous limestone, 3 inches.
- **Coaly shale**, 1 inch.
- Coal, 1 inch 5 ft. 3 in.

- Argillo-arenaceous underclay, *Stigmaria*.

The lower bituminous limestone contains *Naiadites ovalis*, *Cythere*, and scales of Lepidoid fishes. The lower coal has much *Cyperites* and bark of *Sigillaria*, also bast tissue in mineral charcoal.

(Thick beds of gray sandstone and gray shale, with drifted trunks of *Dadoxylon*, *Sigillaria*, and *Cordaites* and leaves of *Cordaites*) 532 ft.

Coal-group 8
- **Coal**, ½ inch 0 ft. ½ in.
- Argillo-arenaceous underclay, *Stigmaria*.

THE CARBONIFEROUS SYSTEM.

This coal is laminated, the laminae being bark of Sigillaria. The underclay is very rich in Stigmaria.

(Gray sandstone with gray and red shale, Many ft. in. drifted trunks of Sigillaria and Calamites, and an erect Sigillaria in the lowest bed of sandstone) 1224 0

Coal-group 9. Gray shale.

Coaly matter and carbonaceous shale 0 2

Argillo-arenaceous underclay, Stigmaria, and ironstone.

(Gray and red sandstone and shale and calcareous bands, some of them bituminous. Near the middle a thick band of laminated black shale with Naiadites levis, Cyperites, and Lepidostrobus. Drifted Calamites in the sandstones) 496 4

Total thickness, according to Logan 3240 9

Division 7.

This division consists principally of red and chocolate shales with red and gray sandstone, arenaceous conglomerates, and thin beds of concretionary limestone. It may be regarded as the base of the Millstone-grit formation. Its thickness is stated by Sir W. E. Logan at 650 feet.

No fossils, other than carbonized fragments of plants, have been found in this division.

Division 8.

This division consists of reddish shales with greenish and red sandstone, gray shale, gray compact limestone, and gypsum. It may be regarded as the upper part of the Lower Carboniferous formation; and almost immediately under its lowest beds there are marine limestones with Productus cora and other characteristic Lower Carboniferous fossils.

Only fragments of plants, often replaced by sulphuret of copper, have been found in this division. Its thickness is stated by Logan at 1658 feet.

The number of coals reckoned may vary according to the manner in which the several layers are grouped; but as arranged in the above sectional list, it amounts to eighty-one in all. Of these, 23 are found in Division 3 of Logan's section, being the upper member of the Middle Coal Formation; 49 are found in Division 4 of Logan's section, being the lower member of the Middle Coal Formation; 9 occur in Division 6 of Logan's section, or in the equivalent of the Millstone-grit.
CHAPTER XII.

THE CARBONIFEROUS SYSTEM—Continued.

CUMBERLAND COAL-FIELD, continued—EXPLANATION OF JOGGINS SECTION—ANIMAL REMAINS OF THE COAL MEASURES.

Explanatory Remarks on the Joggins Section.

In the section in the preceding chapter the reader will observe the words "Underclay, Stigmaria," frequently recurring; and over nearly every underclay is a seam of coal. An underclay is technically the bed of clay which underlies a coal-seam; but it has now become a general term for a fossil soil, or a bed which once formed a terrestrial surface, and supported trees and other plants; because we generally find these coal underclays, like the subsoils of many modern peat-bogs, to contain roots and trunks of trees which aided in the accumulation of the vegetable matter of the coal. The underclays in question are accordingly penetrated by innumerable long rootlets, now in a coaly state, but retaining enough of their form to enable us to recognise them as belonging to a peculiar root, the *Stigmaria*, of very frequent occurrence in the coal measures, and at one time supposed to have been a swamp plant of anomalous form, but now known to have belonged to an equally singular tree, the *Sigillaria*, found in the same deposits (Fig. 30). The *Stigmaria* has derived its name from the regularly arranged pits or spots left by its rootlets, which proceeded from it on all sides. The *Sigillaria* has been named from the rows of leaf-sears which extend up its trunk, which in some species is curiously ribbed or fluted. One of the most remarkable peculiarities of the stigmaria-rooted trees was the very regular arrangement of their roots, which are four at their departure from the trunk, and divide at equal distances successively into eight, sixteen, and thirty-two branches, each giving off, on all sides, an immense number of rootlets, stretching into the beds around, in a manner which shows that these must have been soft sand and mud at the time when these roots and rootlets spread through them.

It is evident that when we find a bed of clay now hardened into
stone, and containing the roots and rootlets of these plants in their natural position, we can infer, 1st, that such beds must once have been

in a very soft condition; 2dly, that the roots found in them were not drifted, but grew in their present positions; in short, that these ancient roots are in similar circumstances with those of the recent trees that underlie the Amherst marshes. In corroboration of this, we shall find, in farther examination of this section, that while some
of these fossil soils support coals, others support erect trunks of trees connected with their roots and still in their natural position.

Believing the underclays to have been soils, we find similar reasons to conclude that the coal-seams were originally vegetable matter, which accumulated in the manner of peat; and on examining the coal minutely, we often find distinct evidences that it is composed in part of woody fragments, sometimes retaining their structure in sufficient perfection to enable the kind of wood to which they belonged to be ascertained. These appearances are most distinctly seen in the coarser and more impure coals, and in the bands of clay and ironstone which occur within the coal-seams. In the more pure coals, the vegetable matter has sometimes been reduced by chemical change and pressure into an almost homogeneous mass. It will be observed that in the section I have indicated the kinds of vegetable matter which may be observed in the several coals; and I shall have occasion to return to this subject in the sequel.

The lowest coal-bed in Group 44, Subdivision I, Division 4, of the above section, has an underclay or soil four feet in depth, and supporting a layer of vegetable mould which has been compressed into half an inch of coal. Above the coal rests a very different description of rock, one of those hard dark-coloured limestones already referred to. It is filled with innumerable little shells of minute crustaceous animals of the genus Cythere, the modern representatives of which reside in countless numbers in ponds and river estuaries and in the sea, and are most voracious devourers of dead animal substances. Our coal-bog therefore became, from some cause, probably subsidence, a pond or lagoon, in which Cythere and other aquatic animals must have existed for some time before their remains could accumulate in sufficient quantity to form these two inches of hard bituminous limestone. The Cythere-inhabited waters, however, were dried up, and on the rich marly soil grew another forest, whose rootlets may be seen finely preserved in the limestone; and the result was a thicker seam of coal than the first, succeeded by other limestones and coals, and then by a considerable thickness of shales and bituminous limestones, in which we find not only the Cythere, but the scales of small fishes, bivalve shells (Naiadites)* allied to the common mussel, and a small whorled shell (Spirorbis carbonarius) resembling those now found adhering to the seaweeds of the shore (the common Spirorbis spirillum) Fig. 31. The bituminous limestones containing these remains, alternate with shales indicating that eruptions of mud partially filled up, at different times, the waters in which calcareous

* Anthracomya and Anthrocoperta of Salter.
beds were being gradually accumulated by the growth and death of animals. In the highest of these beds of mud, which probably restored the whole area to the state of a swamp, trees took root and were buried by an irruption of sand, in which they, as well as an undergrowth of Catamites, still stand in an erect position.

I have dwelt at some length on this subdivision, not that there is anything very remarkable in its structure, but that its appearances will help to explain others that succeed. It is evident that when read in the light of modern geology, they tell a very intelligible tale, and show us that the circumstances in which these coal-rocks were formed were similar to those which we have found to exist on a small scale in the modern marshes of the Bay of Fundy; and also to those more extensive changes which occur in the deltas of great rivers, such as the Mississippi and the Ganges, in which low alluvial flats have often been alternately covered with water and with a dense swamp-vegetation. Let the reader also observe, that in this group of the Joggins beds, we have at least five successive oil-surfaces, four of them sufficiently permanent to permit the accumulation on them of peaty vegetable soils; and about four feet nine inches of calcareous beds, mostly made up of animal remains. The lapse of time required for the accumulation of this group alone must thus have been vastly greater than that necessary for the production of the modern marsh formation with its one fossil soil. It will also be observed that these beds carry our thoughts back to a period when the district was covered by a strange and now extinct vegetation, and when its physical condition resembled that of the Great Dismal Swamp, the Everglades of Florida, or the Delta of the Mississippi.

One appearance only in this subdivision requires farther explanation before we proceed to the next. One of the sandstones in the upper part exhibits trees standing out from the cliff, as pillars of hard sand-

* For other figures and descriptions of these fossils, see notice at the end of this chapter.
EXPLANATION OF JOGGINS SECTION.

stone spreading out at the base, and among these are numerous Calamites, also represented by sandstone casts, and, like the trees, standing at right angles to the beds, which are now inclined at an angle of 19 degrees, but which must have been horizontal when these plants grew and were entombed. The manner in which the plants were preserved in their present state and position can easily be understood. Imagine a forest of trees and a tall brake of reed-like plants growing together on a swampy flat. The flat is inundated and overspread with sand to the depth of several feet. The plants are thus killed and their dead tops project for some time above the sand. At length they decay and are broken off, and eventually the wood decays, leaving only a hollow cylinder of bark. Sand is next washed into the perpendicular pipes produced by the decay of the trunks and stems, forming casts of them. The whole is now buried up by succeeding deposits and becomes hardened into stone, and so remains until tilted up, elevated above the water level, and exposed by the action of the tides and waves.

One stump observed in the particular bed now under consideration is named in the section a Lepidodendron, with a note of interrogation to show that its surface was not so well preserved as to make it certain that it belonged to that genus. The Lepidodendra were tall and graceful trees, but allied botanically to the humble club-mosses (Lycopodium) of our modern woods. Their trunks were marked with diamond-shaped leaf-scar, and their branches and twigs were thickly clothed with long lance-shaped or linear leaves, and bare cones at their extremities. These trees did not send up straight trunks with numerous small branches, like the pines, but branched out by the continuous division of the trunk and limbs into pairs of branches, in the manner in which standard pear-trees are often trained by constantly cutting out the main ascending twig and allowing two lateral branches to grow in its place. The Lepidodendra must have been among the most beautiful trees of the coal period, and their roots would appear to have been constructed on the same regular type with those of the Sigillaria. Mr Brown of Sydney has described some trees believed to be Lepidodendra, and having such roots, in the coalfield of Cape Breton. Mr Carruthers, of the British Museum, has recently made a similar statement in regard to Lepidodendra in the British coal-fields. I have not, however, met with any instance of this in Nova Scotia.

Subdivision II. is a barren series of sandstones and shales, representing beds of sand and mud conveyed by water over the last terrestrial surface of the first group. For aught that the section shows to
the contrary, except in the occurrence of one underlay overlaid by coaly shale, these thirty-five feet of sand and mud may have been rapidly deposited. It is quite possible that the formation of the one inch of coal in the bottom of the group may have occupied a longer time than the deposition of the whole of the other beds. The reader will note here that the absolute thickness of any bed or mass of beds is no measure of the time occupied in their formation. A layer of sand may be spread over a wide surface by a single storm or inundation, but it requires time to accumulate even a very inconsiderable amount of organic matter by the slow growth of animals or plants.

The next Subdivision, No. III., including Coal-groups 40, 41, and 42, is very similar to No. I. It shows that the locality was again for a very long period alternately a swamp and a lagoon. I say for a very long time, for much of this group consists of bituminous limestone, Naiadites shales or "mussel beds," and coal, all beds requiring a very long lapse of time for their growth. There is every reason, for example, to believe that the three-feet bed of bituminous limestone, nearly in the middle of the group, consists mainly of the remains of Cythere, fish, and other aquatic creatures, accumulated by the slow growth of successive generations; and if we have any idea of the growth of modern beds of this kind, we will be disposed to measure the growth of this limestone by centuries.

Subdivision IV. is comparatively barren of organic remains, and consists of coarse mechanical detritus; and it will be observed that throughout the section groups of beds of this kind alternate with others composed of fine silt and organic matter. There were, in other words, long-continued swamp and lagoon periods, alternating with periods in which the waters of the sea or turbid streams were bearing in sand and mud. We have here, however, two surfaces which had sufficient permanence, as land or swamp soils, to support trees and Calamites.

In Subdivision V. we have a recurrence, on a small scale, of the conditions of Subdivision III.

Subdivision VI. is another great series of sandstones and chocolate-coloured shales. It has, however, one erect tree, probably a Sigillaria, rooted in an underlay with Stigmaria rootlets; and in the lowest sandstone there is a great mass of prostrate trunks of trees, imperfectly preserved, probably the wreck of some land-flood, or the drift-wood from a forest-clad coast.

In Subdivision VII. the beds present an order similar to that in the first group, and which we shall find frequently repeated in the section. First, we have an underlay, a soil on which grew a small
bed of vegetable matter represented by two inches of coal. This
terrestrial surface was overflowed by water for a very long time
inhabited by Naiadites and Cythere. This, it will be observed, implies
subsidence of a terrestrial surface and its long submergence; and I
may remark, once for all, that the appearances of the whole section
imply continuous subsidence, only occasionally interrupted by elevatory
movements. The bituminous limestone which marks this submer-
gence is again succeeded by coal, again submerged under water
inhabited by mollusks, Cythere, etc. The succeeding group marks the
filling of the quiet waters tenanted by Naiadites with thick deposits
of clay and sand, and in one little bed, about three inches in thickness,
filled with the shells of the little land-snails known as Pupa vetusta
and Conulus priscus, it shows evidence of neighbouring woods or
swamps, from which some gentle stream must have drifted these little
shells over the muddy bottom.

Subdivision IX. is a fine series of underclays and coals, alternating
with mussel-beds. It contains seven distinct soil-surfaces, the highest*
supporting an erect tree, which appears as a ribbed sandstone cast,
five feet six inches high, nine inches in diameter at the top, and fifteen
at the base, where the roots began to separate. This tree, being
harder than the enclosing beds, at the time of one of my visits stood
out boldly at the base of the cliff, nearly three-fourths of its diameter
and the bases of three of its four main roots being exposed. Five of
the underclays support coals, and in three instances bituminous lime-
stones have been converted into soils, none of which, however, support
coals. The last of these bituminous limestones is a very remarkable
bed. First, we have an underclay; this was submerged, and Spirorbis
attached its little shell to the decaying trunks, which finally fell
prostrate, and formed a carbonaceous bottom, over which multitudes
of little crustaceans (Cythere) swam and crept, and on which fourteen
inches of calcareous and carbonaceous matter were gradually collected.

Then this bed of organic matter was elevated into a soil, and large
trees, with Stigmaria roots, grew on its surface. These were buried
under thick beds of clay and sand, and it is in the latter that the erect
tree already mentioned occurs; its roots, however, are about nine feet
above the surface of the limestone, and belong to a later and higher
terrestrial surface, which cannot be distinguished from the clay of
similar character above and below.

The Xth Subdivision contains r. vast thickness of sandstone and
shales, the latter chiefly of chocolate colours. It shows comparatively
meagre indications of the swamp-deposits previously in progress.

* Included in the lower part of Subdivision X. of the section.

N
During the greater part of the time occupied in the formation of these beds, the locality must have been a sandy or muddy sea-bottom, receiving much mechanical detritus, or an expanse of flats of reddish mud and brown or gray sand, covered by the tides. There are, however, some evidences of terrestrial conditions. In the lowest beds is a large erect stump, filled with laminated clay after the complete decay of its wood. In the clay filling it were abundance of fern leaves, Cordaites, Lepidophylla, a few plants with attached Spirobis, and a shell of Naiadites. This tree was rooted in a thick underclay full of rootlets of Stigmaria. Higher up there are several thin coaly bands, with underclays; many of the shales abound in leaves of Ferns and Cordaites, probably drifted, and the highest sandstone showed a large erect tree.

Subdivision XI. commences with a soil resting immediately on the truncated top of the tree last mentioned. On this soil was formed a deep swamp, now represented by three feet of coal and bituminous shale in alternate bands. Large quantities of clay and sand buried this swamp, but not in such a manner as to preclude the growth of trees, many of which were entombed in the erect position. In these sandstones and shales, no less than six erect trees were observed at different levels, the lowest being rooted in the shale forming the coal-roof; fifteen feet of the trunk of one of these trees still remain; two others were respectively five and six feet high. Erect Calamites were also observed. The soil which was formed on the surface of these beds supports one of the thickest coal-beds in the section, marking a long and undisturbed accumulation of vegetable matter; and after the deposition of 18 feet of underclay and shales, there is another equally thick though coarser bed. We have here, as in some previous groups, three distinct conditions of the surface:—first, terrestrial surfaces more or less permanent; secondly, undisturbed marine or brackish water conditions; thirdly, intervening between these the deposition, probably with considerable rapidity, of sandy and muddy sediment. We may also observe that, admitting the Stigmaria to be roots of trees, there are five distinct forest soils without any remains of the trees, except their roots; and we shall find throughout the section that the forest soils are much more frequently preserved than the forests themselves.

In the large series of beds included in Subdivisions XII. and XIII., there are no less than thirteen distinct forest surfaces marked by underclays or erect trees, and at least five periods of submergence indicated by mussel-beds, and three of them, at least, of very long duration. It will be observed that, in several instances, the order of
succession is underclay—coal—bituminous limestone. This arrangement, so common in other parts of the section, seems to show a connexion other than accidental between the long periods of terrestrial repose required for the growth of coal, and those of quiet submergence necessary for the growth of mussel-beds. Probably the peaty areas of coal accumulation were gradually subsiding, and when this process finally caused their submergence, the submerged coal-swamp was the most fitting habitat for Naiadites and its associates; and these sunken swamp areas may have been so protected by thick margins of jungle as to resist for a long time the influx of turbid waters.

In the lower part of No. XIII, and immediately above Coal-group 21, I observed a very curious association of erect plants. An erect tree, converted into coal, springs from the surface of the shale, and passes through fourteen feet of sandstone and shale. Apparently from the same level there rises an erect ribbed tree, probably a Sigillaria, in the state of a stony cast, which, however, extends only to the top of the sandstone. In the sandstone, and rooted about a foot above the base of the erect trees, are a number of erect Calamites. In this case the forest soil has been covered by about a foot of argillaceous sand, on which a brake of Calamites sprung up. Further accumulations of sand buried them, and covered the trunks of the trees to the depth of eight feet. By this time the Sigillaria was quite decayed, and its bark became a hollow cylinder, reaching only to the surface of the sand, and ultimately filled with it. The other tree still stood above the surface until six feet of mud were deposited, when, its top being broken off, it also completely disappeared beneath the accumulating sediment; and being softened and crushed by the lateral pressure of the surrounding mass, it was finally converted into an irregular coaly pillar, retaining no distinct traces either of the external form or internal structure of the original plant. The structure of similar trees, to be noticed further on, renders it likely that this coaly tree is the remains of one of the Araucarian Pines, which, it appears, flourished in the coal-swamps in company with the Sigillaric. The surface of the clay which buried this remarkable tree became itself an underclay or soil; and on the sandstone resting upon it were found casts of two erect trees, one of them five feet in height, and a Sigillaria with distinctly marked leaf-scars. The tops of these trees have been entirely removed, and their hollow stems filled with sand, before the deposition of a bed of mud resting upon them, and which is now the underclay of a bed of coal. This coal was next submerged under the conditions required for bituminous limestone and mussel-beds. The
quiet waters were then filled up with clay and sand, the latter ripple-marked, and with drifted vegetable fragments. Another soil was formed above these beds, and on it we find an inch of coal, with flattened Sigillaria, which probably once grew on the underclay. This terrestrial surface was succeeded, as usual, by waters swarming with Naiadites and fish, and on these were spread out beds of sand and mud, with ripple-marks, drift trees, and evidences of partial denudation by currents. A terrestrial surface was again restored, and four inches of coal were accumulated; but the waters again prevailed, and in the coal itself we find Naiadites, Cythere, and plants covered with Spirorbis, indicating that these creatures took possession while the vegetable matter was still recent, and probably much of it in an erect position. A terrestrial surface was, however, soon restored; for in the shale which covers the coal there is a fine ribbed stump, two feet in diameter, and displaying on its roots the markings of the true Stigmaria flooides, as well as the rootlets in situ in the shale. This is the first instance we have here yet met with of the distinct connexion of an erect ribbed stem with its Stigmaria roots. The causes of the difficulty of observing the roots and stem in connexion will be stated in the sequel.

The next Subdivision is in great part the result of somewhat rapid mechanical deposition. It contains thick beds of sandstone, deposited by currents which have undermined wooded banks, or passed through recently submerged forests, for they contain numbers of trunks of different trees, retaining their bark and surface markings. Its coals are few and insignificant. There are, however, erect trees and Calamites at three levels; and one of the trees springs from a shade loaded with Cordaites which may have grown around its base.

Here we may pause for a little, to note the appearance of some of the new vegetable remains to which we have been introduced. We have found a Sigillaria with distinct markings, namely, its sides marked with bold ribs, having the effect of the flutings of a Grecian column, and these ribs dotted with vertical rows of leaf-scars. We have also seen a distinct instance of a Sigillaria attached to its Stigmaria roots still spreading through the soil. (See Fig. 30, page 180.) Let us now endeavour to form an idea of the trees of this singular genus. Imagine a tall branchless or sparsely branching trunk, perhaps two feet in diameter, and thirty feet in height. (One has been traced to the length of forty feet in the roof of the Joggins main coal-seam.) The trunk is covered with a thick bark, very smooth, and ribbed regularly, and is clothed to the summit with a dense mass of leaves, probably of lengthened and grass-like forms. Such trees must have
formed dense groves in the swamps of the Coal period. They have nothing closely analogous to them among living plants. There were a number of species of Sigillaria, differing somewhat in their ribs and leaf-scars, and probably also in their leaves. Lepidophloios or Ulodendron, a plant whose remains occur with the Sigillaria, was allied to the Lepidodendron, but wanted its slender graceful branches, while it had rows of stiff cones planted on the sides of its trunk; and its general aspect, when clothed with its long leaves, somewhat broader than those of Lepidodendron, must have much resembled that of the Sigillaria. Lepidophylla were the leaves of Ulodendron or Lepidodendron.

We have also met with the Cordaites, long striated leaves resembling those of gigantic plants of Iris or Indian corn, and sometimes five or six inches in breadth, and half as many feet in length. They grew on thick stems under and around the sigillarian woods though sometimes probably covering great tracts without any admixture of other plants. We have also observed an erect coniferous tree, and erect Calamites, but shall reserve our notice of these for better instances farther on. Lastly, fronds of Ferns appear in some of the beds; and I may state here that they are much less abundant relatively to the other plants at the Joggins than elsewhere in the Coal-fields of Nova Scotia and Cape Breton.

Subdivision XV. is one of the most interesting in the section, in consequence of the discovery in it, in 1852, by Sir Charles Lyell and the writer, of the bones of a reptile, Dendrerpeton Acadianum (Fig. 32), those of another small reptile, and the shell of a land snail (Pupa vetusta) (Fig. 33).* These remains are of great interest, as they were the first reptilian animals found fossil in the Carboniferous rocks of America, and the only land snail whose remains had ever been found in rocks of that age; in fact, the first evidence obtained of the

* The figures given here represent two of the original specimens found in 1852. Better specimens are figured further on.
existence of animals of that tribe at so early a period. These interesting remains were all found in the interior of an erect tree, mingled

Fig. 33.—Fossil Land Shell—Joggins Coal Measures.

Magnified three diameters.

with the sand, decaying wood, and fragments of plants which had fallen into it after it became hollow. The bed of argillaceous sandstone, nine feet in thickness, which enclosed this tree, contains a number of erect plants (Fig. 34). Three erect trees in the form of sandstone casts and erect *Calamites* were observed in it, with many *Stigmaria* roots. There was also a tree not in the form of a cast, but of a mass of coaly fragments surrounded by a broken and partly crushed cylinder of bark; the whole being evidently the remains of a trunk which has been reduced to little more than a pile of decayed

Fig. 34.—Section of middle part of Subdivision XV. in which the Dendrerpeton, Land Shells, etc., have been found.

1. Underclay, with rootlets of *Stigmaria*, resting on gray shale, with two thin coaly seams.
2. Gray sandstone, with erect trees, *Calamites*, and other stems: 9 feet.
3. Coal, with erect tree on its surface: 6 inches.
4. Underclay, with *Stigmaria* rootlets.
 (a) *Calamites*.
 (b) Stem of plant undetermined.
 (c) *Stigmaria* roots.
 (d) Erect trunk, 9 feet high.

pieces of wood before the sand was deposited; consequently it must have been either an older or more perishable plant than those which stand as pillars of sandstone. The wood of this tree shows, in the cross section, a cellular tissue, precisely similar to that of the Conifers;
the longitudinal section shows only elongated cells, but is very badly preserved. A tree of this description is not likely to have been more perishable than the *Sigillaria*, which, in the same situation, remained until nine feet of sandy mud had accumulated. I suspect, therefore, that this stump may be the remains of a Coniferous forest, which preceded the *Sigillaria* in this locality, and of which only decaying stumps remained at the time when the latter were buried by sediment. This is the more likely, as the appearances indicate that this tree was in a complete state of decay at the very commencement of the sandy deposit. It is, however, possible that this older forest, represented by coaly stumps, may have consisted of Sigillaroid trees.

The history of this group will thus be as follows:—(1.) The Stigmaria underclay shows the existence of a Sigillaria forest, on the soil of which was collected sufficient vegetable matter to form six inches of coal, which probably represents a peaty bog several feet in thickness. (2.) On this peaty soil grew the trees represented by the stump of mineral charcoal mentioned above. This tree, being about one foot in diameter, may have required about fifty years for its growth to that size. It was then killed, perhaps by the inundation of the bog. (3.) During the decay of the tree last mentioned, *Sigillaria* grew around it to the diameter of two feet, when they were overwhelmed by sediment, which buried their roots to the depth of about eighteen inches. At this level *Calamites* and other *Sigillaria* began to grow, the former attaining a diameter of four inches, the latter a diameter of about one foot. (4.) These plants were in their turn embedded in somewhat coarser sediment, but so gradually that trees with stigmarian roots grew at two higher levels before the accumulation of mud and sand attained the depth of nine feet, at which depth the original large *Sigillaria* that had grown immediately over the coal were broken off, and their hollow trunks filled with sand. Before being filled with sand, these trees, while hollow, must for some time have projected from a swamp or terrestrial surface, such as that which immediately succeeds them in ascending order; and it is no doubt to this circumstance that we owe the occurrence, in some of them, of reptilian remains and land shells, as well as many vegetable fragments, such as *Calamites*, *Cordaites*, and a *Lepidostrobus*, with many of the fossil fruits called *Trigonocarpa*, evidently introduced before the sedimentary matter, and forming just such a mass as might be supposed likely to fall into an open hole in a forest or swamp. (5.) The remaining beds of this group evidence the continuation of swamp conditions for a long time after the trees last noticed were completely buried. They include, in a thickness of twenty-eight feet, three underclays supporting
coaly beds, and one with erect stumps; one of them with stigmarian roots and ribbed. One of the coaly beds, which alternates with laminae of shale, is filled with flattened trunks of *Sigillaria* and *Lepidodendron*, which probably grew on the surfaces on which they now lie, and indicate how small a thickness of coaly matter may mark the time required for the growth and decay of many successive forests.

On the whole, we can scarcely err in affirming that the habitat of the *Dendrerpeton Acadianum* and its associates was a peaty and muddy swamp, occasionally or periodically inundated, and in which growing trees and Calamite brakes were being gradually buried in sediment, while others were taking root at higher levels, just as now happens in the alluvial flats of large rivers. In subsequent visits to this interesting locality, I found the remains of four other species of reptiles or batrachians, an ancient representative of the gally-worms (*Xylobius Sigillarioe*), and remains of an insect. These will be described further on. In Figs. 35 and 36 I give a representation of one of the trees, and a section showing the arrangement of the materials filling the base.

Subdivision XVI. consists of one thick bed of gray sandstone with prostrate carbonized trunks. The sandstone is highly silicious, and of the kind used for grindstones. It is the result of the complete...
submergence of the swamps of the last group, and their invasion by sand-bearing currents.

The next Subdivision commences with the growth of Calamites on the surface of the great sand-bed last noticed, after which there was the formation of an underclay and coal, the latter being afterwards inundated, and the plants at its surface overgrown with Spirorbis. In the shale covering this coal, about fourteen feet above its surface, is a bed with shrinkage cracks, and containing a stool of Stigmaria, one of the roots of which was traced 9½ feet. Its rootlets were attached, so that it can scarcely have been a drift stump; and if now in situ, it must have grown on a mud-bank alternately inundated and dry, like the present salt-marshes of the Bay of Fundy.

Fig. 36.—Section of Base of Erect Sigillaria.

Subdivision XVIII. is a series of sandstones and shales, less perfectly exposed than most other parts of the section. Chocolate colours prevail among the shales, and there are few fossils. One of the beds, however, has its surface covered with casts of shrinkage cracks, such as are now formed on mud left dry by the neap tides; and there are also erect Calamites in one bed and a Stigmarian underclay.

The next group is of much greater interest, showing seven soil-surfaces, with a variety of sedimentary deposits. Two of the coals in this group contain on their surfaces of deposition well-preserved remains of the plants (Sigillaria, Cordaites, etc.) which must have grown on their underclays. A thick mass of sandstone and shale in the centre of the group is also very curious, as it evidently represents the side of a trench or gully cut by water in a series of mud-beds, and then filled up with a confused mass of drift trees and sand. Above this mass is an underclay, on which grew a forest, whose only remains are a few inches of coaly matter (Gr. 11), made up in part of flattened trunks converted into coal. This forest must have been entirely destroyed by violence or decay, before the next bed, which is a shale seven feet thick, was deposited. On the surface of this shale grew a great brake of Calamites, which were buried under sand, in such a manner that their forms and position were perfectly preserved: they stand in groups in the cliff just as they grew, some of them being five inches in diameter, and eight feet high; and at that height they
have been broken off without any decrease of their diameter. In one place twelve stems were counted in eight feet measured along the face of the cliff. From the base of the cliff to low-water mark, they could everywhere be seen abundantly along the continuation of the ledge of sandstone. This bed and others of similar character at the Joggins, have given us much information respecting the nature and mode of growth of these plants, which I may pause here to notice in detail.

The *Calamites* were tall cylindrical stems, with a hard outer bark, and were either hollow or filled with cellular matter. The stems were regularly marked with longitudinal striae or furrows and cross joints, sometimes showing the marks of the attachment of the leaves, which were verticillate, or in whorls around the stem, and long and needle-like (Figs. 37 and 38). The general habit of growth thus resembled the *Equisetum* or Mare's-tail of modern marshes, and probably these plants are also allied to the *Calamites* in structure. *Calam-*
mites grew on wet mud and sand-flats, and also in swamps; and they appear to have been especially adapted to take root in and clothe under soft sludgy material recently deposited or in process of deposition. When the seed or spore of a Calamite had taken root (and it is not unlikely that, like the very remarkable spores of the Equiseta, their seeds had wings which expanded to waft them through the air when dry, and closed instantly when they touched the damp soil), it probably produced a little low whorl of leaves surrounding one small joint, from which another and another, widening in size, arose, producing a cylindrical stem, tapering to a point at the base. To strengthen the unstable base, the lower joints, especially if the mud had been accumulating around the plant, shot out long roots instead of leaves, while secondary stems grew out of the sides at the surface of the soil, and in time there was a stool of Calamites, with tufts of long roots stretching downwards, like an immense brush, into the mud (Fig. 37. See also Fig. 39). When Calamites thus grew on inundated flats, they would, by causing the water to stagnate, promote the elevation of the surface by new deposits, so that their stems gradually became buried; but this only favoured their growth, for they continually pushed out new stems, while the old buried ones shot out bunches of roots instead of regular whorls of leaves. These peculiarities have caused much dispute among botanists, some of whom have even fancied that the whole stem served as a root. All the
apparent anomalies were, however, wise contrivances to fit the plant for its office in nature.

One peculiarity in these beds well illustrates the fact already mentioned, that the thickness of beds is no certain criterion of the time occupied in their formation. The bed of sandstone, eight feet in thickness, enveloping the Calamites, must have been deposited in a few years at most. The underlying coal is all that marks the growth, submergence, and decay of a forest.

Subdivision XXIII. is a great and continuous series of swamp and estuary deposits, including the most important bed of coal in the section, and a large number of well-marked terrestrial surfaces. It commences with a black bituminous underclay, a soil probably of long continuance, and filled with rootlets. This supports a foot of coal known to the miners as the "Queen's Vein" (Coal-group 8), above which we find three other coals with underclays, and one of them with a shale roof full of prostrate plants. Then we have an underclay capped by shale with fossil leaves, but no coal. Above this we have an interruption of the previous conditions, by the deposition of sand, on the surfaces of which drift-plants were scattered, and became tenanted by the little worms whose shells we have referred to Spirobis. On these sandstones Sigillaria again took root, and one bed is filled, from the cliff to low-water mark, with well-preserved stools of these singular roots, each with four main divisions, branching dichotomously. A single inch of impure coal was the result of this dense growth of trees. Above this accumulated a thick boggy underclay, on which a varied and beautiful forest has grown, which was overturned or uprooted, and now lies prostrate in a thin band of ironstone and shale. In the ironstone of this band are four species of Sigillaria, and great multitudes of Cordaites and other leaves. All these fossils had Spirobis attached. They no doubt mark the site of a submerged and fallen forest, which but for the abundant deposition of fine mud and carbonate of iron, which followed its submergence after an interval sufficiently long for the growth of Spirobis, would have appeared as a thin coaly layer. Above this, after an interval occupied by shales and sandstone with one thin coal, we find a thin coaly layer almost entirely composed of Cordaites. No roots appear in the underlying shale, and we may therefore doubt whether these leaves grew in situ, or were scattered over the bottom of water. On this coal is a thick clay supporting, some years ago, two erect stumps. From the clay in which they were rooted they passed upward, through a sandstone two feet in thickness, into a shale with ironstone bands above. The smaller stump was fluted, but without leaf-scars. Its roots were
concealed under the beach. It was filled with sandstone to the height of seven inches above the level of the sandstone without, indicating that this bed must have suffered from denudation, after having contributed materials toward the filling of the stump. It is probable that the sand within the bark was originally lower than that without. If so, the sandstone may have lost much more than seven inches; and of this, but for the presence of this stump, there would have been no evidence. The neighbouring tree, though rooted at the same level, was brought by the dip of the beds to a sufficient height to allow its roots to be seen. It was originally of the same height with the other, but the upper part had been removed. In this stump we see that while the sandstone within has extended higher than that without, it has also descended lower, though not quite to the bottom, this being filled with clay. We thus find that after the tree became hollow, and while its top continued to stand at least three feet above the surface, it was partly filled with a deposit from muddy water. The mud within was, however, much lower than that without when the sand began to be deposited, and filled the greater part of the stump. The roots of this tree had Stigmaria markings, and the rootlets could be seen penetrating the shale beneath. Portions of the surface of the trunk showed the markings of a broad-ribbed Sigillaria, with oval leaf-scarrs on the ligneous surface. The roots descend somewhat rapidly into the clay, and perhaps even reach the coaly layer below. The overlying shales bend downward into the upper part of these stumps, indicating that the material within was more compressible than that without. Perhaps this is due to the compression of woody matter remaining in the bottom of the cavity left by the decay of the trunk. The circumstances in which these stumps were preserved strikingly illustrate the strength and durability of the bark of Sigillaria. Above this bed there are about thirty feet of shales, with ironstone bands and sandstones, including a few thin layers of coal, and apparently several underclays; but the coal railway and pier prevent them from being well seen. On these rests the main coal or "King's Vein" (Coal-group 7). The main coal and a layer of clay six inches thick overlying it, have supported a forest of Sigillaria, some of which remain as erect stumps, others are prostrate. Very fine specimens have been extracted from this bed in working the coal. Their surfaces are often covered with Spirorbis. This forest was buried under eight feet of sand and clay; and from the surface of the latter sprang an erect tree, which was observed to extend upward to the height of fifteen feet, and was then abruptly broken off. The rocks enclosing it are sandstone and arenaceous shale. (Fig. 40.) This tree, like one
previously mentioned, was a pillar of coaly matter, without distinct external markings, and compressed by lateral pressure. Its preservation in this manner shows that it was composed of durable wood, but

Fig. 40.—Beds overlying Joggins Main Coal, with erect Tree and Calamites.

1. Shale and sandstone. Plants with Spirorbis attached; Rain-marks (?).
2. Sandstone and shale, 8 feet. Erect Calamites.
3. Gray sandstone, 7 feet.
4. Gray shale, 4 feet.
5. Gray sandstone, 4 feet.
6. Gray shale, 6 inches. Prostrate and erect trees, with rootlets; leaves; Nautilides; and Spirorbis on the plants.
7. Main coal-seam, 5 feet coal in two seams.
8. Underclay, with rootlets.

by no means proves that it differed from those trees which are found in the state of stony casts. An erect tree, the wood of which had time to decay before it was buried by detritus, would appear as a cast in sand or clay. The same tree, if broken off and buried before the decay of its wood, might appear as a pillar of coal. This tree is, however, proved, by portions of its wood which retain their structure, to have been coniferous.

After deposits of sand had extended to the height of at least ten feet above the root of this tree, and while its top projected above the surface, Calamites grew around, attaining a diameter of 1 ½ inch, and a height of at least five feet. They are very numerous, and though perhaps a different species from those in the great calamite bed before mentioned, grew in the same manner. They were buried by five feet of sand and arenaceous mud, after which their tops and that of the
erect tree were removed or decayed, and the sands next succeeding contain only drift vegetable fragments, having Spirobus attached to them. Above these is an inch of coal, loaded with Cordaites, and it is to be observed that this is the second instance of thin coals of this kind without Stigmaria underclays. Immediately above this is a sandy soil with Stigmaria and rootlets, but without coal or erect trees. Shales and sandstones succeed; and above these we have a very thick underclay full of rootlets. This soil, after the growth upon it of coaly matter, and a forest or successive forests of Sigillaria, was submerged in such circumstances that scarcely any mechanical detritus was deposited upon it. The trees remained erect in the bottom of clear waters, inhabited by fishes and Cythere, until Spirobus attached itself to their trunks. They at length fell and sank to the bottom; and, with the vegetable soil, form a bed of impure coal four inches in thickness, and abounding in scales of fishes and trunks covered with Spirobus. Long after the forest disappeared, these aquatic conditions continued, and ten inches of calcareo-bituminous shale with Naiadites, fish-scales, and Cythere were deposited, as usual passing upward into barren gray shale. This is a fine instance of an order of succession which we had frequent occasion to notice in the earlier part of the section.

In the next Subdivision the waters retain their dominion, though probably diminishing in depth, in consequence of the deposition of detrital matter. The sandstones of this group are very uniform and evenly bedded, as compared with those in the last, and present no indications of vicinity to shores or water-courses, except in the presence of drift-wood, and of singular scratches and furrows on the surfaces of the shales, fine casts of which have been taken by the overlying sand. Scratches and marks of this kind are very frequent in the Coal Formation. They occur on a grand scale in the Pictou freestone quarries, and are also very abundant near Tatamagouche. Many of them might very easily be included in the convenient tribe of Fucoides, that is, remains of sea-weeds, but their want of uniformity in everything except direction, their want of organic matter, and occurrence in beds containing drift-wood, make it most probable that they were scratches produced by the roots and branches of trees borne over the surface by currents of water, and similar to those which may be seen on the inundated mud-flats of wooded countries. Such marks are usually straight, like diluvial strie, but when stumps or tree-tops ground and are borne off, the most fantastic markings are produced, partly by the eddying of the current around the obstacles opposed to it.

In Subdivision XXV. we have a dense series of fossil soils, with thin coaly layers. It terminates upwards in bituminous limestone, with its
usual fossils and resting on coal. This is a case precisely similar to that which terminates our 23d group, except that in this last case the conditions favourable to the formation of bituminous limestone probably continued longer.

The next is another barren group of chocolate and gray shales, with gray sandstone occasionally rippled, and with fragments of drift-wood. This is the filling up of the shell-fish-inhabited waters, in the manner already so frequently noticed. In one of its beds I observed rain-marks, and a series of footprints, probably of a small reptile; and it was here that Mr Marsh found the vertebrae of the largest reptile yet discovered at the Joggins, Eosaurus Acadianus.

Subdivision XXVII. is another succession of underclays and small coaly layers. It is remarkable for the very pyritous character of many of its beds, an indication of the action of sea-water. The most remarkable part of this group is that represented in Fig. 41. It includes a bed of erect Calamites and an erect tree with distinct Stigmaria roots. The underclays are here so crowded on the erect plants, that the rootlets of one underclay pass downward among the erect Calamites, and the rootlets of another pass beside and within the cast of the erect tree, the surface markings of which they have helped to

![Fig. 41.—Section from the lower part of Subdivision XXVII.](image-url)
obliterate by passing downward immediately within the bark. The calamites are rooted in shale, and the erect tree in an ordinary under-clay, supporting a thin layer of coal which rises a little immediately under the stump, being there either protected from pressure or increased by the addition of woody matter derived from the trunk. This stump, it will be observed, expands rapidly towards its base. This group terminates upward in a mussel-bed resting on coal.

The whole series of events in the preceding historical sketch has depended on the following conditions:—Gradual and long-continued subsidence, with occasional elevatory movements, going on in an extensive alluvial tract teeming with vegetable life and receiving large supplies of fine detrital matter. On the one hand, subsidence tended to restore the original dominion of the waters. On the other hand, elevation, silting up, and vegetable and animal growth built up successive surfaces of dry land. For a very long period these opposing forces were alternately victorious, without effecting any very decided or permanent conquest; and it is very probable that the locality of our section was, during this period, near the margin of the alluvial tract in question, where the various changes of the conflict were more sensibly felt and more easily recorded than nearer the open sea or farther inland.

The portion of the section above described in detail includes a thickness of 2819 feet of the central part of the Coal formation, constituting Division 4 of Logan’s section.

It is impossible to contemplate this vast series of deposits without being forcibly impressed with the great lapse of time and variety of change which it indicates; and a glance at the table of formations in the introduction to this work, will show how small a portion of the whole geological history of the earth is represented by the coal measures. It is to be borne in mind also that this section represents the structure of the whole plain of Cumberland, and in a less precise manner that of the whole Carboniferous areas of Nova Scotia and New Brunswick, with great tracts composed of similar rocks, but not elevated above the bed of the present seas. I do not wish it to be understood, however, that all the changes represented by the Joggins beds extended continuously over large areas. On the contrary, I believe that had we visited Cumberland during the Coal period, we might, by changing our position a few miles, have passed from a sandy shore to a peaty swamp, or to the margin of an estuary or lagoon; but I believe that in each locality these changes succeeded each other in a similar manner, and that the great alternations between terrestrial growth and marine deposition extended over very wide areas. Had
we visited Cumberland during the time represented by one of the groups of coals, bituminous limestones, and erect forests, we should have beheld vast swampy plains covered with dense forests, calamite brakes, and peaty bogs, intersected by sluggish streams and shallow lagoons. Had we visited it perhaps some centuries later, at the time when one of the barren groups of sandstone was being deposited, the eye would have ranged over a wide and shallow sea, filled with sand-banks, and with occasional low islets and spits, covered with Sigillariae and fringed with wide borders of Calamites, struggling for existence among the shifting sands. Changes of this kind alternated again and again, while the whole area was constantly subsiding at a rate so slow, that mechanical deposition and animal and vegetable growth were able to a great extent to counteract and sometimes altogether to neutralize its influence. At length, however, in the Upper Coal formation, aqueous conditions regained a decided preponderance. This, then, be it borne in mind, was the process employed by the great Architect of the universe in building up the Coal-fields of Nova Scotia and of the world; and we are indebted to the clean and sharp section effected by the tides of Chiegneceto Bay for that fine exposure of its stony monuments which enable us to understand and explain in such detail its nature.

Remains of Aquatic Animals in the Coal Measures.

I propose in the sequel to devote an entire chapter to the land animals of the Coal formation. In the present note, I desire to state some interesting facts in regard to the remains of aquatic animals which abound in the shales and bituminous limestones, associated with plants, and without any intermixture of brachiopods, corals, or other absolutely marine productions. Though I do not consider these creatures as fresh-water animals, yet they must be regarded as the tenants of brackish, and perhaps sometimes fresh, ponds, lagoons, and creeks of the Coal formation swamps, and which must have been, for the most part, shallow, land-locked, and filled with putrid vegetable matter, though no doubt often at the sea level, and communicating with it by channels more or less wide.

I. Bivalve Shells.—All the Lamellibranchiate shells, which are so numerous in some of the shales and bituminous limestones of the Joggins that some of the beds may be regarded as composed of them, belong to one generic or family group. They are the so-called Modiolas, Unios, or Anodons of authors. I proposed for them, some years ago, the generic name of Naiadites, and described six species from the Coal measures of Nova Scotia, stating my belief that they
are allied to *Unionidae*, and that their nearest analogue may be the genus *Bysso-anodonta* of D'Orbigny, found in the River Parana.* Mr Salter, however, to whom I sent specimens, regards these shells as belonging to his new genera *Anthracomya* and *Anthracoplera*, the former being supposed to be allied to *Myadex.*† More recently Gümbel and Geinitz have described similar shells from Thuringia as belonging to the genera *Unio* and *Anodon*, and regard my *Naiadites carbonarius* (*Anthracoplera carbonaria* of Salter) as a *Dreissena.*‡

In the present uncertainty as to their genuine relations, I shall retain the name *Naiadites* for the whole of the species, giving, however, Salter's generic names in brackets. The genus *Anthracosi*: of King, which is evidently distinct from *Naiadites*, has been recognised in Nova Scotia only in the Lower Coal formation of Baddeck, C. B. A specimen found at that place by Mr Barnes will be noticed in the sequel. As these shells swarmed in the waters of the Coal formation estuaries or lagoons, facts tending to the elucidation of their habits and affinities are important with reference to the coal; I would therefore make the following remarks in relation to them:—

(1.) Under the microscope, the shells of the thicker species, as *Naiadites carbonarius*, present an internal lamellar and subnacreous layer, a thin layer of vertical prismatic shell, and an epidermis—these structures being entirely similar to those of *Unionidae*. In the thinner species, as in *N. lavis*, only the prismatic coat appears, and in this the prisms are in some instances placed obliquely. These thin shells, however, show evidence of an epidermis. (2.) The ligament was external, there seem to have been no teeth, the shell was closed posteriorly; but there are indications of a byssal sinus. Mr Salter describes the epidermis as wrinkled posteriorly; but this, with the exception of the rings of growth, appears to me to result from pressure. The shells are equivalve, and have the external aspect of *Unionidae* or *Mytilidae*. (3.) I know of no instance in Nova Scotia of the occurrence of these shells in the strictly marine limestones, nor have any properly marine forms of *Mollusca* been found with *Naiadites* in the coal measures. (4.) The mode of their occurrence precludes the idea that they were burrowers, but favours the belief that they were attached by a byssus to sunken or floating timber. On the whole, I think that the balance of probability is in favour of the conclusion that they were brackish-water or fresh-water shells, allied to *Mytilidae* or to embryonic *Unionidae*.

* Supplement to Acadian Geology, 1860.
(1.) Naiadites (Anthracoptera) carbonaria (Dawson)—Fig. 42.—
Hinge-line straight, more than one half the length of the shell; beak

\[\text{Fig. 42 to 46. — Species of Naiadites.} \]

Fig. 42. Fig. 43. Fig. 44. Fig. 45. Fig. 46.

acute, in the anterior fourth of hinge-line; anterior margin abruptly
rounded; ventral margin nearly straight, with a slight sinus; posterior
margin broad and regularly rounded; shell thin, with distinct growth
lines. When recent, the shell was probably somewhat tumid, but is
usually flattened, and often much distorted by pressure, so that it is
very difficult to obtain a specimen sufficiently perfect to be described
or figured. Length of adult, an inch or more. This is the most
abundant species in the Coal measures of the Joggins, beds of some
thickness being often almost entirely made up of the valves. Fig. 31,
p. 182 supra, represents an imperfect and distorted specimen. See
also Fig. 22 in my paper on the South Joggins in the Journal of
the Geological Society, vol. x. p. 39. This shell may possibly be the
Modiola Wyomingensis of Lea (Journ. Ac. Nat. Science, 2d series,
vol. ii.); but if so, his specimen is imperfect.

(2.) Naiadites (Anthracomya) elongata (Dn.)—Fig. 43.—Smaller
than the preceding, and more elongated laterally; the beaks obtuse
and more anterior; the hinge-line nearly straight and less than half
the length; ventral margin slightly compressed; length, half an inch
to an inch; common at the Joggins and Sydney, in the Middle
Coal measures. See Fig. 23 in paper above cited.

(3.) Naiadites (Anthracoptera) laevis (Dn.)—Fig. 44.*—Broad
ovate, extremely thin; beak about one-third of distance from anterior
end. This species is smaller, more rounded, thinner, and with the

* Mr. Salter thinks that this is identical with a species found in the Upper Coal
measures of Manchester.
beaks more central, than No. 1. It occurs in a bed of shale at the base of the Middle Coal series at the Joggins.

(4.) Naiadites arenacea (Dn.)—Fig. 45.—Elliptical; twice as long as wide; beaks prominent, one-fourth from anterior end, which is compressed and rounded. In the Upper Coal formation at Pictou.

(5.) Naiadites ovalis (Dn.)—Similar in general form to No. 4, but much broader in proportion. See paper above cited, Fig. 24. It occurs in bituminous limestone, with cyprids, in the lower part of the Joggins Coal measures.

(6.) Naiadites angulata (Dn.)—Fig. 46.—Similar in general form and proportions to No. 4, but with more prominent beaks, a straight hinge-line, and an undefined ridge running backward from the umbo, and causing the posterior extremity to present an angular outline. Lower Coal formation at Parrsborough.

(7.) N. obtusa (Dn.)—As large as N. carbonaria, but remark- able for the broad and truncated form of its anterior end, giving it an approach to a quadrangular form. It is thin, and much marked by growth lines. Lower Coal measures, McLellan's Brook, Pictou.

II. Spirorbis carbonarius.—Fig. 47.—This little shell, which I described as a Spirorbis as long ago as 1845,* is apparently not specifically distinct from Microconchus carbonarius of the British Coal-fields.

Fig. 47.—Spirorbis carbonarius; nat. size attached to Cordaites, and magnified.

Its microscopic structure is identical with that of modern Spirorbis, and shows that it is a true worm-shell. It is found throughout the Coal formation, attached to plants and to shells of Naiadites, and must have been an inhabitant of enclosed lagoons and estuaries. Its occurrence on Sigillariae has been used as an argument in favour of the opinion that these trees grew in sea-water; but, unfortunately for that conclusion, the Spirorbis is often found on the inside of the bark, showing that this had become dead and hollow. Beside this, the same kind of evidence would prove that Lepidodendra, Cordaites,

and ferns were marine plants. *Spirorbis* multiply fast and grow very rapidly; and these little shells no doubt took immediate possession of submerged vegetation, just as their modern allies cover fronds of *Laminaria* and *Fucus*.

As I have not met with a description of this little shell, I may state that it is dextral, with two and a half to three turns. It is attached throughout its length, and, when not compressed, presents a somewhat deep umbilicus. It is closely marked with beaded or unequal transverse ridges. It has, when young, a close resemblance to *Sp. caperatus* M'Coy, from the Carboniferous limestone of Ireland; but this species has only two turns, and is sinistral.

This shell has been described by Goeppert as a fungus, under the name of *Gyromyces ammonis*.

III. *Crustacea*.—It appears, in the table above, that as many as fourteen beds of coal exhibit in their roofs shells of minute Entomos traca of the genera *Cythere* and *Bairdia* (Fig. 48), and these occur in such quantities that considerable beds of shale and bituminous limestone are filled with their valves. Professor Jones regards the species as marine or brackish-water; and the same remark will, I presume, apply to the crustacean *Diplostylus Dawsoni*, and a fragment of *Eurypterus* described by Mr Salter from Coal-group No. 8 of Division 4 of the Section, as well as to a second and larger species from Port Hood. Of the small Entomostracans there are several species, which Professor Jones has now in his hands for determination. No Estherians have yet been found in the Coal formation of Nova Scotia; but I have specimens of *Leaia Leidy* from the Lower Carboniferous of Plaister Cove, and an undetermined *Estheria* from the same horizon at Horton Bluff. These will be described further on.

* One at least of these is identical with a British Carboniferous species.
The following are Mr Salter's descriptions of these interesting crustaceans, taken from his paper, Journal of Geol. Society, vol. xix.:

"Diplostylus, gen. nov."
"Carapace unknown. Body segments arched, and with minute pleura. Tail segment large, triangular, spinose, with two pairs of simple ovate appendages.

"Diplostylus Dawsoni, spec. nov. (Fig. 49).
"The portion preserved consists only of five rings and the broad telson; and these together are three-fourths of an inch long, and less than half an inch broad at the widest part. The telson is somewhat narrower than the body-rings, broad above, and pointed behind, where it is notched into three spines, the centre one very short, the two on each side of it broad, and on their outer sides covering the attachment of two small obovate palettes. These palettes are a little oblique, narrower than their length, rounded at their posterior margin, and striated distinctly. Outside these, and much higher up on the sides, are a pair of broader notches, which give origin to a pair of small palettes, ovate and not broader at their ends, and striated obliquely; and above the insertion of these are a pair of broad, flat spines on the surface of the tail-joint.

"The body segments are transverse, the axis not much distinguished from the short, pointed, recurved pleura, with a narrow articular furrow, and strongly punctate on the exposed portions. The punctations (in the hinder segments only) are overhung by short plications: such punctations are observable in many Isopod Crustaceans.

"Locality.—Coal measures of the Joggins, Nova Scotia, in a plant-bed in the middle of the series.

"Having looked in vain for a similar pygidium among the large-tailed Isopods, and consulted Mr Spence Bate with a like result, he
referred me to a group of parasitic Amphipods (the Hyperina), among which there are a few forms* with tail segments coalesced and bearing appendages. These show a sufficient resemblance to warrant our referring Diplostylus provisionally to the Amphipod order. I am very much obliged to Mr Bate for this analogy (which would certainly have escaped me in Milne-Edwards's work). Mr Bate's late papers on the Amphipods (Ann. Nat. Hist., 1861) admirably illustrate this peculiar group.

"Eurypterus, a large species allied to E. Scouleri, Hibbert (Fig. 50).

"A mere fragment of a large body-ring, which nevertheless indicates a species nearly as large as the great Scotch Eurypterus (E. Scouleri, Hibbert).

"The large 'teardrop-tubercles' along the hinder margin sufficiently show the nature of the ornament. These, in all probability, were replaced by spines on the carapace, as in the British Coal measure species.

"The carbonaceous film which remains in part on the surface, cracked (by shrinking) into minute areole, represents evidently a corneous substance, from which the animal matter has been dissolved away. The suggestion of Professor Huxley, that the large Eurypteridae had a thick crust like that of Limulus, with but little calcareous matter, is most probably true.

"Locality—Coal measures, Port Hood, Cape Breton.

Fig. 50.—Fragment of Eurypterus. Fig. 51.—Tail of Eurypterus (?).

"Eurypterus (?), tail of. (Fig. 51).

"This small specimen, found with the Diplostylus in the Joggins plant-bed, has evidently nothing to do with that genus. It is imperfect, but can hardly be supposed to be other than the caudal joint (broken) of a Eurypterus or allied form. It is, as usual in that genus, contracted at its origin, but swells out afterwards, in the manner of

* Anchylomera, Typhis, Drachyceles, etc.
the tail-joint of *Slimonia (Pterygotus) acuminata*. There are no surface markings or marginal serrations.

Locality.—Coal measures, Joggins, N.S.

IV. **Fishes.**—Remains of fishes occur in connexion with eighteen of the coal-beds at the Joggins, usually in the roof-shales, though detached scales, teeth, spines, or coprolites, are of occasional though rare occurrence in the coal itself, especially where the latter passes into coarse coal or carbonaceous shale. One thin bed, No. 6 of Division 4 of the Section, is full of remains of small fishes. It is hard and laminated, and roofed with a calcareous bed full of remains of aquatic animals. It has a true stigmarian underclay. I suppose it to have been a swamp or forest submerged and occupied by fishes while its vegetation was still standing. It contains remains of fishes of the genera *Ctenoptychius, Diplodus, Rhizodus, and Palwoniscus*. It also contains *Cythere, Naiadites, and Spirorbis*. In the other beds which contain fish-remains, most of these consist of small *Lepidoganioids*, but there are occasional teeth and scales of large species of *Rhizodus*, and also teeth of Selachian fishes of considerable size.

Among these I have in my collection a tooth of a *Ctenoptychius* (Fig. 52), differing from any species of which I have seen a description.

![Fig. 52. Tooth of Ctenoptychius cristatus, N.S. nat. size and magnified.](image)

It is two lines in length, with fourteen sharp denticles, much compressed, and with a narrow base. Another very fine tooth found in these beds appears to belong to McCoy’s genus *Conchodus* (Fig. 53). It has seven

![Fig. 53. Tooth of Conchodus plicatus, N.S.](image)

strong angular ridges, with a slightly granulated and obliquely wrinkled
surface, and is an inch and a half in length, and about seven lines wide in the middle. The anterior edge is slightly and regularly rounded, and the posterior edge forms an obtuse angle rounded at the apex. Other teeth are referable to the genus Psammodus (Fig. 54). There are also spines of the genus Gyracanthus (Fig. 55), though not of the magnificent proportions of a specimen found by Mr. Barnes in Cape Breton, and measuring 22 inches in length (Fig. 55a). Not being able to identify these fossils with any described species, I have assigned to them provisional names until further specimens shall render them better known.

Many scales and other remains of fishes occur in the roof of the main coal at Pictou, and also in the bed included in that coal-seam which afforded the reptile Baphetes planiceps, and which is evidently in the manner of its formation of the same general character with the Modiola and Cypris shales of the Joggins. Most of these belong to the genus Rhizodus, and to a species not distinguishable from R. lanceifer, Newberry (Fig. 56), of the Coal-field of Ohio. There is
also a fine species of Diplodus, which appears to be new, and which I have named *D. acinaces*. Its lateral denticles are compressed and sharp-edged, but scarcely crenulated, and both bent in the same direction. Middle cone obsolete; base large and broad. One denticle is usually much larger than the other. The greatest diameter of the larger denticle is to its length as one to three. A tooth of ordinary size measures six lines from the lower side of the base to the point of the longest denticle, and the base is four lines broad (Fig. 53). I regard as probably belonging to this fish certain cylindrical spines found in the same bed. They are about half an inch in diameter, with nearly central canal two lines in diameter, and are marked externally with parallel longitudinal striae.

Among fossils from Pictou forwarded to me by Mr. Poole, there is a new *Diplodus* (*D. penetrans*), Fig. 57. This is smaller than *D. acinaces* of the Main Coal. Its height is about two and a half lines, and the breadth nearly the same. The lateral points are half as broad as long, and flattened; rhombic in cross section at the base; serrated, especially at the outer and lower margins. They diverge at an angle of 35° to 40°, and the central denticle is small and conical. The base is broad and strongly lobed. These teeth occur in the roof of beds of coal near to and above the New Glasgow conglomerate, and in the roof of the Main Coal.*

In the same collection is a small tooth of *Ctenoptichius* with eight denticles;—the specimen is an imperfect impression. There are also remains of several ganoid fishes. One of these is a conical curved tooth, half an inch long, smooth on the convex side, and marked on the concave side with five spiral ridges. It probably belongs to the genus *Rhizodus*. With it are scales, possibly of the same fish, which have the punctures and striae of the genus *Osteoplax* of M'Coy. There are also two remarkable flattened sabre-shaped spines, one inch and a half in length, and resembling in general form the Devonian *Machacanthus*. Several rounded scales have the characters of those of *Rhizodus*, and there are numerous scales and other remains referable to *Palaeoniscus* and allied genera. These last in the Albion measures, as at the Joggins, abound in the bituminous shales and thin coals.

Notwithstanding the abundance of these remains of fishes, their dislocated condition opposes great obstacles to their satisfactory study. They all occur in the same beds, usually rich in vegetable matter, which contain the shells of *Naiadites* and the *Cythere* and *Spirorbis*. * These species were described in "Supplementary Chapter," 1860.
Consequently they must have been capable of subsisting in the brackish and impure water of the coal creeks and lagoons. The smaller ganoid species would find in these abundance of worms, small crustacea, and larvae of insects on which to feed; and if, like the modern ganoids of our North American rivers, they were provided with a lung-like air-bladder, they could subsist in stagnant water deprived of its free oxygen by decomposing vegetable matter, conditions under which the ordinary ctenoid and cycloid fishes, had they existed in the Coal formation period, would have perished. The larger ganoids and the shark-like Diplodons no doubt preyed upon the smaller fishes, as the abundant scales seen in their coprolites prove. The flat-toothed, shark-like Psammodus and Conchodus may have ground up the shells of *Naiadites*, which probably hung in countless multitudes on the floating and sunken timber of these coal lagoons and creeks. Lastly, when these fish died, the millions of little Cytheres and Bairdias, by removing every particle of flesh and ligament, would scatter the scales and bones over the bottom of the waters, to be embedded in the black ooze.
CHAPTER XIII.

THE CARBONIFEROUS SYSTEM—Continued.

INLAND EXTENSION OF THE COAL MEASURES OF THE JOGGINS—SHORES OF NORTHUMBERLAND STRAIT—USEFUL MINERALS OF CUMBERLAND.

The beds that appear at the Joggins can be traced eastward for many miles, and reappear with a very similar arrangement in the banks of the inland streams on their line of strike, as, for instance, on the Hebert River and Maclean River; on the latter of which some of the Joggins beds appear ten miles from the coast. They no doubt extend, with some modifications in the details, quite to the coast of Northumberland Strait. On this coast, however, the rocks are not so well exposed as on the shores of Chiegnecto Bay, and they have been disturbed by lines of fracture, extending from the great line of elevation of the Cobequid Mountains.

In the intervening country the covering of soil prevents the geological traveller from observing much, except the ridges produced by the outcropping edges of the harder sandstones. The only portion of this inland region in which important coal measures have been observed is at Springhill, about twenty miles eastward of the Joggins coast, where it would seem that the great synclinal seen on the coast section runs out to the surface, presenting a narrow trough-shaped arrangement, accompanied by some disturbance of the beds.

At Pugwash, we find large beds of limestone and gypsum, the former with Lower Carboniferous shells; among which are the Productus semireticulatus, and a similar but more finely striated species, the P. cora. There are also joints of Enerinites, a little Ariculopecten or scallop, and a smooth shell, Terebratula sacculus, belonging to the same tribe with the Productae, but more closely allied in form to the few species of that tribe which inhabit the existing seas. This limestone is of good quality, and has been extensively quarried. It dips to the S.W. On the shore in the vicinity a series of sandstones and brownish shales appear, also with S.W. dips. Associated with them are some beds of gray and black shale, with leaves of ferns and Cordaites. The limestone is again seen at Canfield's Creek, and there
it is associated with gypsum. The dip is S.S.W. These Pugwash beds are evidently Lower Carboniferous, and if the same regularity that we have observed at the Joggins prevailed, would be associated with a series of Coal formation rocks regularly succeeding them. A portion of such a series does appear in ascending Pugwash River, but in proceeding to the eastward we find that the centre of the trough is broken up by a dislocation or anticlinal line, extending to Cape Malagash, which causes the coal measure rocks to be ridged up in such a manner that two narrow troughs with an intervening anticlinal appear to occur between Pugwash and the Cobequid Hills. On the east side of Pugwash Harbour we find gray sandstones, apparently of the Upper Coal formation, in very thick beds, dipping to the north, and containing prostrate trunks of carbonized trees and Calamites. The shore runs nearly in the direction of the beds, and the gray sandstones in consequence form a sort of sea-wall sloping toward the strait, and extending from Pugwash to Oak Island. Under these sandstones are beds of gray shale, with fossil ferns and a small seam of coal; and these are again underlaid by dark red, brown, and mottled sandstones and shales. On the shore of Wallace Harbour there are gray sandstones and gray and brown shales, with high dips to the north-east; they are far beneath the beds seen on the Gulf Shore, and probably belong to the Middle Coal measures, possibly to their lower part. They contain at one place a thin seam of sulphurous coal, and chalybeate and sulphurous springs rise from them. The whole of these beds, as well as others seen farther inland, bear a striking resemblance, as far as can be observed, to those of the Joggins section.

Sandstones and shales of the Coal formation prevail along the coast between Wallace and Cape Malagash, and there present some appearances worthy of notice, more especially the association of limestone, marine shells, and gypsum, with beds containing trunks of fossil coniferous trees, and the occurrence of coal measure beds in a vertical position, or disturbed as far as possible from their original horizontality.

At M'Kenzie's Mill, not far from the eastern extremity of Wallace Harbour, the following curious succession occurs, in descending order:

<table>
<thead>
<tr>
<th>Layer Description</th>
<th>Feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gray limestone with Productus cora, P. semircriculatus, and Aviculopecten simplex, the cavities of the shells filled with crystalline gypsum</td>
<td>2</td>
</tr>
<tr>
<td>White small-grained crystalline gypsum</td>
<td>10</td>
</tr>
<tr>
<td>Reddish shale and sandstone with layers of arenaceous and concretionary limestone</td>
<td>40</td>
</tr>
</tbody>
</table>

Brown limestone, 5 feet.
Reddish shale, 5 feet.
Middle Coal measures, 20 feet.
Upper Coal measures, 30 feet.
Gray limestone, 40 feet.
Sandstones, 5 feet.
Reddish shale, 5 feet.
Gray sandstones, 10 feet.
Underlying beds of limestone, 20 feet.

Carboniferous beds.
Gray sandstone and shales with some reddish beds. One of the gray sandstones is filled with trunks and branches of fossil trees, fossilized by carbonate of lime, and showing under the microscope a very perfect structure of the Araucarian type. about 150

Here we have, on a small scale, some of the principal features of the Lower Carboniferous series, associated with vegetable remains similar to those found usually at a much higher level in the Carboniferous system. The beds at this place dip S.S.W. 20°; but a little farther to the north there are sandstones and conglomerates, also of the Carboniferous series, dipping to the N.E.

Proceeding along the coast to the north-east, we find the gray sandstones containing fossil trees and thrown quite on edge. As the strike of the beds corresponds nearly with that of the shore, large surfaces sometimes stand up along the face of the cliff like walls, and on these are distinct ripple-marks and worm-tracks, produced when the sandstones were beds of incoherent sand, but now, in consequence of the hardening and disturbance of the sandstone, forming sculptures on a vertical wall. A little further on, the same beds are seen dipping to the north at an angle of 45°, and containing abundance of fossil wood and some Calamites. A portion of the shore is then occupied by a salt marsh, and beyond this we have a considerable series of coal measure beds at the extremity of Cape Malagash, dipping south at an angle of 40°. Cape Malagash, as before stated, thus appears to be in the line of a subordinate anticlinal, ridging up the Coal formation rocks, but not, like the more important anticlinal to the northward, bringing up the Lower Carboniferous series. That the reader may have an opportunity of comparing these beds with those of the Joggins, at the other extremity of the same coal-field, and sixty miles distant, I shall give a section of them in descending order.

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Description</th>
<th>Feet.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Brownish red sandstones and shales alternating with gray sandstones, one of them containing pebbles of white quartz, about 600</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Dark gray limestone</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Gray and reddish sandstones</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>Dark gray limestone</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>Gray sandstones</td>
<td>50</td>
</tr>
<tr>
<td>6</td>
<td>Reddish sandstones and shales</td>
<td>not well seen.</td>
</tr>
<tr>
<td></td>
<td>Gray arenaceous shale, Fern leaves, and Cordaites</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Underclay with Stigmaria, and an erect stump with Stigmaria roots, penetrating bed above</td>
<td>3</td>
</tr>
</tbody>
</table>
mrmm^imm

n
216

TJJE

CARBONIFEROUS SYSTEM.

:!::

Feet.

Dark gruy

lirac stone

.

Alternations of gray and reddish sandstone and shale.

.........

3

In the

lower part a bed of coal six inches thick, with Stigmaria undcrclay

about 300

Gray sandstone

20

Alternations of reddish sandstones and shales and gray sandstone,

with thin

layers

of

clay

ironstone and

a layer of coaly

^!;i

about 300

shale

This

evidently very like some of the

is

more barren

parts of the

Joggins shore, especially near the lower part of the coal measures.
I may remark, however, that if the section at Malagash was exposed
in a cliff like that of the Joggins, I

with erect plants would appear.
section

was described and

figured

have no doubt that more beds
tree mentioned in the
the Proceedings of the

The erect
by me in

Mr Binney had

Geological Society in January 1846.

described a

June 1845 and before the
close of 1846, Mr R. Brown of Sydney had described still finer
instances of the same kind from the Sydney Coal-field.
These were
the three first instances in which the Stigmaria was ascertained to be
the root of the Sigillarire of the Coal period and even these were not
altogether sufficient to dispel the doubts of some geologists.
As the
similar specimen found in Lancashire in

;

;

Malagash
geology,

tree
I

is

thus an historical

give a sketch of
Fig. 59.

it

the progress of

mr

1

"

in

£vect Sigillaria at Cape Malagash.

Stigmaria roots.
Woody surface with indistinct

(a b)
(d)

monument

in Fig. 59.

ribs.

(e)

Bnrk marked with furrows,

(e)

Internal axis.

On the south side of Malagash Cape and head of Tatamagouche
Bay, the Coal formation rocks dip to the southward, but are not well
exposed and at Tatamagouche Harbour we find them dipping to the
;


north, which they continue to do as far as the base of the Cobequid Hills at New Annan. Cape Malagash thus forms an anticlinal ridge, which extends far to the westward into the interior of Cumberland; and if we consider the limestone at M'Kenzie's as the equivalent of the Pugwash and Napan limestones, then the trough between it and the New Annan Hills corresponds to the Joggins trough, though narrower, and the northerly dipping beds of the Gulf shore correspond to those north of the Joggins in New Brunswick. It is, however, more probable that the great Cumberland trough is here, as already hinted, split into two by the intervention of the Malagash anticlinal. Unless the more important parts are concealed by the imperfection of the sections, the whole Carboniferous series appears here to be less fully developed than on the western coast of the county.

The beds seen with northerly dip at Tatamagouche, and thence to New Annan, have the aspect of those of the Upper Coal formation. They constitute a belt extending along the coast and connecting the Cumberland coal area with that of Pictou. Though beyond the limits of the county of Cumberland, they may be noticed here.

At the mouth of the French River are gray sandstones and shales, containing a few Endogenites, Calamites, and pieces of lignite, impregnated with copper ores. Beneath these appears a series of brownish red sandstones and shales, with a few gray beds, occupying, in a regular descending series, about six miles of the river section. They contain, in a few places, nodules of copper glance (gray sulphuret of copper); they are often rippled, and contain branching fucoidal marks. On one of the rippled slabs I found marks consisting of four footprints of an animal. They were three inches and a half apart, and each exhibited three straight marks as if of claws. These were described in 1843; and in the following year I discovered at the same place another series of footsteps of different form. Neither of these were sufficiently well marked to give any definite information respecting the nature of the animal that produced them; but I am now convinced that they must have been the traces of reptilian animals. In my paper sent to the Geological Society in 1844, I find the following remarks:

"When examining the red sandstones near Tatamagouche last summer, I found in one of the beds a few footmarks of an unknown animal, specimens of which were sent to this society. They were mere scratches made by the points of the toes or claws, and therefore could give few indications of the form of the feet which produced them. Their arrangement, however, appeared to indicate that the animal was a biped, and their form is quite analogous to that of the marks left by our common sandpiper, when running over a firm sandy
shore. On a subsequent examination of the same place, I found a series of footmarks of another animal, and obtained a slab with casts of eight impressions, which I send with this paper. In this specimen the tracks are somewhat injured by the rain-marks which cover the slab, and the clay in which they were made was probably too soft to give good impressions; it has, however, preserved a furrow which must have been caused by the body or tail of the animal trailing over it. Many of the beds in the neighbourhood of that containing these footmarks are rippled, rain-marked, or covered with worm-tracks; and as such indications of a littoral origin are not infrequent in other parts of the Newer Coal formation, it may be anticipated that many interesting relics of terrestrial animals will in future be discovered. At present, however, as no quarrying operations are carried on in the red beds, it is difficult to obtain access to the surfaces on which tracks might be expected to occur. The only vegetable remains found in the red sandstones of Tatamagouche are some of those irregular branching stains which have been considered as fucoidal marks; but in a bed of gray sandstone above the strata containing tracks, I found Calamites, Endogenites, Stigmaria ficoïdes, and fragments of carbonized wood. In a fragment from a dark calcareous bed near this place, I found a portion of a fossil plant covered with shells of a species of Spirorbin, and a few small scales of ganoid fishes."

It will be observed that rain-marks are mentioned as found with these footsteps, and I have now in my collection specimens from this place, I believe the first ever observed in the Carboniferous system; though much finer specimens were found shortly afterwards by Mr Brown at Sydney, and described by him and by Sir C. Lyell.

In the French River section, the northerly dips of the Coal measures increase in approaching the hills, the lowest beds dipping at an angle of 30°. Not far from the base of the hills, there is a small bed of coal, with some gray shales and sandstones and a thin bed of limestone.

Useful Minerals of the Cumberland Coal-field.

Coal.—The principal deposit of this mineral now worked in Cumberland is the Joggins main seam, consisting of two beds, three feet six inches and one foot six inches thick, with a clay parting between, varying from one foot to a few inches. It is a free-burning bituminous coal of fair quality. It is extracted by two shafts worked by horse-gins, and the coal is carried to the loading pier by a railway incline. The mine is drained by a level run out to the shore, and consequently is not worked below the level of high tide. The
General Mining Association are the lessees of this mine. The quantity of coal shipped in 1851 was only 2100 chaldrons. In 1864 it had risen to 6053 tons, and in 1866 to 8478. It was exported principally to St John, New Brunswick.

Taking into account the comparative thickness of the seams, and the facilities for extraction and shipment, there can be no doubt that the bed at present worked is the best in the section; which, as we have already seen, is remarkable for the great number and small thickness of its coal-seams. It seems certain, however, that some of the others, especially the principal beds in Groups XI. and XIII. of the section, might be mined with profit. Since the publication of the former edition of this work one of these, No. 29a of the section, has been opened. The great disadvantage on the Joggins coast is the want of safe anchorage for shipping, which can be protected only by expensive piers and breakwaters. Since the expiry of the exclusive privileges of the General Mining Association, attempts have been made to obviate this disadvantage by opening mines on the banks of the Hebert and Maccan Rivers. Six companies have opened works in this part of the district, under the names of the "Victoria," "Maccan," "Chiegnecto," "Lawrence," "St George," and "New York and Acadia" Mines. The beds which they work appear to be of similar character with those of the Joggins, of which they are the direct continuation. It is questionable, however, whether the shafts of these new mines have yet opened the best beds of coal, nor does it seem certainly known with which of the seams at the Joggins these opened correspond. At the Victoria Mine, according to Mr Rutherford, there are three seams. The upper seam is sixteen feet above the middle, and this fifty-three feet above the lowest. The upper seam is one foot ten inches thick, the middle three feet, and the lower has three feet of coal divided by two partings of fire-clay. These beds are probably on the horizon of Coal-groups 29 and 30 of the coast section. According to the same authority, the Lawrence Mine, which adjoins the Victoria on the east side of Hebert River, has opened two seams of coal, each two feet six inches thick, and separated by a vertical thickness of twenty feet. In the Maccan Mine, eastward of the Lawrence, two seams have been opened, only one of which, two feet four inches thick, is at present worked. The Chiegnecto, St George, and New York and Acadia Mines are all on the same seam, which presents different characters from those in the above-mentioned mines. Its section in the Chiegnecto Colliery is thus given by Mr Rutherford:—
This bed contains no less than ten feet eight inches of coal, and is consequently the thickest yet observed in this section. It may be compared with Coal-group 29 of the coast section. In the adjoining area, the St George, the amount of coal appears to diminish to seven feet eight inches, while the clay partings increase. This fact shows how hopeless it is to attempt to identify coal-seams, even a few miles distant, by their minute structure. It seems, however, not unlikely that all the beds above referred to, as worked on the Hebert and Macdonald Rivers, belong to the lower series of workable seams at the Joggins coast, and that the exact equivalent of the main seam has not yet been discovered. Still I would not venture to be at all positive as to this; but merely throw it out as a suggestion to explorers, who might perhaps discover the outcrop of the main seam to the southward of the mines now worked.

The quantity of coal extracted in 1866 from the new mines above mentioned was 9374 tons, making, with that from the Joggins mines, 17,852 tons.

About twenty miles south-east of the Joggins shore, at a place called Springhill, Coal measures appear with a dip to the north, indicating, with their position not many miles from the base of the Cobequid Hills, that they belong to the southern side of the Cumberland trough. I have had no opportunity of examining the coal-seams of this place, but one of them is variously stated at eight and twelve feet in thickness, and the coal is of good quality. The Springhill bed is at too great distance from navigable water to permit it to be mined at present for exportation. It forms part of the reserve stores of coal, waiting for their full development till railways extend across the country, or till domestic manufactures demand supplies of mineral fuel within the province. The present inland demand might, however,
permit it to be mined on a small scale; and could a railway be constructed, it might be profitably employed in smelting the rich iron ores of the Londonderry mines. Should railway communication be established between Cumberland and Halifax on the one side, and New Brunswick on the other, this coal area would at once become important.

The following assays show the qualities of samples of Joggins and Springhill coal examined by me; but it must be observed that the specimen from Springhill was from the outcrop of the seam, and therefore probably injured by weathering.

Assay of Joggins Coal from the Main Seam.

The specimen is bright coal of uniform texture, with straight joints containing films of iron pyrites and calcareous matter.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>Volatile combustible matter</td>
<td>36.3</td>
<td></td>
</tr>
<tr>
<td>Fixed carbon</td>
<td>56.0</td>
<td></td>
</tr>
<tr>
<td>Reddish-gray ashes</td>
<td>5.2</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Assay of Springhill Coal.

The specimen is a compact coal, less bright than that of the Joggins, and without films of pyrites, though it contains some sulphur intimately mixed with it.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>Volatile combustible matter</td>
<td>28.4</td>
<td></td>
</tr>
<tr>
<td>Fixed carbon</td>
<td>56.6</td>
<td></td>
</tr>
<tr>
<td>Reddish ashes</td>
<td>13.2</td>
<td>100.0</td>
</tr>
</tbody>
</table>

From the character given of the Springhill coal by persons who have used it, I should infer either that its quality has been overrated, or that my specimen is inferior to the average quality.

The above assays show that the Joggins coal much resembles that of Sydney, C.B., while the Springhill coal is more like that of Pictou. See assays of these coals farther on.

The structure of the Cumberland coal-field warrants the expectation that the Springhill seam may be traced toward the coast of Chiegnecot Bay, perhaps to the vicinity of Apple River, where a very small bed of coal has been discovered, and also in the opposite direction. Attempts
which have been made by a mining engineer in the service of the General Mining Association to effect the former of these results, have, however, been unsuccessful; and it would appear that the beds in the vicinity of Springhill are in a much more disturbed condition than those on the Joggins shore.

In like manner, it is a perfectly fair inference that the seams which appear in the coast section of the Joggins, must extend along the northern side of the trough, far into the interior of the country; though whether they improve or deteriorate in their eastern extension is not at present known. It appears certain, however, that the coal measures are less fully developed on the coast of Northumberland Strait than on the western coast, and the seams which have hitherto been found in them are very small.

It may, therefore, be inferred, that in the event of the interior of the Cumberland district being opened up by railway communication, the localities offering the greatest prospects of valuable discoveries are,—1st, The line of country extending E.S.E. from the Joggins toward the branch of the River Philip called Black River; and, 2d, A line extending east and west, and passing through Springhill.

Clay Ironstone occurs in the Joggins section and elsewhere, in bands in the shales, and in irregular bands. None of these deposits are at present of any economical importance; though, could smelting works be established in connexion with the Londonderry ores, a considerable additional supply of clay ironstone could be procured from the Coal measures, and might be of much value.

Grindstone is one of the most important productions of the Cumberland coal-field. I have already referred to the mechanical qualities on which this rock depends for its value. The principal localities of the quarries are Seaman's Cove and Ragged Reef; the beds at the former being below the productive Coal measures, those at the latter above them. In smaller quantities, grindstones are obtained from a number of other beds and reefs along the coast, and also from the continuation of these beds on the estuary of the Hebert River, and from the geological equivalents of the beds at Seaman's Cove, where they reappear in New Brunswick. Forty-six thousand four hundred and ninety-six grindstones were made in Nova Scotia in 1861, the greater part in Cumberland. Grindstones are also quarried in the sandstones on the eastern coast of Cumberland; and at Wallace there are valuable beds of freestone which have been quarried for exportation.

Limestone and Gypsum abound in the line of country extending from Minudie to Pugwash and Wallace. The former especially occurs in very thick beds at Napan River and at Pugwash; and these are
also the principal localities of gypsum, which does not, however, appear to be so abundant in the Lower Carboniferous rocks of this county as in those of Hants and Colchester.

A singular variety of limestone occurs in a number of places on the Joggins shore. It is the black *bituminous* limestone, so often referred to in the section. This substance, though not in sufficiently thick beds to compete with the larger Lower Carboniferous limestones for ordinary purposes, is the most valuable limestone in the county for application as a manure, in consequence of the quantity of phosphate of lime contained in it, in the form of scales and bones of fish. In consequence of its containing this valuable ingredient, it is worth to the farmer more than three times the price of ordinary limestone, and I have no doubt that it will be extensively worked for agricultural purposes, when the use of mineral manures becomes more general among the farmers of Cumberland. It is possible that even at present the lime from the richest of these beds would be sufficiently appreciated on trial to allow them to be profitably worked.

The soils resting on the Carboniferous rocks of Cumberland are very various in their quality, and run in lines across the county in correspondence with the strikes of the groups of beds from which the materials of the surface soils have been derived. Rich loamy and calcareous soils generally accompany the limestones, gypsums, and marly clays and sandstones of the Lower Carboniferous system. The soils of the coal measures vary from light and sometimes stony sands to stiff clays. The Upper Coal formation produces soils approaching somewhat to those of the Lower Carboniferous series. Hence along the north side of the Cobequid Hills we have a broad band of good soil, and a similar one extending across the northern part of the county, while between these are alternate belts of poor and rich soils; almost the whole, however, being sufficiently deep and friable to be cultivable.

The great fertility of the marsh-lands of the western coasts and rivers, and the almost exclusive attention of the population on many parts of the eastern shore to lumbering and shipbuilding, have caused the value of the upland soils of Cumberland to be much underrated; but they are now constantly rising in the estimation of the people of the county, and will do so more and more as improved methods of cultivation become more generally diffused and appreciated.
CHAPTER XIV.

THE CARBONIFEROUS SYSTEM—Continued.

CARBONIFEROUS DISTRICT OF NEW BRUNSWICK—GENERAL OBSERVATIONS—STRUCTURE OF THE COAL-FIELD—LOWER CARBONIFEROUS ROCKS—FOSSILS—USEFUL MINERALS.

The coal measures of the Joggins, dipping to the south-west, extend in the direction of their strike across Chiegnecto Bay to Cape Meraguin and the North Joggins, where the gray and red sandstones of the Millstone-grit and lower portion of the Coal measures are well seen on the coast, dipping S. 10° W. at an angle of 45°. On tracing these beds a little to the northward, they become vertical and dip to the north, forming an anticlinal. This anticlinal appears to extend to the north-westward up the bay, for at Fort Cumberland the first rocks that we see on entering New Brunswick are coarse gray sandstones dipping to the northward. This dip continues as far as the east side of the Petitediac River, where the highest beds are seen at the ferry below Dorchester. They are gray sandstones, with Calamites, Sternbergia, and trunks of coniferous trees; and beneath them, extending along the coast to the southward, is a great series consisting principally of reddish beds. I have no doubt that the whole of these beds belong to the older part of the Coal formation. Nothing newer is seen in this neighbourhood; for at Dorchester and Fort Folly Point, and at Hopewell, on the opposite side of the ferry, the same gray sandstones reappear with southerly dips, and with fossils of the same species. The dip varies from S.S.E. to S.E. If we follow this series in descending order to the northward, up the Memramcook River, we soon come to conglomerate, limestone, and thin-bedded bituminous and calcareous shales, all belonging to the Lower Carboniferous series. On the west side of the Petitediac, we find a similar descending series toward the great metamorphic band ending in Shepody Mountain, and which consists of rocks older than the Carboniferous system. The order of succession seen here is as follows, though there may be important omissions in the list, as the sections are not continuous:
1. Gray sandstone, often coarse and pebbly, with shales and conglomerate, Hopewell Ferry, etc. These beds perhaps correspond to the great sandstone ledges of Seaman's Quarries, Joggins. They may be traced through Albert County to the south-west for a considerable distance.

2. Reddish sandstones and shales.

3. Limestone and gypsum.

4. Red sandstone and conglomerate.

5. Calcareo-bituminous shales of the Albert Mine, Hillsborough. These beds appear here to lie at the very base of the lower Carboniferous series. (See Section, Fig. 60.)

The Lower Carboniferous and Millstone-grit series of southern New Brunswick thus appear to consist of the same elements as in the part of Nova Scotia just described, with the exception of the occurrence of a representative of the Lower Carboniferous Coal measures in the bituminous shales of Hillsborough. In the vicinity of the Albert Mine these seem to be the lowest member of the series; but Professor Bailey describes a lower conglomerate as underlyingshales, similar to the ones at Hillsborough, farther west at the Pollet River. In 1852, I determined the geological age of the Albert deposits on stratigraphical grounds, and since that time Mr C. F. Hartt has added the confirmatory evidence of fossils, having found specimens of Cyclopteris Acadiea and Lepidodendron corrugatum, the characteristic plants of this portion of the Carboniferous series, as seen in the cliffs at Horton Bluff in Nova Scotia, to be described in the sequel.

At the Albert Mine, the geologist stands at the extremity of a long range of metamorphic (Devonian) rocks, stretching along the south coast of New Brunswick, and terminating in Shepody Mountain. The Lower Carboniferous rocks bend around the end of this ridge, and are thrown off from its north-east and north-west sides. On the former they extend in a belt of no great breadth to Salisbury Cove, beyond
which they appear only in detached patches, the most western of which, on the coast eastward of St John, are those of Quaco and Gardiner’s Creek. On the northern side these beds occupy a broad belt of country, extending along the valleys of the Petitecodiac and Kennebeckasis Rivers, and in part limited on the north-west by another metamorphic ridge, stretching from the great area of such rocks lying on the St John River to the eminence known as Butternut Ridge. The belt thus limited, and which extends for nearly eighty miles, with a breadth of from sixteen to twenty miles, appears to consist wholly of beds of the three lowest divisions of the Carboniferous period. The Lower Carboniferous Coal measures and their associated conglomerates skirt the northern side of the Shepody range, and are succeeded by the marine limestones and gypsums. These appear to be brought up by an undulation in the middle of the valley at Sussex Vale, and they reappear on the north side of the Kennebeckasis, skirting the exterior of the metamorphic belt of the Kingston series to Butternut Ridge already mentioned.

Doubling around the metamorphic promontory near Butternut Ridge, the Lower Carboniferous outcrop extends in a narrow and somewhat curved band to the west, till it reaches Oromocto Lake and the Magaguadavic River, near the line of the St. Andrew’s Railway. It then bends sharply to the north-east, and, in so far as known, runs directly, though with many minor curves and detached outliers, to the Bay de Chaleur, skirting the margin of the broad Silurian area of northern New Brunswick. One of the most important outliers is that on the Tobique River.* In so far as this series has been examined, it has been described by Professor Bailey and his associates† as composed of red conglomerates, red sandstones, and red shales, with beds of limestone and gypsum, and in places penetrated and overlaid by trapuean rocks, by which some of the beds appear to have been considerably altered. These eruptions of volcanic rock I suppose to be of much older date than those of the Trias, and to be similar to those which occur in the Lower Carboniferous of Nova Scotia, and which will be described in the sequel.

From the above description, it appears that the line of outcrop of the Lower Carboniferous is bent upon itself, forming an angle of about 45°, each limb of which extends for about 150 miles to the waters of the Gulf of St Lawrence. The great triangular area thus limited, except where connected with the Cumberland area in Nova Scotia by an isthmus a few miles in breadth, includes an area of nearly 6000

* Hind’s Report, p. 62.
† Report on Geology of Southern New Brunswick, 1865.
STRUCTURE OF THE COAL-FIELD OF NEW BRUNSWICK. 227

square miles, and is occupied by rocks of the Coal formation. Under these rocks the Lower Carboniferous beds no doubt extend; and in some localities they are in part exposed at the surface by the slight undulations which affect the widely distributed and nearly horizontal beds of this extensive Coal formation area.

In the first edition of "Acadian Geology," I did not attempt any general description of the New Brunswick Carboniferous area; but since that time the researches of Professor Bailey and of Messrs. Matthew and Hatt, and those of Professor Hind,* with the facts previously published by Sir W. E. Logan, and those in the MS. notes of the late Dr. Robb, kindly placed in my hands by his brother, Mr. C. Robb of Montreal, have given much additional information. I have also had opportunities of examining the fossil plants collected by Sir W. E. Logan and Mr. Hatt, and of visiting some additional portions of this area. To enter into the details of the new matter thus collected would far exceed my present space. I shall, under the following heads, merely endeavour to present some of the more important facts and conclusions:

The coal area of New Brunswick is remarkable, as compared with Nova Scotia, for the flat and undisturbed condition of its beds, and for the comparative prevalence of sandstones. Indeed, in so far as the appearances present themselves to a cursory observer, the whole of the Coal formation area of New Brunswick may be characterized as a flat expanse of somewhat coarse gray sandstone. Other beds, however, are not wanting, as conglomerate, red sandstone, and shales of various qualities; but, from the flatness of the beds and general small elevation of the surface, they are not very obvious.

In attempting to estimate the thickness and relations of the Coal formation area of New Brunswick, the facts observed on the northern coast of the province, between Bathurst and Bay Verte, are of the utmost importance. I have not myself explored this region, having seen it only at a few points; but Sir William Logan has given a detailed section of a portion of it in the vicinity of Bathurst, and much information is contained in the MS. notes and sections of the late Professor Robb of Fredericton referred to above.

Near Bathurst, the Lower Carboniferous or "Bonaventure" Formation, as it has been named by Logan in its extension into Canada, is represented by thin beds of red and gray conglomerate, including

red and gray shales, in one of which occur remains of plants, fossilized by the gray sulphuret of copper, in the manner often observed in the Carboniferous rocks of Nova Scotia. Over these are reddish sandstones of considerable thickness, succeeded by gray sandstones and shales, including underclays, many fossil plants, and two thin beds of coal. The thickness of these, as measured by Sir W. E. Logan, is about 400 feet. These beds appear to be on the north side of an anticlinal which runs out toward Shippegan. South of this, according to Professor Robb's observations, the dip, though slight, is to the southward, and the gray and nearly horizontal sandstones of the Miramichi River, which contain fossil plants and a thin seam of coal, are in the centre of a great flat synclinal which occupies the greater part of the breadth of the coal-field. South of the Miramichi, the gray sandstones, with an opposite dip, extend to Richibucto, where a small bed of coal occurs at a place called Coal Brook, with the accompaniments represented in Fig. 61.

![Section on Coal Creek near Richibucto. — Dr Robb.](image)

Under this, and extending to Buctouche, are reddish grits, which Professor Robb regards as a repetition of those at Bathurst, so that we have at Buctouche an anticlinal bringing up the lower members of the Carboniferous series. From Buctouche to Shediac the dips are southerly. Shediac Harbour seems to be near the centre of another flat synclinal, and thence to Cape Tormentin the beds dip to the N.E. at small angles. Cape Tormentin appears to be in the axis of an anticlinal form, extending inland toward the wide Lower Carboniferous area of Albert county, but on the coast not bringing up anything older than the lower part of the Coal formation. The end of this undulation, at the extremity of Cape Tormentin, is covered by a small
patch of micaceous red sandstone, which appears to be an outlier of the New Red Sandstone of Prince Edward Island. Bay Verte presents another slight synclinal undulation, continuous apparently with that which appears at Dorchester Ferry; and south of this is the anticlinal which brings up the Lower Carboniferous limestones of Northern Cumberland, and which limits the coal trough of the Joggins in Nova Scotia.

The coast section above described, as given in Professor Robb's manuscripts, is included in the general section attached to the map, to which the reader is referred.

It would appear from this section, compared with those farther inland, as, for example, in the vicinity of Frederickton, that in the northern and western part of the New Brunswick coal area the Lower Carboniferous Formation is little developed, except in the form of grits and conglomerates; and that the greatest development of the calcareous members of the Lower Carboniferous and of the Lower Carboniferous Coal measures occurs in the southern part of the area, the principal exception being the occurrence of limestone and gypsum in the Tobique outlier. The same deficiency occurs in Nova Scotia on the northern side of the Cobequid Hills.

In the next place, in so far as ascertained, the Coal formation proper appears in New Brunswick to have a less thickness than in Nova Scotia, and to include only two principal coal groups—one near the base, and the other near the summit. To the former, I refer the coals of the coast near Bathurst, of Richibucto, and of the vicinity of Frederickton, unless, indeed, the upper members of the series there overlap and conceal the lower; to the latter, those of Miramichi, and possibly those of Cocagne and Grand Lake. This would accord also with such evidence as fossils afford, since, as I have elsewhere shown,* the plants of the Coal measures near Bathurst have a Lower Coal formation aspect; those of Grand Lake are more akin to those of the Upper Coal formation.

On the one hand, the great uniformity of the New Brunswick area, so far as observed, would lead to the belief that these exposures represent fairly its available resources of coal, which, in that case, are great as to area, but insignificant as to thickness, and consequently as to productive value. On the other hand, it is quite possible, judging from the analogy of other countries, that there may be portions of this area as yet unexplored, in which mineral fuel may have been more bountifully produced. Farther, as the Grand Lake beds seem to belong to the Upper series, and borings already made would indicate that the Lower series may be reached there, it would be desirable that

* "Synopsis of the Carboniferous Flora."
effectual measures should be taken to ascertain their actual value, either by boring or by searching for their outerops, and also that the Grand Lake beds themselves should be proved in their extension both east and west. In Nova Scotia very remarkable changes of thickness occur in the coal-beds in tracing them from one locality to another; and though this is perhaps less likely in New Brunswick, yet it is quite possible that more valuable beds than any yet known may exist, more especially in the central part of the area, where the great flatness of the beds and their general covering with soil and forest have prevented any effective exploration.

I have not had an opportunity of visiting the coal mines at Grand Lake; but, from a paper read by Mr. Matthew before the Natural History Society of New Brunswick, it appears that mining is prosecuted at two places,—Coal Ridge and Coal Creek. At the former place the coal is found in a bed nineteen inches in thickness. At the latter the thickness is only seventeen inches—the distance between the two localities being three and a half miles. Only one bed appears to have been discovered. The dip of the coal is to the southward at a very small angle.

Mr. Matthew states, in addition to the considerations above mentioned, the very important fact, that older slates are found cropping out to the surface about ten miles from the mouth of Coal Creek. This would indicate, as he states, that the Coal measures may be very shallow at this place. It gives, however, a probability that the coal-beds may vary in productiveness on different sides of such an island of older rocks, as is observed to be the case in Nova Scotia. In other words, if the New Brunswick coal area is traversed by buried ridges of older rocks, these may divide it into subordinate areas of deposit, some of which may be much more valuable than others.

In conclusion, I would venture to express the opinion that the question as to the actual value of the coal area of New Brunswick can be settled only by the slow progress of accidental discovery, or by boring operations undertaken in those places where the upper series of coal-beds makes its appearance; and that the analogy of the Nova Scotia coal regions would indicate that the probability of the occurrence of large beds will be greatest along the southern side of the coal area, and where the Coal measures approach most closely to the older rocks. Of course, it would be useless to bore so near to these last that only the lower part of the Carboniferous series would be penetrated. It is where indisputable indications exist of the presence of the upper portion of the Coal measures that such trials should be made; and the best scientific advice as to locality should be secured before entering on expensive operations.
2. The Lower Carboniferous Coal Formation in New Brunswick.

This remarkable group of rocks, which does not appear, so far as known, in the coal area of Cumberland, though it is developed in other parts of Nova Scotia, appears in New Brunswick to be of considerable thickness, and can be traced from the neighbourhood of Dorchester for some distance along the north side of the coast range of metamorphic hills. It is characterized by the same species of fossil plants as at Horton Bluff in Nova Scotia, and, like the beds at that place, these are rich in remains of fishes. They differ, however, from the rocks of similar age in Nova Scotia by the remarkable development of highly bituminous shales in connexion with considerable deposits of an asphaltic mineral, to which the name “Albertite” has been given, and which is highly valued as a material for the manufacture of coal oil and illuminating gas. I examined these deposits in 1852, in the company of Sir Charles Lyell, and shall first give, without any material alteration, the account of the locality as I then saw it, and as it was described in the first edition of this work, adding a summary of more recent observations, and the new conclusions to which they lead.

Albert Mine, Hillsborough.—The beds at this place are thin-bedded shales, composed of extremely fine indurated clay with much bituminous matter. Some of them contain much lime, and when this is dissolved away by the weather or by an acid, the bituminous matter remains in the form of light porous flakes, resembling half-decayed bark. These shales contain great numbers of fossil fishes in a remarkably perfect state. They are flattened by pressure; but their forms are perfectly preserved, and the fins are as perfect as they were in life. They belong to the genus *Palaeoniscus*, and are probably identical with some of those in the Coal formation of Nova Scotia (Fig. 62),

![Fig. 62.—*Palaeoniscus Alberti* (?)—Jackson.](image)

but they have been buried in such a manner that every scale is in its place, instead of being scattered about, as at the Joggins and in the
Carboniferous rocks generally. The shales containing these fossils have been singularly disturbed and contorted, and they contain a vein of a remarkably pure and beautiful bituminous substance, allied to pitch-coal, and of great value as a material for gas-making. This substance unfortunately became a subject of litigation; and as one point in dispute was whether it should be called coal or asphaltum, scientific gentlemen were summoned from the United States as witnesses, and the most discordant opinions were given, both as to the name of the mineral and its geological age. This was not wonderful in the circumstances, for the substance was really a new material, intermediate between the most bituminous coals and the asphalts, and the geologists examined had enjoyed very few opportunities of studying that very remarkable group of Lower Carboniferous rocks to which the deposit belongs. Consequently some, in all sincerity, called the mineral coal, others asphaltum; and some maintained that it was in the true Coal formation, while others believed it to be in the Old Red Sandstone. Only one of the geologists employed, Dr Percival of New Haven, assigned the deposit to its true geological position, as subsequently ascertained by Sir Charles Lyell and the writer, and stated above. To give an idea of this singular deposit, I quote the following details from a paper contributed by me to the Geological Society of London:—

"The pit for the extraction of the mineral is situated on the south side of Frederick's Brook, a small stream running eastwardly into the Petitecodiac, and near the junction of two branches of the brook. In approaching the mine from the south, the shales are seen in nearly a horizontal position in a road-cutting. This may be a deceptive appearance. Dr Percival, however, considers it the true arrangement at this point. At the pit-mouth the beds dip to the south at angles of 50° and 60°, and consist of gray and dark-coloured thin-bedded bituminous shales; and these shales appear with similar dips on the south branch of the brook. The outcrop of the coal is not now seen, but in a line with it I observed a remarkable crumpling and archeding of the beds in the bank of the brook, at the point where the southwardly dipping beds above noticed meet a similar or the same series dipping to the north-west; this is represented in Fig 63. The outcrop of the coal in the bed of the brook was, as I was informed, very narrow, and the appearances now presented are as if the shales had arched over it. On the northern side of the arch above referred to, and in the north branch of the brook, are seen a thick series of bituminous and calcareous shales, with three beds of sandstone, the whole dipping to the north-west at a high angle. The strike of
LOVKEK CAUBONIFKROUS OF NEW BRUNSWICK.

one of the most regular beds I found to be S. 18° W. magnetic. Many of the shales contain scales of fish, and one of them has a

peculiar oolitic structure, consisting of a laminated basis of impure coaly matter or earthy bitumen, with crystalline calcareous grains, which are removed by weathering, and leave a light vesicular inflammable residuum of very singular aspect. The shales are in some places remarkably bent and contorted, as if by lateral pressure when in a soft state. A part of one of these flexures is accurately represented in Fig. 64, and illustrates some appearances in the mine to be subsequently noticed.

"The principal shaft has been sunk perpendicularly from the outcrop of the coal, and at its bottom is sixty-seven feet south of it. The gallery connecting the bottom of the shaft with the coal shows thin-bedded bituminous shales with calcareous and ironstone bands and concretions, dipping at the end nearest the coal S.S.W., at an angle of 60°, though a dip to the S.E. is more prevalent along this side of the mine. The coal at this place is about ten feet in thickness, and its upper surface dips N.W. about 75°. On the S.E., or under side, it rests against the edges of the somewhat contorted beds already noticed as dipping to the southward, and on the north-west side it is overlaid by similar beds dipping in the same direction with the coal, but so much contorted as to present on the small scale a most complicated and confused appearance. The coal itself, as seen in mass underground, presents a beautiful and singular appearance. It has a splendid resinous lustre and perfect conchoidal fracture; it is perfectly free from mineral charcoal and lines of impure coaly or earthy matter. It is, however, divided into prismatic pieces by a great number of smooth divisional planes, proceeding from wall to wall, much in the manner of the cross structure seen in carbonized trees, and in the streaks of pitch-coal in the ordinary coals. At the N.W. side or roof, the coal joins the rock without change. On the S.E. side, on the contrary, there is a portion of coal a few inches thick,
including angular fragments of the shale, some beds of which on this side are very tender and cleave readily into rhomboidal pieces. The coal enveloping these fragments must have been softened sufficiently to allow them to penetrate it, but it has more numerous and less regular divisional planes than in the central parts of the mass, and has probably been shifted or crushed somewhat, either when it received the included fragments or subsequently. Both at the roof and floor, the coal shows distinct evidence of a former pasty or fluid condition, in having injected a pure coaly substance into the most minute fissures of the containing rocks. On both roof and floor also, but especially the latter, there are abundant evidences of shifting and disturbances in the slickenside surfaces with which they abound. All these appearances I have endeavoured to represent in Fig. 65, which agrees in the essential points with a similar figure given by Professor Taylor, who does not, however, represent the contorted state of the beds and the crushing of the lower side of the coal.

"The levels of the mine extend on both sides of the shaft along the course of the coal. On the south-west they extend about 170 feet, when the coal narrows to a thickness of one foot. In this direction, however, I had not time to examine them. In proceeding to the N.E., the coal has a general course of N. 50° E., bending gradually to N. 65° E., and everywhere presenting the appearances already noticed, though attaining, in one place, a width of thirteen feet. At the distance of about 200 feet from the shaft, a remarkable disturbance occurs. The main body of the coal bends suddenly to the northward, its course becoming N. 29° E. for about twenty-five feet, when it returns to a course of N. 50° E. At the bend to the northward, a small part of the vein proceeds in its original course, and is stated by the persons connected with the mine to run out, leaving a large irregular promontory of rock between it and the main body of the coal. This disturbance has been variously represented as a fault, and as a cutting of the vein across the strata. Though I confess that the appearances are of a puzzling character, and are but imperfectly exposed in the mine, the impression left on my mind is, that it is, on a large scale, a flexure.

* These measurements were made with a pocket prismatic compass. They differ slightly from those of Dr Jackson, either from accidental circumstances, or from being taken in different levels of the mine.
similar to that represented in Fig. 64, and accompanied by a partial tearing asunder of the beds. It seems evident that the beds must have been in a soft state at the time when this disturbance occurred, although there may have been subsequently some vertical shifting, especially on the west side of this 'Jog.'

"Beyond this flexure, the deposit contracts in width, and becomes more regular, and eventually its containing walls assume a conformable dip to the S. 5° E., at an angle of 69°. The appearance presented at the time of my visit in the extreme end of one most advanced level, is represented in Fig. 66, where it will be observed that the S.E. wall still shows indications of the prevailing contortions of the beds, and of the manner in which these cause the ends of strata to abut against the coal.

At this place, an exploratory level, driven to the S.E., shows a series of bituminous shales, with bands of ironstone, dipping regularly to the south-eastward. I could not, in any part of the mine, find beds corresponding to the Stigmaria underclay of ordinary coal-seams, though on the S.E. side some of the beds are of a more compact and purely argillaceous character than those on the N.W. side or roof of the seam. The ironstone bands and fish-bearing shales are, however, not very dissimilar from those in some Coal measures of the ordinary Coal formation. They present no indications of metamorphism or of the passage of heated vapours, and all their appearances show that their bituminous matter has resulted from the presence of organic substances at the time of their deposition.

"It is evident that all the above phenomena can be explained on the supposition that this coaly mass occupies a fissure running along an anticlinal bend of the strata; and that, apart from the character of the mineral and the containing beds, this would be the most natural explanation. On the other hand, when we consider the contorted condition of the beds, indicating disturbance when in a soft state, and the slickenside joints, pointing to subsequent shifts, we cannot refuse to admit that a conformable bed of true coal, if subjected before and after its consolidation to such movements, might present all the appearances of complication and disturbance observed in this mass, more especially if originally of small extent, and thinning out toward the edges. On this view we should have to suppose,—(1.) Disturbance and contortion of the beds while soft, and, at the point in question, a regular and somewhat abrupt arching of the beds; (2.) A fault throwing
down the south side of the arch along a line coinciding in part of its course with the highly inclined underside of the coal at the north side of the arch; and (3.) Removal of the upper part of the north side of the arch by denudation. Fig. 67 represents the appearances which would thus be produced, and it will be seen that they very closely correspond with the present condition of the deposit, not excepting its thinning toward the surface. If this be the true explanation, it is probable that the sunken south side of the bed has not yet been reached in the excavations. It might, however, in approaching it from above, show a succession of wedge-shaped included masses of rock or "horses," one of which I saw in the floor of the lowest level. On this view, also, the 'Jog' or fault above described may be a lateral bend received by the bed in the original contortion of the strata; and at this point the straight fracture, producing the supposed downthrow, may have left the bed, and thus caused the appearance of the vein running in the former course of the bed along the line of fault, and also the greater regularity of the bed beyond the 'Jog.' This explanation is represented in Fig. 68."

As many readers of this work may be interested in the controversies respecting this mineral, I may shortly mention its physical and chemical properties, and the results at which I have arrived respecting its nature and origin.

The substance has externally an appearance not dissimilar from the ordinary asphalt of commerce in its purest forms; but it is very much less fusible, and differs in chemical composition. Its fracture is conchoidal. Its lustre resinous and splendent or shining. Its colour and the powder and streak on porcelain, black; and it is perfectly opaque. It is very brittle and disposed to fly into fragments. Its hardness is 3, nearly, of Mohs' scale. Its specific gravity is 1.08 to 1.11 (according to Jackson and Hayes). It emits a bituminous odour, and when rubbed becomes electric. In the flame of a spirit-lamp it intumesces and emits jets of
gas, but does not melt like asphalt. In a close tube, however, it can be melted with some intumescence. In the above characters, with the exception of the colour of the powder, it agrees more nearly with the finer varieties of Jet or Pitch-Coal, than with any other substance. For this reason I made comparative trials of its composition and that of specimens of jet from Whitby, with the following results:

<table>
<thead>
<tr>
<th></th>
<th>Albert Mineral</th>
<th>Whitby Jet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>4</td>
<td>1.5</td>
</tr>
<tr>
<td>Volatile combustible matter</td>
<td>57.2</td>
<td>57.1</td>
</tr>
<tr>
<td>Coke</td>
<td>42.4</td>
<td>41.4</td>
</tr>
<tr>
<td>Ash in coke</td>
<td>27</td>
<td>4.0</td>
</tr>
</tbody>
</table>

These results indicate a remarkable similarity in the proportion of volatile and fixed combustible matter; an ultimate analysis might, however, establish important differences of detail.

If we compare the "Albertite," as it has been named by persons desirous of not committing themselves, with the substances most nearly allied to it, we can scarcely avoid arriving at the following conclusions:—In its behaviour in the fire, chemical composition, and electrical properties, the substance is nearly allied to jet, from which, however, it differs in its extreme brittleness, its greater uniformity of texture, and more perfect lustre and fracture, and also in its black streak: a character which also separates it from ordinary bituminous coal and all the varieties of asphaltum. Its nearest analogue in this last particular is Lesmahagow cannel. Its lustre and fracture remarkably assimilate it to the finer varieties of asphalt, but its streak, mode of combustion, and chemical composition, effectually separate it from them. On the whole, the above considerations, in connexion with a number of experiments made by Jackson, Hayes, and others, and published in the Reports on the mineral, place the substance at the head of the Pitch Coals or Jets, as the purest variety of that species of bituminous coal. It has, however, some claims to be viewed as a distinct mineral species, intermediate between coals and asphalts; and I suspect that its chemical composition may approach to that of Asphaltene, the coaly ingredient of the Asphalts.

Under the microscope, I have not been able to detect any organic structure, though I have found in some slices cells filled with yellow resinous matter, similar to those that occur in cannel-coal. Mr Bacon of Boston, however, states (in Jackson's Report), that he has found traces of cellular tissue; but Professor Quekett of London, after examining many specimens, considers it destitute of organic structure.
IMAGE EVALUATION
TEST TARGET (MT-3)

Photographic Sciences Corporation
23 WEST MAIN STREET
WEBSTER, N.Y. 14580
(716) 872-4503
Some specimens of the mineral are laminated, and have brilliant
disks about a line in diameter on the surfaces of the laminae. Under
the microscope, these disks exhibit very fine concentric and radiating
lines; but they are merely concretionary, and in Pictou coal such disks
sometimes occur in an oblique position as regards the lamination.
The Albrite has been declared to be free from sulphur; but minute
concretions of ironstone and iron pyrites occur in it, and films of iron
pyrites line some of the fissures of the containing beds. These
appearances are, however, rare.

In inquiring into the origin and mode of formation of the deposit,
the following alternatives present themselves:—(1.) It may have been
a bed or sheet of bituminous matter, thinning out at the edges, like
that in Kent, U.C., described in the Report of the Canadian Survey
for 1851-2,* and probably produced by the oxidation and hardening
of the liquid produce of naphtha-springs. (2.) It may be bituminous
matter melted by internal heat or fluid at ordinary temperatures, like
petroleum, and poured into an open fissure, and subsequently consoli-
dated, as was perhaps the case with the chapapote of Cuba.† (3.) It
may, like jet and other coals, have resulted from the bituminization
of woody matter. With respect to these several hypotheses, I can
merely state the probabilities which occur to me from the facts already
known, and which may of course be greatly modified by the more
perfect exploration of the deposit.

On the first of these hypotheses, though there is no great improba-
bility in supposing the deposit to have been a conformable bed, it does
not seem likely that so large and extremely pure a mass of bituminous
matter could be a deposit from springs, or that, without alteration of
the containing beds, it could have assumed an aspect and consistence
so much akin to those of coal. It also seems difficult on this view to
account for the deposition, in waters tenanted by fish, of the accom-
panying laminated bituminous shales.

The second view requires us to suppose that, after the crumpling
and contortion of the beds, and the production of an open fissure, an
underlying portion of the bituminous shales was exposed to heat and
pressure, which caused its bituminous ingredient to be melted, forced
upward, and consolidated in the upper and unaltered portion of the
beds, or that the more liquid bituminous matter naturally oozed out of
the containing rocks. This would account for the occurrence and
most of the appearances of the coaly deposit; but we must of course
still suppose that the bituminous matter was originally produced
during the deposition of the shales, probably from organic matter.

* Page 90. † Taylor, Statistics of Coal.
Some countenance is given to this view by the existence of petroleum springs at present in the continuation of the same deposit, and by the presence of minute fissures filled with the mineral, which might, however, be explained on the supposition of pressure exerted on a soft or semisolid bed.

The hypothesis of formation from woody matter, after the manner of coal, is also accompanied with serious difficulties. The composition of jet and of recent bituminous coal found in peat-bogs, prove the possibility of this mode of formation; and this is certainly the most natural way of accounting for the production of the coaly and bituminous matter of the containing beds; but large and pure beds of coal are usually accompanied by evidences of growth in situ, and accumulations of drift-trunks are usually loaded with earthy matter, while none of these conditions exist in the deposit in question. The want of the first is, however, perfectly consistent with the long and perfect decomposition implied in this view, as well as in the homogeneity of the mass, and the abundance of bitumen in the containing shales; and in a deposit containing so little evidence of strong currents or violent changes, it may not be unreasonable to suppose that drift vegetable matter may have accumulated during long periods in clear water. In connexion with this it is worthy of remark, that the comparative absence of iron pyrites, in connexion with the presence of large quantities of carbonate of iron in the shales, proves that these beds were deposited in fresh and very pure water, if it be admitted that their bitumen resulted from the decomposition of organic matter. Neither is the great purity of the mineral an evidence against its accumulation in the manner of ordinary coal, since varieties of coal almost equally pure have long been known. On this view, then, which is perhaps the most probable of the three, the Albert deposit is a fresh-water formation of a very peculiar character, belonging to the Lower Carboniferous period, and very singularly distorted by mechanical disturbances.

The above was the impression on my mind in 1855 as to the origin of the Albertite. Now, in 1867, I confess that it is somewhat modified. The subsequent explorations of the deposit have given to it more unmistakably the aspect of a vein or fissure. The remarkable veins of altered asphalt which I have seen in the rocks of the Quebec group at Point Leir, have afforded a parallel case more distinct in its character. All the more recent explorers who have visited the

† See Assays in Taylor's Statistics of Coal.
locality—Hitcheock, Bailey, and Hind more especially—have adopted the theory of a vein filled with bituminous matter. I regard therefore this mode of occurrence, or the second of those above mentioned, as established, and it only remains to consider whence the supplies of liquid bitumen could have been obtained. I have no hesitation in assigning them to the highly bituminous Lower Carboniferous shales. These beds are manifestly of the same character with the so-called "oil coals" of Nova Scotia, and the earthy bitumens of Scotland. They must have been beds of mud charged with a great quantity of finely comminuted vegetable matter, of the nature of peaty muck, which has become perfectly bituminized, and which probably in an earlier stage of its formation was more prone to ooze into fissures as a liquid petroleum than at present. The deposit of the Albert Mine would thus be a vein or fissure constituting an ancient reservoir of petroleum, which, by the loss of its more volatile parts and partial oxidation, has been hardened into a coaly substance; and the examples of similar phenomena which I have seen in Canada induce me to believe that the agency of internal heat would not be required to produce the observed result. It is true that one able observer has supposed that the supplies of petroleum from which the Albertite has been formed, have been afforded by the underlying Devonian beds; but no evidence exists of the occurrence of bituminous matter in these rocks in New Brunswick. The peculiar Cenozoic limestone which is the reservoir of petroleum in Canada, does not occur in New Brunswick, and the Lower Carboniferous shales themselves contain abundance of the material required. In this view, though the Albert shales are Lower Carboniferous, the vein of Albertite must have been formed at a later period, after the beds had begun to experience disturbance. In this as in other respects the deposit of this curious mineral differs remarkably from ordinary coal, which always constitutes conformable beds contemporaneous with the enclosing strata.

With regard to the original formation of the shales, their lamination and their great thickness, as well as the nature of their material, show that their formation was gradual, and probably occupied a long period. I do not regard the state of preservation of the fishes as any objection to this. They may have been killed by occasional eruptions of mud loaded with organic matter rendering the water unwholesome. When once embedded in mud of this character, their parts could not be separated, and even their soft tissues might be preserved, as in modern peat, for a long time. The swarms of cyprids which devoured dead fishes in other parts of the Carboniferous areas do not seem to have been present. Further, though in some layers the fishes occur in a
perfect state of preservation, in the greater part of the deposit they are found to be represented only by scattered scales. On the supposition that the shales themselves represent what may be called vegetable mud, this may have accumulated in water at times sufficiently pure to be inhabited by fishes, while at other times streams or inundations of muddy water may have caused the destruction of the fish in certain localities. The conditions may in this way be compared to those represented by the calcareo-bituminous shales at the Joggins. The best exposure that I have seen of the Albert shales is on the Memramcook River, where they present a continuous cliff for some distance, exhibiting beds of brownish and black very pure grained shale, all highly bituminous, though of various degrees of richness. The stratification is apparently arched, the crown of the arch being capped with conglomerate, in which are slender asphaltic veins. The thickness of shales observed at this place was estimated at 150 feet.

Westward of the Albert Mine, it would seem, according to Professor Bailey, that two or more bands of calcareo-bituminous shale extend along the base of the metamorphic hills, or possibly there may be repetition of the Albert shales by folds along parallel lines. Professor Bailey mentions their occurrence at Baltimore, six miles west of Albert Mine, also at Elgin and Pollet River. At the former place, fish-teeth of the Rhizodont type and *Lepidodendron corrugatum* were found by Mr Hartt, giving the character of the fossils here a very strong resemblance to those of Horton Bluff. Still farther westward, the shales occur at Sussex, at Trout Creek, and, lastly, at Norton, fifty miles westward of the Albert Mine. In these more western localities, however, the Albertite has not been found in workable quantities. Springs yielding petroleum flow from these rocks in various places, and attempts have been made to obtain the substance in profitable quantities, but hitherto, I believe, without any encouraging amount of success.

3. *Fossils of the Carboniferous District of New Brunswick.*

I give here merely a list of the plants determined by myself, principally from the collections of Mr G. F. Matthews, Mr C. F. Hartt, and Sir William E. Logan, with a few animal fossils noticed by Mr Hartt in the Appendix to Bailey's Report on New Brunswick. It will be observed, in connexion with the previous statements, that the plants from Bathurst and Baie de Chaleur are supposed to belong to the lower set of coal-beds in the Middle Coal measures; those from Grand Lake and Miramichi to the upper set of beds.
FOSSIL PLANTS.

(a) Middle and Upper Coal Formations.

Dadoxylon materiarium, Dawson, Miramichi.
Dadoxylon Acadiunum, Dawson, Dorchester.
Calamodendron approximatum, Brongnt, Coal Creek, Grand Lake.
Antholites rhabdocarpi, Dawson,
Calamites Suckowii, Brongnt, Coal Creek, Grand Lake; Gardner's Creek.
C. Cistii, Brongnt, Coal Creek, Grand Lake; Baie de Chaleur.
C. nodosus, Schloë.
C. canneformis, Brongnt, Gardner's Creek.
Asterophyllites grandis, Sternberg, Coal Creek, Grand Lake; Baie de Chaleur.
Annularia sphenophylloides, Zenker, Coal Creek, Grand Lake; Baie de Chaleur.
Sphenophyllum emarginatum, Brongnt, Coal Creek, Grand Lake; Baie de Chaleur.
S. saxifragifolium, Sternberg, Baie de Chaleur.
Cyclopteris (Nephropteris) obliqua, Brongnt, Coal Creek, Grand Lake.
C. (Neuropteris) ingens, L. & H.
Neuropteris raricrvis, Bunbury, Coal Creek, Grand Lake; Baie de Chaleur.
N. gigantea, Sternberg, Coal Creek, Grand Lake.
N. loshii, Brongnt, Gardner's Creek? Baie de Chaleur.
N. auriculata, Brt.
Odontopteris Schlotheimii, Brongnt, Baie de Chaleur.
Sphenopteris munda, Dawson, Coal Creek, Grand Lake (Fig. 69).*
S. latior, Dawson, " " " " (Fig. 70).
S. gracilis, Brongnt, " " " "
S. artemisiifolia, Brongnt, " " " "
S. Canadensis, Dawson, Baie de Chaleur (Fig. 71).
S. obtusiloba? Brongnt, " " " "
Alethopteris lomehitiæ, Sternberg, Coal Creek, Grand Lake.
A. nervosa, Brongnt, Baie de Chaleur.
A. muricata, Brongnt, Bathurst.
A. pteroides, Brongnt, " "
A. Serlii, Brongnt, Baie de Chaleur.
A. grandis, Dawson, " (Fig. 72).
Beinertia Goëpperti, Dawson, Coal Creek, Grand Lake; Baie de Chaleur.

* Figs. 69 to 73 represent some interesting ferns and a Noëggerathia characteristic of or peculiar to the Coal Formation of New Brunswick.
Fig. 69.—Sphenopteris munda.

(a) Pinnule magnified.

Fig. 70.—Sphenopteris latior.

Fig. 71.—Sphenopteris Canadensis.

(a) Pinnule magnified.

Fig. 72.—Aeolopteris grandis.
THE CARBONIFEROUS SYSTEM.

Paeopteris Harttii, *Dawson*, Coal Creek, Grand Lake.
Lepidostrobus squamosus, *Dawson*, "
Cordaites borassifolia, *Corda*, "
Cardiocarpum bisectatum, *Dawson*, Newcastle River.

Fig. 73.—Neoëgerathia dispar. Half nat. size.

Neoëgerathia dispar (Fig. 73), *Dawson*, Baie de Chaleur.
Halonia? sp.? *Dawson*, Coal Creek.

(b) Lower Coal Formation—(Horizon of the Albert shales, etc.).

Cyclopteris Acadica, *Dawson*, Norton Creek.
Lepidodendron corrugatum,*
Cordaites borassifolia *Corda*, Albert shales. (Figured in Jackson's Report.)

FOSSIL ANIMALS.

Mr Hartt mentions (Appendix to Bailey's Report) that the only animal fossils he has found in the Coal measures are *Spirorbis carbonarius*, attached to plants, and coprolites of fishes. In the Lower Carboniferous Limestones he has observed fossils of most of the genera to be noticed in subsequent pages as occurring in these beds in Nova Scotia; but they have not been examined as to species, which, however, in so far as my observation extends, are identical with those of Nova Scotia. Dr Jackson has named and figured three species of *Palaeoniisus* from the Albert shales. One of these is represented in Fig. 62 above; and I have seen another specimen which appears to belong to a second of this species, but the figures and descriptions are not sufficient for their certain determination.

* See Figs. 74, 75, and 76 below.

The information under this head has been kindly communicated to me by Professor Bailey, of King's College, Frederickton.

Bituminous Coal.—Though covering so large a surface area, or more than two-thirds of the entire extent of the province, the Carboniferous or coal-bearing rocks of New Brunswick have afforded as yet but little promise of large or valuable deposits of this most important product. With the single exception of the beds at Grand Lake in Queen's County, which are but 22 inches in thickness, no stratum of bituminous coal, sufficiently large or pure to be profitably worked, has yet been discovered. Nor can the prospects of future discoveries be regarded as very encouraging. The following are the more important facts from which this conclusion may be drawn:—

1st, The strata of the New Brunswick Coal-field are nowhere greatly disturbed, the beds being nearly horizontal and continuous over wide areas. Borings or other explorations therefore at various points afford an approximately accurate idea of the whole district. Such borings, undertaken at Grand Lake in 1837, affirmed the existence, at the depth of about 250 feet, of a second bed of "bituminous shale and coal," eight feet in thickness; but as prominence is given to the shale, and the relative proportion of each not stated, the observation is of little value. Similar borings have more recently been made on the Cocagne River in Kent County, where the formations resemble those of Grand Lake, to a depth of 410 feet. Several small seams of coal were passed through, the largest of which was about 31 inches (or more correctly 19 inches and 12 inches, with 12 inches of freestone intervening),* but the results were not such as to justify further exploration.

2nd, The whole formation, though of great superficial extent, has apparently but slight thickness. This is evidenced in two ways: 1st, by the fossils of the associated beds, which, according to Professor Dawson, indicate the admixture of the floras of several different horizons; and, 2dly, by the fact that in the Grand Lake district, as shown by Mr C. R. Matthews, the rocks of the Coal measures are penetrated by those of the older metamorphic formations upon which they rest. With strata nearly horizontal in position, and having apparently but slight thickness, the borings already made give little promise of future discoveries of great value.

To these general conclusions, however, it is but right to add, that

* For this information I am indebted to Mr Edward Allison of St John, by whom these explorations were undertaken.
but a small proportion of the entire coal-field has been made the subject of accurate examinations, and these, for the most part, have been confined to its central and southern portions. The eastern coast region, and certain detached areas near the Bay of Fundy, may yet prove more productive than the regions hitherto examined. It follows, moreover, from the nearly horizontal character of the formation, that such beds as do exist may have a wide lateral extension, and if at a moderate depth, may be removed, as is done at Grand Lake, at a comparatively trifling coast.

The coal of Grand Lake, as well as of all the other outcrops yet observed in the true Carboniferous formation, is the ordinary bituminous or caking coal, capable of ready ignition, but requiring frequent stirring for complete combustion. While not so well adapted for household use as the foreign imported coals, it has, from its comparative cheapness ($4 to $5 per ton in the market of St John), attained a local consumption of nearly 6000 chaldrons annually, and for manufacturing purposes is preferred to any of the imported coals. About 1000 tons of this coal were exported in the year 1865. It is capable of yielding 8500 cubic feet of gas per ton, but of inferior quality, and is not employed for this purpose.

The raising of this coal has heretofore been undertaken by many separate parties, and by a rude system of quarrying. It is now proposed to undertake operations of a more systematic kind, preceded by a preliminary boring, the results of which, it is hoped, will give a more accurate idea of the real value of the coal-field.

Table of all known Out-crops of Bituminous Coal in the Province of New Brunswick equalling or exceeding five inches in thickness.*

<table>
<thead>
<tr>
<th>County</th>
<th>Locality</th>
<th>Thickness.</th>
<th>Variety</th>
<th>Quality</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>York</td>
<td>Nashwaak River</td>
<td>0 5</td>
<td>Caking</td>
<td>Fair</td>
<td>Few bushels removed and burnt.</td>
</tr>
<tr>
<td>Queen's</td>
<td>Newcastle District</td>
<td>1 8</td>
<td>Do.</td>
<td>Do.</td>
<td>6000 chaldrons removed in 1844, 12,563 since 1825.</td>
</tr>
<tr>
<td>Do</td>
<td>Salmon River</td>
<td>1 10</td>
<td>Do.</td>
<td>Do.</td>
<td></td>
</tr>
<tr>
<td>Do</td>
<td>Coal Creek</td>
<td>1 8</td>
<td>Do.</td>
<td>Do.</td>
<td></td>
</tr>
<tr>
<td>Do</td>
<td>Washademock</td>
<td>1 0</td>
<td>Do.</td>
<td>Do.</td>
<td>Few bushels removed.</td>
</tr>
<tr>
<td>King's</td>
<td>"Dunsinano"</td>
<td>1 10</td>
<td>Bituminous</td>
<td>Do.</td>
<td>Opened, not worked.</td>
</tr>
<tr>
<td>Albert</td>
<td>Cape Enrage</td>
<td>0 8</td>
<td>Caking</td>
<td>Do.</td>
<td>Not worked.</td>
</tr>
<tr>
<td>Kent</td>
<td>Cocagne River</td>
<td>2 0</td>
<td>Do.</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>Gloucester</td>
<td>New Bandon</td>
<td>1 3</td>
<td>Do.</td>
<td>Fair</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 8</td>
<td>Do.</td>
<td>Do.</td>
<td></td>
</tr>
</tbody>
</table>

* Extracted from Bailey's Report.
MINERALS OF THE COAL-FIELD OF NEW BRUNSWICK.

Table of all known Out-crops of workable Bituminous Shale and Asphaltum.

<table>
<thead>
<tr>
<th>County</th>
<th>Locality</th>
<th>Thickness</th>
<th>Variety</th>
<th>Quality</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>King's</td>
<td>Apohaqu,</td>
<td>Irregular veins</td>
<td>Albertite</td>
<td>Superior</td>
<td>Not explored.</td>
</tr>
<tr>
<td>Do.</td>
<td>S. Branch of the</td>
<td>Do.</td>
<td>Do.</td>
<td>Do.</td>
<td>Not worked.</td>
</tr>
<tr>
<td>Do.</td>
<td>Ward's Creek</td>
<td>Bituminous Shale</td>
<td>Fair</td>
<td>Do.</td>
<td></td>
</tr>
<tr>
<td>Do.</td>
<td>Dutch Valley</td>
<td>Do.</td>
<td>Do.</td>
<td>Do.</td>
<td></td>
</tr>
<tr>
<td>Albert</td>
<td>Albert Mine</td>
<td>1 inch to 17 feet</td>
<td>Albertite</td>
<td>Superior</td>
<td>Extensively worked.</td>
</tr>
<tr>
<td>Do.</td>
<td>East Albert Mine</td>
<td>Do.</td>
<td>Do.</td>
<td>Now being opened.</td>
<td></td>
</tr>
<tr>
<td>Do.</td>
<td>Baltimore</td>
<td>Bituminous Shale</td>
<td>Good</td>
<td>Works erected but abandoned.</td>
<td></td>
</tr>
<tr>
<td>Do.</td>
<td>Turtle Creek</td>
<td>Do.</td>
<td>Do.</td>
<td>Claims taken out.</td>
<td></td>
</tr>
<tr>
<td>Westmoreland,</td>
<td>Memramcook</td>
<td>Large beds</td>
<td>Do.</td>
<td>Do.</td>
<td>Now being worked.</td>
</tr>
</tbody>
</table>

Quantity of Coal raised at Grand Lake since 1828.

<table>
<thead>
<tr>
<th>Year</th>
<th>Quantity</th>
<th>Year</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1825</td>
<td>66 Chaldrons.</td>
<td>1835</td>
<td>3,537 Chaldrons.</td>
</tr>
<tr>
<td>1830</td>
<td>70 "</td>
<td>1838</td>
<td>2,143 "</td>
</tr>
<tr>
<td>1833</td>
<td>138 "</td>
<td>1864</td>
<td>5,000 "</td>
</tr>
<tr>
<td>1834</td>
<td>687 "</td>
<td></td>
<td>Total number of Chaldrons, 11,041.</td>
</tr>
</tbody>
</table>

Albertite.—This most valuable mineral is wholly confined to the rocks of the Lower Carboniferous Formation of King's, Albert, and Westmoreland Counties. It has at different times and by different authors been regarded as an asphalt, an asphaltic coal, a true coal, and a jet; but most authorities now agree in considering the substance as a variety of asphalt or a solid hydrocarbon, originally fluid, like petroleum, and derived from the decomposition of vegetable or animal products. The mode of occurrence of the mineral, and a discussion of the views concerning its origin, having already been given in a previous section, farther remarks in this connexion are deemed unnecessary.

From the original locality near Hillsborough, discovered in 1849, 56,289 tons have been exported in the three years, 1863 to 1865, paying during the same period to the Government a royalty of $8,089.29. The principal market for this coal is in the United States, where it is employed in the manufacture of oil and gas. Of the former, it is said to be capable of yielding 100 (crude) gallons per ton, while of the latter the yield is 14,500 cubic feet, of superior illuminating
power. In the latter case, where other coals are at the same time employed, there is left as a residuum a valuable coke.

Numerous attempts have been made to obtain Albertite from other localities than that above alluded to; but though the mineral has been found, and operations have been begun at several points, these latter have not as yet met with any marked success. The peculiar nature and origin of the substance, and the uncertainty attending all subjects relating to mineral carbons, may be one cause of this result. As, however, the accompanying and very characteristic shales have been traced over a wide extent of country, and have been observed to contain Albertite, though in small quantities, at points more than fifty miles remote from each other, it is reasonably hoped that other workable deposits will yet be found.

Bituminous Shales.—These, as above stated, occupy a wide extent of country, having been traced, in more or less parallel bands, from Apohaqui Station, near Sussex, to Dorchester, in the county of Westmoreland. The amount of bitumen contained in them is very various, that of the "Black Band" or richest bed at the Caledonia Works, in Albert, yielding 63 gallons of crude oil per ton, while those on the Memramcook, in Westmoreland, yield only 37. Numerous leases have been taken out within the last year for operations on these shales, both in Albert and Westmoreland, a company in the latter being about to erect 100 retorts, with the design of subjecting to distillation 100 tons of shale *per diem.* This is at present regarded as more profitable than to export the shale for distillation abroad, especially to the United States, where it would necessarily come into competition with the immense production of natural oils in that country. 1230 tons of shale were exported in the year 1865, of the value of $3,075. The "Black Band" shales of Caledonia will yield 7500 cubic feet of gas per ton (about one-half of the quantity yielded by the Albertite), but leaves as a residuum a bulky and worthless ash.

Petroleum.—Springs containing an admixture of mineral oil or petroleum have been observed at several points in the Carboniferous districts, on the sides of the Petitcodiac River, in Albert and Westmoreland counties, and borings have been undertaken, but the amount of oil so far obtained has not proved sufficient to be remunerative. The latter is sometimes fluid, floating on the surface of the water; in other cases, hardened by exposure into a sort of mineral pitch termed "maltha."

Common Salt.—Saline springs, containing variable proportions of common salt, occur in the rocks of the Lower Carboniferous series, at a variety of points, and especially near Sussex, on the Salt Spring
MINERALS OF THE COAL-FIELD OF NEW BRUNSWICK.

Brook, in the parish of Upham in Westmoreland, and on the Tobique in Victoria. No beds of rock salt have been observed, nor is it known at what depth the saliferous strata may be found. Salt has long been made by the evaporation of the brines from Upham and Sussex, and is of excellent quality, but the works have heretofore been conducted upon a very limited scale.

Gypsum (Sulphate of Lime).—This is a very abundant mineral in New Brunswick, the deposits being numerous, large, and in general of great purity. They occur in all parts of the Lower Carboniferous district, in King's, Albert, Westmoreland, and Victoria, especially in the vicinity of Sussex, in Upham, on the North River in Westmoreland, at Martin Head on the Bay shore, on the Tobique River in cliffs over 100 feet high, and about the Albert Mines. At the last-named locality the mineral has been extensively quarried from beds about sixty feet in thickness, and calcined in large works at Hillsborough. 8646 barrels of plaster were exported in 1863, principally to the United States; but the trade has declined since the outbreak of the American war, and during the last year the buildings employed by the company were consumed by fire.

Anhydrite (Anhydrous Sulphate of Lime).—This mineral occurs with the last at Hillsborough, and the two are employed in connexion.

Alum.—This important substance frequently results spontaneously from the weathering of pyritic shales, and has been observed in small quantities at Grand Lake and elsewhere, resulting from these causes. As pyrites is abundant in the province, it may prove a source of the future supply of this substance. Alum was a few years ago manufactured in considerable quantities at Shepody Mountain, but the works have been abandoned, and are now in ruins.

Freestones are abundant in the Lower Carboniferous rocks of Albert and Westmoreland, and numerous quarries have been opened. They are of red, yellowish, and olive tints, often so soft as to be readily cut when freshly dug, but hardening on exposure, and are highly prized for building purposes, both in the province and in the United States.

Grindstones are found in the same quarries, and are of superior character. In 1864, 6814 tons of stone, including building and grindstones were exported from the province, while in 1860 the amount was over 13,000 tons.

Limestones are abundant in the Lower Carboniferous series, especially in the counties of King's, Queen's, Charlotte, St John, Albert, Victoria, and Westmoreland. The beds of this series are dark and more or less bituminous, yielding lime inferior to that of the older formations (Laurentian and Silurian) in St John and Char-
lotte counties, which afford the greater part of the lime used in the province.

Manganese.—Deposits of the peroxide of this metal, so largely employed in bleaching and glass manufacture, occur in the province at several points, especially at Bathurst, near Shepody Mountain, at Quaco, and Upham. At the latter locality, near the source of Hammond River, the deposit is large and of excellent quality, and considerable quantities are annually removed. 219 tons were exported in 1864 from the localities above mentioned. The ores occur, with the exception of that at Bathurst, in limestone near the base of the Lower Carboniferous system. Wad or black manganese ore is also abundant, but, while richer ores abound, is not of value.

In this district, which it is great devotion of the Napan to the Lower Carboniferous period many for a long time chain, which so high, but on consuming irregular in of marsh an because it into the oil less long, then, and its original shape. Thus on the consist of composition with the rocky materials the neighbouring Ardoise Hills, of the debris of the slow wasting the rocks of the occurs on these the south side of
CHAPTER XV.

THE CARBONIFEROUS SYSTEM—Continued.

CENTRAL CARBONIFEROUS DISTRICT OF NOVA SCOTIA AND ITS OUTLIERS—USEFUL MINERALS.

Carboniferous District of Colchester and Hants.

In this district, which is as extensive as that of Cumberland, from which it is separated by the Cobequid chain of hills, we have a very great development of the limestones and gypsums corresponding to the Napan and Pugwash rocks of Cumberland, and the Mountain or Lower Carboniferous limestone of England, and a very small development of the Coal measures. In other words, in the Carboniferous period marine deposits were formed to a greater extent and perhaps for a longer time on the south than on the north side of the Cobequid chain, which, we shall presently see, was then a ridge probably not so high, but perhaps nearly as continuous as at present.

On consulting the map, it will be seen that this district is very irregular in its form; partly because the modern bay, with its fringes of marsh and New Red Sandstone, penetrates into it, and partly because it in like manner penetrates in long inlets, now river valleys, into the older metamorphic hills to the eastward. Viewing this district, then, as a portion of the dried-up bed of the Carboniferous sea, its original shores can be observed both on the north and on the south. Thus on the flanks of the Cobequids, the Lowest Carboniferous beds consist of conglomerates; the stones and pebbles of which are identical with the rocks of the hills from which they have been derived, just as the materials of shingle beaches on modern coasts are derived from neighbouring cliffs. In like manner, at the base of the Horton and Ardoise Hills, the lowest beds consist of white sandstones composed of the debris of granite, and shales made up of the mud produced by the slow wasting of slate; both of these materials being furnished by the rocks of the hills. One difference, however, of a marked character occurs on these opposite shores. The material of the lowest rocks on the south side of the district is fine and almost destitute of pebbles;
THE CARBONIFEROUS SYSTEM.

that of the corresponding rocks on the north or Cobequid side is very coarse, being made up of large pebbles and even stones of considerable size. Similar differences occur in modern seas, and depend on the configuration and elevation of coasts, and their comparative exposure to the sea-swell and prevailing winds. The deposits in the more central part of the district are more uniform and persistent in their character.

In noticing this Carboniferous area, I shall describe, in the first place, some of the localities and sections in which the arrangement and character of its rocks are most distinctly exposed; and these will afford us opportunities of studying the Lower Carboniferous series, almost as perfect as those which we enjoyed at the Joggins in the case of the Coal formation deposits.

At Wolfville and Lower Horton, in the south-western part of the district, we find the Lower Carboniferous beds to consist of gray sandstones and dark shales, resting on the edges of the slates of the Gasperau River. In the road-cuttings in Lower Horton, the sandstones may be seen to contain fine specimens of Lepidodendron, a genus of which we have already seen examples at the Joggins. There appear to be two or three species of this genus in the beds of Horton Bluff, and one of them at least is distinct from any of those found in the true Coal measures, and is most characteristic of this Lower Coal formation. It is the species which I have named L. corrugatum (Fig. 74), and is found on the same geological horizon as far west as Ohio. It is also closely allied to a characteristic species of this age in England and on the continent of Europe. With these Lepidodendra are found at Horton Bluff several other fossil plants, more especially the fine fern (Fig. 75), which I have named Cyclopteris Acadica, Cordaites (Fig. 76), Stigmaria, and the conifer Dadoxylon antiquius.

The Cyclopteris Acadica was a magnificent fern, unsurpassed by any in the Middle Coal formation. Its leaf-stalks are often two inches in diameter, and the frond, with its hundreds of wedge-shaped leaflets, must have been several feet in breadth. In some of the shales at the same locality fish-scales are extremely abundant, and make up apparently the greater part of the mass of some thin beds. The whole of these rocks are, however, much better seen at Horton Bluff, a fine range of cliffs extending along the west side of the Avon estuary. At this place the beds do not dip regularly in the same direction, but have been broken into great masses which dip in different ways, and have been fractured and displaced by faults or slips of one mass or another up or down, so as to break the continuity of the layers. Such disturbances are very frequent in all the sections of this district, and
it will be easily understood that in the upheaval of large surfaces of rock, these would readily give way along the lines of greatest and

Fig. 74. — *Lepidodendron corrupatum* — portion of bark.

Fig. 75. — *Cyclopteris Acadiana*.

(a) Pinnules showing venation.
(b) Fragment of stipe.
(c) Stipe, Pinnules, and remains of fructification.

least pressure, and be tilted in different directions and slipped up or down. The general dip of these beds, however, so far as it can be ascertained by putting together their disjointed portions, appears to be to the north-east or from the older slaty rocks.

The Horton Bluff beds are the geological equivalents of the beds
Fig. 77.—Placoid and Ganoid Fishes from the Lower Carboniferous.—Horton Bluff.

(a, b, c, d) Portion of Jaw, Tooth, and Scales of Rhizodus Hardingi, Dawson—nat. size. The tooth (b) is a little too slender.
(c, f) Portion of Jaw and Scale of Acrolepis Hortenensis, Dawson—the scale magnified.
(g, h) Spine of Ctenacanthus and portion magnified.
previously described as occurring at Hillsborough in New Brunswick; and like them they consist of dark calcareous shales abounding in remains of fish. At Horton, however, the bituminous matter so abundant at Hillsborough, is almost entirely wanting, and the fishescales and teeth are scattered apart, implying a less amount of vegetable matter and different conditions of deposition. There are also at Horton Bluff numerous bands of coarse limestone, and thick beds of the white granitic sandstone already referred to, as well as gray and red sandstones and marls in the lower part of the section. The most interesting and abundant fossils in this section are the remains of fish, which occur in innumerable numbers; every surface in some of the shales being thickly scattered over with their bright enamelled scales and sharp conical teeth. Some scales are smooth, others finely punctured, others marked with irregular ridges, and others with concentric lines; but all belong to the tribes of ganoids and placoids, which appear to have had exclusive possession of the Carboniferous seas.

I have figured fragments of three of the most common species of the larger fishes whose remains occur at Horton Bluff (Fig. 77). The first is a species of *Rhizodus*, allied to *R. gracilis*, M'Coy, from the Carboniferous shales of Gilmerton, Scotland, but differing from that species in the less curved jaw, not tuberculated, but marked with irregular vermicular lines, and in the thicker, finely striated, less flattened teeth. Scales of this fish much larger than those figured are often seen in the Horton beds. I name it *R. Hardingi*, in honour of the late Dr Harding of Windsor. The jaw and scale represented at *e*, *f*, Fig. 77, belong to a species whose remains are very abundant in the Horton beds, and may be recognised by the pointed and deeply furrowed shining ganoid scales, and the equal and flattened teeth implanted in a dentary bone, whose outer surface is furrowed somewhat like that of the scales. It seems to belong to the genus *Acrolepis*, and I have named it *A. Hortonensis*. The spine of *Olenacanthus*, figured above, also appears to be new. The same beds contain immense numbers of small scales, probably of *Palaxonicus*. The appearances in these fish-beds, as in the bituminous limestones of the Joggins, indicate the long residence of these animals in the locality, and the gradual accumulation of their harder parts, as successive generations died or were devoured by their larger brethren, and as the waters in which they lived were gradually filled up by the deposition of fine mud. We have also evidence that trees grew on the neighbouring land, for trunks, branches, and leaves of *Lepidodendron* are very abundant, and *Stigmia* is also found. In one bed, indeed, the trunks of *Lepidodendron* are found rooted in the erect position. They are very numerous but small, the largest being only eleven inches in diameter, and their height is only six
The bed immediately overlying them is filled with prostrate and flattened branches of trees of the same kind. This is the oldest fossil forest yet known in Nova Scotia, perhaps in the world. Small reptiles tenanted these forests, for Sir W. E. Logan found in 1841 a few footprints of a small creature of this class—the first ever found in rocks of so great age. *Coprolites*, or the fossil excrements of fishes—small bivalve crustaceans—*Leperditia Okeni*, a *Beyrichia*, a *Cythere*, and an *Estheria*—and trails, resembling those made by worms on muddy shores, are also very abundant at Horton Bluff (Fig. 79). There are

Fig. 78. *Entomostraca from the Lower Carboniferous Coal Formation.—Nat. size and magnified.*

(a) *Cythere*. (b) *Leperditia Okeni*. (c) *Beyrichia*. (d) *Estheria*. (e) *Leaia Leidii*.

* In the figure (Fig. 78) I have endeavoured to represent these species, and have added the beautiful *Leaia Leidii*, of which I have specimens from rocks of this age at the Strait of Canseau, and which Mr Hart has found within the limits of the district now under consideration at Parreboro'. I am indebted to Professor Jones of Sandhurst for the determination of these *Entomostraca*.
also curious little pairs of oval impressions of the character of those found in the Silurian rocks of Canada and New York, and formerly supposed to be fucoids, to which the name Rusichnites carbonarius—Halfway River.

It is evident that in the section above described, we have the occurrence, in the very lowest part of the Carboniferous system, of beds very similar to the Middle Coal formation as it occurs in Cumberland, though sufficiently distinct in their mineral characters and association of fossils to prevent us from confounding the two; an error which has, however, been committed by some of the earlier writers on the geology of the country, and has led to much additional confusion. Beds of similar character and age occur at Halfway River, near Windsor, on the St Croix River, at Upper Rawdon, and at the Gore. In all these localities they skirt the base of the slate hills. On the north shore of Hants, they have been thrown up to the surface by an anticlinal bend of the strata, and are seen at Five Mile River, Noel, Teny Cape, and Walton (Fig. 81). In all these places they appear to underlie the great Lower Carboniferous marine limestones. We have observed a similar fact at Hillsborough, and it also occurs in some parts of the eastern coal districts. We may therefore conclude that in the very dawn of the Carboniferous era, before or coeval with the formation of the great limestone and gypsum beds, conditions somewhat similar to those afterwards so extensively exemplified in the true coal measures prevailed very widely in Nova Scotia. This is not in any way accountable, for we have no reason to doubt that marine deposits were forming somewhere when alluvial flats existed at the Joggins, or that there were shores, dry land, swamps, estuaries, and lagoons, contemporaneous with the seas in which the Hants and Cumberland limestones were formed. At the same time, it is true that in the older Carboniferous period marine deposits were formed in the greatest quantity, while in the later portion of the period there was much more of swamp and estuary deposition.

We may now direct our attention to the strictly marine deposits which rest upon the Horton Bluff beds, and which may be seen along
both sides of the estuary of the Avon, not directly in contact with the shales, etc., which intervene between them and the metamorphic hills, but in such positions as to leave no doubt as to their relative age. One of the best exposures of these rocks in this vicinity is on the right bank of the Avon, immediately above the Windsor bridge, and I shall describe this section in detail, that the reader may at the outset be familiarized with the principal members of that great gypsumiferous series which occupies the greater part of the district now under consideration.

The first rock seen south of the bridge is a thick bed of red marly sandstone, a soft rock coloured red by peroxide of iron and cemented by carbonate of lime. Below this is a bed of greenish marl, similar to that above in composition, but wanting its colouring matter. Then there is a thick gray limestone, containing enough of fragments of shells to lead us to infer that it may have been made up of such materials, but so decomposed and agglutinated together that it appears now a compact, almost non-fossiliferous, rock. Below this we find again red and greenish marly sandstones. The whole of these beds dip to the north at an angle of 50°. At this point, however, there is a fault, marked by a little gully, cut in consequence of the surface water finding a more ready passage at this place. The next beds seen are again red marls, but dipping to the south at an angle of 55°. On these rests a yellowish limestone, above which are more red and greenish marls.* Next we have another limestone of flaggy or laminated structure, with a number of fossil shells scattered over some of the surfaces, as if they had lived on these surfaces or been scattered over them after death. These shells, like those of the Cumberland Lower Carboniferous limestones, belong to the genera Productus, Spirifer, and Terebratula, all shells of the same family, one of the most singular of the tribes of bivalve shell-fish, and, in so far as we can judge

* According to Mr Hartt, this bed also dips to the N.W., and the break occurs immediately to the south of it.
from the habits of its living representatives, intended to inhabit the depths of ocean. The presence of fossil shells of this tribe is therefore considered by all geologists as conclusive evidence that the deposits in which they occur were formed in the bottom of the open sea. Above this limestone, in the order of succession, we have alternations of marls and limestones, and next a bed of white crystalline gypsum, contrasting strongly in its purity and whiteness with the other beds of more mechanical origin. Here the shore becomes low and no rock is seen, but a little to the eastward we find the great gypsum quarries of Windsor, excavated in the outerop of a very thick bed, the strike of which would bring it out to the shore just where our section fails, and where the gypsum has been removed partly by the river and partly by the quarrymen who earliest dug this rock for exportation. A little farther to the southward, at the next bluff point, there is a very thick bed of limestone, filled with, or rather made up of, fossil shells of various species and genera, affording a remarkably perfect display of the shelly coverings of the creatures that inhabited the Carboniferous seas.

A descriptive list of the species found here and elsewhere in Nova Scotia, in limestones of this age, will be appended to this chapter, with figures of several of the more characteristic species; and in this place I shall merely mention them generally, and with reference to their living analogues.

At the head of these ancient Molluscs is a Nautilus, to a cursory observer not unlike the ordinary Nautili of the Indian Ocean; nor are these ancient Nautili inferior in dimensions to their modern relatives, for at Windsor they may sometimes be seen as much as six inches in diameter. With the Nautilus, we may occasionally find species of Orthoceras, a shell of the same family, but straight instead of being whorled. The species usually seen is about one-fourth of an inch in diameter, and four or five inches in length; but I have seen specimens nearly an inch in diameter. The Orthoceras as well as the Nautilus was a chambered or partitioned shell, intended to serve as a float as well as a protection to the animal, which could thus sport on the surface of the sea as well as creep upon its bottom. The inner chambers of these shells are now empty or incrusted with crystals of calc-spar; but the outer chambers are filled with hard limestone, often containing numbers of smaller shells. A species of Conularia is also found in this limestone, though less abundant here than in some other places to be hereafter noticed. This shell is believed to have belonged to an animal of the class Pteropoda, which contains little swimming molluscs, furnished with a pair of fins or flappers for
locomotion at the surface of the water. In addition to these shells, we have several species of univalves, resembling the modern Naticas, or whelks and periwinkles, and a number of bivalves belonging to the class Lamellibranchiata, and to the genera Aviculopecten, Macrodens, Cardiomorpha, etc., all of which may be considered as representatives of the modern bivalve shell-fishes like the Scallop, Mussel, Cockle, etc., though of distinct species.

Other bivalve shells are very numerous, especially a species of Terebratula, two of Spirifer, an Athyris, several species of Rhyynchonella, and two of Productus. These shells belong to a tribe (the Brachio-poda) differing in some important particulars from the ordinary bivalve shell-fish, and remarkable as having been very numerous in ancient periods of the earth's history, and comparatively few now. Some of the most abundant species of these genera are figured in subsequent pages. The Terebratula is not unlike some of the modern representatives of the family. The Rhyynchonellas are still represented in our modern seas by the Parrot-bill Rhyynchonella (R. psittacea), now found, though rarely, on the coasts of Nova Scotia. The Productus is remarkable for the great convexity and comparative magnitude of one of its valves, which, as has been conjectured by an eminent zoologist, may have been the lower valve, and have formed a sort of cup containing the animal, and closed by the smaller valve. The Spirifer and Athyris are distinguished by the presence within the shell of two spiral stony threads, twisted like corkscrews, and connected with the support of the long spiral arms with which all these creatures were provided. These screws are often finely preserved in the Windsor limestones. I may mention here, that in all the Carboniferous limestones of Nova Scotia the shells of this family are usually found with the valves closed and the interior often hollow. This shows that they were not dashed about by violent waves, nor exposed to be filled with fine mud. Yet it does not prove that the death of the animals was sudden, for the hinge of the modern Rhyynchonella and Terebratula is so constructed that it does not gape when dead, like other bivalve shells; but when dead and empty, the hole or notch in the hinge for the peduncle, by which these shells were attached, would admit mud, had this been present, which in many instances seems not to have been the case. The appearances are those which should occur in a bed of shells gradually accumulated in deep and clear water.

Descending a little lower in the animal scale, we have fragments of the stems of Crinoïds, which were complicated starfishes, mounted on a stalk. A pretty little branching coral is also very abundant, and with shells, which are entangled in great numbers among its branches,
makes up whole layers of the limestone. There are also sea-mats or Polyzoa, of the genus Fenestella, some of which spread out into leaves several inches in length.

The only shell in this limestone that appears to be identical with any of the creatures whose remains are entombed in the coal measures of the Joggins is the little Spirorbis, which has attached itself to the inside of the outer chamber of some of the larger Nautili, after the death of their owners, and this is evidently a distinct species from the S. carbonarius. The reason of the difference in the fossils of these different members of the same geological system is, that one is of marine or deep-sea origin, while the other represents the tenants of the shallow creeks, lagoons, and estuaries of the same period. A similar difference subsists in all modern seas. While, however, distinct species and genera of fossils occur in the littoral and oceanic deposits of the same era, still more decided differences distinguish the formations of one period from those of another; for instance, the Lower Carboniferous limestones from those of the older Devonian and Silurian periods. Hence, if the student once familiarizes himself with the shells of the Windsor limestones, or even with the species represented in the following pages, he has the means of recognising the limestones of the same age in all parts of the country, and of distinguishing them from those of every other formation.

The sandstones and marls of this Windsor section differ little from the similar beds in the coal measures, except that they are less laminated, and less sorted into sand and clay, and contain no vegetable remains—all indications that they were deposited in deep water at a distance from land, and where changes of tides and currents had little influence. The limestone is evidently the result of the growth of shells and corals in the sea-bottom, forming in the course of ages thick and widespread masses, like the coral reefs of the Pacific, with beds of fine calcareous mud and comminuted shells and corals washed from these banks or reefs by the sea. The coral and shell bank itself forms a rich fossiliferous limestone. The material produced around it by the wasting action of the sea becomes a compact earthy limestone, with few fossils, except minute fragments of shells, often only to be detected by the microscope.

The only apparent anomaly in the deposit is the gypsum, which must have been formed by chemical action, or deposited from solution in water. Various explanations may be given of the origin of the veins and masses of gypsum which occur in different geological formations, from the Silurian to the Tertiary, and which, so far as I am aware, are peculiar to the Lower Carboniferous series in no country.
except Nova Scotia and Virginia. Different explanations may no doubt apply to different countries and modes of occurrence. For example, in the Upper Silurian of New York, gypsum occurs in such circumstances that it has been supposed to have resulted from the action of local sulphuric acid springs on limestone in situ (Dana); while in the case of the gypsum occurring in rocks of similar age in Upper Canada, Dr Hunt supposes that the mineral was deposited from sea-water by its partial evaporation in lagoons, as it is now said to be produced in some of the coral islands of the Pacific,—for instance, Jarvis Island.* Again, there can be no doubt that detached crystals, nodules, veins, and the disseminated gypsum of marls may have been introduced by segregative processes, and by the percolation of gypseous waters. I think it not improbable that there are instances of all or most of these modes in the gypsicous rocks of Nova Scotia. But for the occurrence of the mineral in so thick and extensive beds, interstratified with marl and limestone, there appears to me to be but one satisfactory theory—that of the conversion of submarine beds of calcareous matter into sulphate of lime, by free sulphuric acid, poured into the sea by springs or streams issuing from volcanic rocks. Modern volcanoes frequently give forth waters containing sulphurous and sulphuric acids. In the volcanic region of Java, for instance, there is a lake of sulphuric acid from which flows a stream in which no animal can live. The water of this stream being probably more dense than sea-water, will naturally flow for some distance along the bottom of the sea, and if it meets with beds of calcareous matter will convert them into gypsum. One of the volcanoes of the Andes gives origin to a similar stream; and the volcanic mountain of Maypo, in the same range, is surrounded by great masses of gypsum, probably produced by the action of sulphurous waters or vapours on the limestone of the region. We know that in the Carboniferous sea of Nova Scotia there were great beds of shells and corals. We also know that the volcanic action which upheaved the metamorphic hills which formed the land of the period, was not quite extinct when these shell-beds were growing. The production of gypsum was a natural consequence of the action of sulphuric acid, evolved from such volcanic regions, or the calcareous beds and reefs. In accordance with this view, the gypsum is found only in association with the marine limestones, though, as might have been anticipated, these last sometimes occur without any gypsum. In all other respects, except this conversion of part of the limestone into gypsum, and some changes probably of similar origin in the

* Hague, quoted by Dana.
associated marls, the Lower Carboniferous series of Nova Scotia and New Brunswick resembles the corresponding formation in Great Britain and the United States, to the fossils of which its shells and corals have also a very marked resemblance, and several of the species are identical.

The rocks we have examined at Windsor may serve as a specimen of those that occupy nearly the whole low country of Hants, the greater part of the Carboniferous area of Colchester, and the long belt extending up the Musquodoboit River. The limestones and gypsiums, which form the most important members of the series, appear at a great number of places, and are extensively quarried. The principal localities are the St Croix River, Newport, Kennebecook River, Walton, Noel, White's or Big Plaster Rock, and other places on the Shubenacadie, Brookfield, Onslow, Stewiacke, and Upper and Middle Musquodoboit. One of the finest natural exposures of gypsum in the province is on the St Croix River, a few miles from Windsor. Here the gypsum forms a long range of cliffs of snowy whiteness. This cliff consists principally of the variety of gypsum named “hard plaster,” or “sharkstone,” by the quarrymen; the latter name referring to the rough shagreen-like texture of its weathered surfaces. It is Anhydrite, or gypsum destitute of the combined water which gives to the ordinary variety its softness and its usefulness as a material for modelling and plastering. Anhydrite occurs in connexion with most of the beds of gypsum, generally forming separate beds, but sometimes mixed in large masses or nodules, or minute transparent crystals, with the common plaster. It is not at present applied to any useful purpose, being too hard to be profitably ground for agricultural uses. It may, however, be used as a substitute for marble, for the internal decoration of buildings, and some of the varieties in the cliffs of the St Croix are well adapted to this use, and could be procured in any quantity.

Having thus described the Lower Carboniferous rocks as they occur at Horton and Windsor, I shall now attempt to give a general view of their arrangement in the area now under consideration, as well as their relations to certain limited tracts of coal measures which rest upon them, especially in the northern part of the district. To effect this, I shall take advantage of the sections afforded by the Folly and De Bert Rivers, and the Shubenacadie; and shall describe these as they would appear to an observer descending the southern slope of the Cobequids, following the course of the Folly River, crossing Cobequid Bay, and ascending the Shubenacadie to the Grand Lake.

On the Folly River, about eight miles from its mouth, we leave
the ancient metamorphic slates of the hills, and enter the Carboniferous system, which we find resting on the edges of the slates, and dipping to the south. The first rock seen is conglomerate, in enormously thick beds, and made up of fragments of all the rocks of the hills. Passing this ancient beach of the old Carboniferous sea, we find, without the intervention of any marine limestones, coal measure rocks, consisting of gray sandstones and dark shales, with a few thin seams of coal, and abundance of leaves of *Cordaites*, and a few *Calamites* and *Stigmaria*. Succeeding these beds is a great thickness of red and gray sandstones and shale, with a general dip to the southward, though broken by so many faults that it is not easy to form an estimate of their aggregate vertical thickness. Finally, we observe, as we descend the river, these same sandstones and shales dipping at high angles to the northward. They are then overlaid by the new red sandstones, and we see no more of the Carboniferous rocks till we approach the mouth of the Folly, and De Bert, where we find the Lower Carboniferous limestone, gypsum, and conglomerate, mentioned in our description of the New Red, and dipping to the north-east. The fossils of this limestone are the same species found at Windsor and elsewhere in beds of the same age. We have here a broken and disturbed coal measure trough, constructed in the same manner with that of Cumberland, but on a much smaller scale, and probably including only the lower members of the Coal formation. The absence of the Lower Carboniferous limestone near the hills corresponds with what we observed in Cumberland, and is accounted for by the circumstance that the Cobequids formed the shore of this ancient sea, while the limestones could be formed only in deep water at some distance from the turbid surf and the pebbly beach—an arrangement corresponding exactly with what is observed in the modern coral-reefs of the Pacific.

We can trace the Coal measure band, of which the Folly River gives us a cross section, all the way from Advocate Harbour, near Cape Chieugecto, to the upper part of the Salmon River, where it adjoins the Carboniferous district of Pictou. It is everywhere much broken and disturbed; and though it widens considerably toward its eastern extremity, it nowhere attains a great development, either in horizontal extent, or in the magnitude of its coal-seams. From Advocate Harbour to Partridge Island this belt consists principally of greatly contorted and somewhat altered shales and sandstones, containing a few fossil leaves, some scales of fishes, and in places abundance of shells of *Naiadites*. In a bed near Partridge Island, Dr Harding of Windsor found, several years since, a fine series of footprint impressions found in other beds. These footprints are very similar to those found in the Carboniferous beds of the New Red, and their presence in the Lower Coal beds of Nova Scotia is a most striking indication of the presence of a Carboniferous land.
footprints, probably of a small reptilian animal. More recently other footprints, of larger size, and referable to the genus *Sauropus*, were found in these beds by J. M. Jones, Esq., F.L.S., of Halifax. These indications of vertebrates of the land will be noticed in a subsequent chapter. Eastward of Partridge Island, in Clarke's Head, we find the Lower Carboniferous limestones somewhat altered, with beds of common gypsum, and a beautiful purple variety of anhydrite. At Moose River and Harrington River, the black shales and gray sandstones again appear. In Economy, we have these and the Lower Carboniferous limestone with its characteristic fossils, and on the banks of the Portapique and Great Village Rivers, the whole series is well exposed, with appearances similar to those observed in the Folly. Eastward of the latter river, the Coal formation band widens rapidly. On the Chiganois and North Rivers, it contains bituminous limestones, with *Cypridis* and fish-scales; thick beds of shale, with clay-ironstone; several small coals, the largest, I believe, about eighteen inches in thickness; and in the beds associated with these coals are fossil plants of several of the species described in connexion with the Joggins section. On the North River also we find the lower limestone underlying the Coal measures at the base of the mountains, and re-appearing, in greatly increased thickness and associated with beds of gypsum, on the south side of the trough. Still farther eastward, on the Salmon River, there is a bed of good coal nearly two feet in thickness, and associated with shales, containing fine specimens of *Ulodendron*, *Ferns*, and other Coal formation fossils.

Applying to this narrow Coal formation trough the information we have obtained from the Joggins section, we may conclude that along the base of the Cobequid Mountains, on their southern side, a band of swamps and shallow and land-locked waters existed contemporaneously with the wider tract of the same description on the northern side of the mountains; and it is quite possible that the northern edge of the Lower Carboniferous limestones may have formed a barrier-reef, separating this narrow littoral band from the more open sea without. In its present condition, this Coal formation belt of the south side of the Cobequids presents many difficulties to the geologist. The various movements which have taken place along the south side of the mountains, and which have probably continued up to the close of the New Red period, have shattered these rocks in lines parallel to and at right angles with the hills, and have also bent and contorted them in a remarkable manner. In this respect, the Carboniferous rocks on the Cumberland side of the hills differ very much from those of the Colchester side; the former being very little disturbed in comparison.
Crossing Cobequid Bay from the mouth of the Folly to that of the Shubenacadie, we find the first rock that appears at the mouth of the latter to be a black laminated crystalline limestone without fossils, and supporting a great thickness of marls and gypsum similar to those of Windsor. I spent several days in exploring this section in 1842, in company with Sir Charles Lyell, and the late Mr George Duncan of Truro. The limestone and marls resting on it dip to the south-west. It thus appears that the Lower Carboniferous beds on the opposite sides of the bay dip inland, so that the bay forms, in so far as these rocks are concerned, an *anticlinal valley*—a somewhat rare occurrence in this region, where the beds of sedimentary rocks usually dip away from hills rather than from depressions. The rocks in the banks of the Shubenacadie are, however, much broken by faults, though the general dip in the lower part of the river appears to be to the southward. The rocks succeeding the "Black Rock" limestone, for about three miles up the estuary of the Shubenacadie, consist principally of soft marly sandstones filled with veins of reddish fibrous gypsum, which run in every direction, and form a network so complicated that it is difficult to understand how the rocks could have been supported in such a manner as to leave open the fissures which the gypsum fills. It is possible, however, that these cracks were not all open at once, but were produced by different movements to which the mass has been subjected; and there is another way of accounting for this appearance, to be stated shortly. There are also a few wide veins filled with the peroxide of iron and sulphate of barytes. The former is in part in the red ochrey state, and in part in the state of red and brown hematite, often in beautiful coralloidal forms with an internal fibrous structure. The barytes is in small tabular crystals. These veins also contain oxide of manganese and calc-spar. Their contents were probably introduced by water, rising from rocks beneath which afforded these materials.*

The reader will observe that the veins of gypsum contained in these rocks are very distinct from the large beds of the same mineral. The latter were formed as horizontal layers at the same time with the containing beds. The former have filled up cracks opened after the beds were consolidated. The fibrous texture, which the gypsum veins nearly always display, arises from the circumstance that little slender prisms of the mineral have sprouted forth from the sides of the fissures until they filled them. Hence they always stand at right angles to the sides of the vein. Similar appearances are observed in the greater

* For the manner in which these minerals may have been formed, see descriptions of mineral veins at Five Islands and Acadia Mine.
number of minerals lining or filling veins or fissures. I am inclined to believe, however, that the fibrous gypsum in the gypseous marls has been produced in a different manner from the "combs" of quartz and other minerals found in the fissures of slate, trap, etc. The gypsum veins show no signs of having met in the middle, though they often appear to have been added to at each side; and we may infer that the prisms of gypsum grew by additions to each end, furnished by water permeating the rock, and pressed the sides of the fissure apart as they grew in length. Veins of fibrous ice are formed in this way in banks of clay, exerting an enormous expansive force, sufficient to break down the strongest retaining walls; and when circumstances are favourable, these clusters of icy prisms may be seen to raise objects lying on the surface of water-soaked clays to the height of several inches. Wherever segregation and crystallization are going on in the fissures of rocks, similar effects may be produced; and it is quite possible that they play an important part in geological dynamics. It is at least not unlikely that some of the remarkable contortions and dislocations observed in the gypseous rocks of Nova Scotia may have been produced in this way.

These marly rocks contain a bed of anhydrite and common gypsum, in addition to the gypsum veins above mentioned.

Proceeding to the southward, along the eastern bank of the river, we reach a high cliff of brownish-red and gray sandstones, dipping S. 30° W., and containing a few fossil plants. These beds probably overlie those previously noticed, and much resemble the sandstones that in the Joggins section intervene between the lower limestones and the Coal measures. To the southward of this cliff, which is called the Eagle's Nest, the shore for some distance shows no section. On the west side, however, where the rocks corresponding to the Eagle's Nest form a high cliff, they are separated by a fault from an immense mass of gypsum named White's or the Big Plaster Rock, and one of the principal localities of the extensive gypsum trade of this river. The Big Rock at one time presented to the river a snowy front of gypsum, nearly 100 feet in height; but it has been greatly reduced by the operations of the quarrymen, who bring down enormous quantities by blasting. It is a massive bed, arranged in thick layers, and the whole bent into an arched or almost cylindrical form. In its lower part there is much anhydrite, and also dark laminated limestone, having on its surfaces of deposition immense numbers of flattened shells of Conuloria. A compact limestone, containing Terebratula, also appears near the bottom of the mass. Faults, denudation, and disturbance render it quite impossible to discover in the river section.
the relations of this mass of gypsum to the neighbouring beds. Its nearest neighbour to the south is a series of dark shales and gray sandstones, with a few fossil plants of Coal formation genera. These beds are very much contorted, but have a prevalent dip to the south. I have no doubt that they are equivalents of the Horton Lower Carboniferous shales. A sheet of paper could hardly have been crumpled into more fantastic curves than these beds, no doubt once flat and horizontal. This is an effect of lateral pressure acting upon them while in a soft state, and it testifies to the enormous forces of this description which have been applied before these beds attained their present hard and brittle condition. These beds appear on both sides of the Five Mile River, a stream running into the Shubenacadie at right angles, and they extend along the course of this stream and that of the Kennebecook, which is continuous with it, though flowing in the opposite direction, far into the interior of Hants. On the Kennebecook, they contain a small seam of coal, and have more the aspect of true Coal measures than any other beds I have seen in this county. But from recent observations made by Professor How of Windsor, I am inclined to believe that all these beds are Lower Carboniferous.

Hitherto we have found few fossils in this section; but at the next point above the contorted Coal measures of Five Mile River, we have a grand example of a fossiliferous limestone, forming the cliff named Anthony’s Nose. This limestone, which is a mass of corals and shells similar to those noticed at Windsor, is about 40 feet thick, and stands quite on edge, projecting like a huge wall into the river. Soft marls rest against each side and include a bed of gypsum, and, at a little distance, a thick bed of this mineral appears with an arched stratification. On the opposite side of the river there are other limestones and gypsums, also very much disturbed; and, immediately adjoining them on the south, there is a cliff of reddish sandstone, like that of Eagle’s Nest, and nearly in a horizontal position.

Beyond this place, the river section is not continuous, but gypsum and limestone, full of marine shells, appear in several places, and the marls and red sandstones occasionally peep forth from beneath thick beds of boulder-clay. Finally, at Gay’s River, Key’s on the Shubenacadie, the lower end of Grand Lake, and Nine Mile River, the gypsum and limestone are seen almost in contact with the ancient metamorphic slate and quartzite which bound this Carboniferous district on the south.

At one of these places, Key’s, on the old Halifax road, one of the beds of gypsum contains white and bleached-looking quartzose pebbles and sand. In this case, it is probable that the acid which produced
the gypsum acted on a mass of calcareous matter, mixed with sand and gravel, which became entangled in the gyspeous mass produced. Such instances of the enclosure of foreign bodies in gypsum are rare. I have, however, seen layers of sand and earthy matter, and fragments of limestone, and in a few instances vegetable remains have appeared in the earthy layers. Some beds of gypsum are also blackened by bituminous matter, derived no doubt from animal or vegetable substances.

Over nearly all the beds of gypsum in this region, the whole surface is riddled by funnel-shaped cavities, named "plaster-pits," by the aid of which the gypsum may be traced in localities where it does not itself reach the surface. These pits are well exposed in the face of the "Big Rock" formerly described. They are produced by the solvent action of the surface water penetrating through the fissures of the gypsum, in a manner which we shall have better opportunities of studying when we arrive at the gyspeiferous districts of Cape Breton.

The section formed by the long narrow tideway of the Shubenacadie, and continued less perfectly along its fresh-water portion, enables us to form an idea of the structure of the southern part of the Hants and Colchester area, across its whole breadth. It is evident that the regular succession of the beds has been much disturbed by faults or fractures, most of which have a direction approaching to east and west. They have shifted the masses of beds, so that we cannot now, without extensive investigations of all the minor sections afforded by tributary streams, put them together into a continuous series. The following is the nearest approximation to such a restoration of the original arrangement that I can offer:—1st, From the mouth of the Shubenacadie westward to Walton and Cheverie, the shales which lie at the base of the Carboniferous system appear in several places, and immediately resting on them are red sandstones and marls, with limestone and gypsum; and the lowest bed of limestone is a laminated dark-coloured crystalline bed without fossils. 2dly, The red sandstones and marls with gypsum and limestone, form a wide band extending through Hants to the Avon estuary, south of these lowest members of the series; and in places there appear, in and over these beds, gray and brown sandstones with fossil plants. 3dly, Along the course of Five Mile and Kennetcook Rivers, extend rocks having the aspect of the Lower Coal formation, which appear to be thrown up along an anticlinal line. 4thly, Immediately to the south of these, we again find the red marls, gypsum, and limestone, forming a second broad belt, extending from Rose's Point and Admiral's Rock, on the Shubenacadie, through Newport to Windsor. This is the re-appearance of the same part of
the formation seen below White's Plaster Rock, and it is worthy of note, that it is here much more fossiliferous than in the lower part of the river. Lastly, From the point of the Gore Mountain, along the base of the Douglas and Rawdon Hills, we can trace the Lower Carboniferous shales all the way to Horton. That trough-shaped arrangement, so characteristic of the Carboniferous rocks in this part of Nova Scotia, can therefore be traced even in the fractured section of the Shubenacadie.

Eastward of the Shubenacadie, the Carboniferous district splits into three branches, entering between the hilly ridges of the metamorphic country to the eastward. The most northern of these passes along the valley of the Salmon River, and is connected with the Pictou district. The second passes up the valley of the Stewiacke River. The third forms a narrow band extending from the Grand Lake nearly to the sources of the Musquodoboit River. In the northern branch, both the Lower Carboniferous and Coal formation series appear, as we have already noticed; but in the two others the Lower Carboniferous rocks prevail almost or altogether to the exclusion of the Coal formation. In one place only on the Lower Stewiacke, do rocks having the aspect of Coal measures appear. In the Stewiacke branch, which, in the period in question, must have been a sheltered bay or channel, the corals and shells of the limestones attain a magnitude and perfection not, so far as I know, equalled in any other part of the province. Gypsum also abounds in this branch, and in one place there is a large deposit of sulphate of barytes. In the southern or Musquodoboit branch there is much gypsum and also limestone; but the latter does not appear to be rich in fossils. I have found in it only a few fragments of Crinoids.

As the district just described presents the most important development in the province of the Lower Carboniferous series, I have employed it to introduce the reader to that part of this great system of rocks, just as the Cumberland district served a similar purpose in relation to the Coal measures; and I may now conclude by a review of the condition of Southern Hants and Colchester at the time when the marine limestones and gypsiums were produced. At this period, then, all the space between the Cobequids and the Rawdon Hills was an open arm of the sea, communicating with the ocean both on the east and west. Along the margin of this sea there were in some places stony beaches, in others low alluvial flats covered with the vegetation characteristic of the Carboniferous period. In other places there were creeks and lagoons swarming with fish. In the bottom, at a moderate distance from the shore, began wide banks of shells and
Corals, and in the central or deeper parts of the area there were beds of calcareous mud with comparatively few of these living creatures. In the hills around, volcanoes of far greater antiquity than those whose products we considered in a former chapter, were altering and calcining the slaty and quartzose rocks; and from their sides every land-flood poured down streams of red sand and mud, while in many places rills and springs, strongly impregnated with sulphuric acid, were flowing or rising, and, entering the sea, decomposed vast quantities of the carbonate of lime accumulated by shells and corals, and converted it into snowy gypsum. Of the creatures that may have crept or walked on the land, we know nothing except the hint afforded by the few footprints found by Logan and Harding in the shales of Horton and Parrsboro', and which testify that reptilian life in some of its lower forms had already begun to exist. The sea had already attained almost its maximum of productiveness in fishes and creeping things, but we have no reason to believe that the land had yet received from its Creator any of those higher creatures which were destined to be introduced in a subsequent "creative day."

Useful Minerals of the Hants and Colchester District.

Gypsum is at present the principal product of this district. It is largely quarried at Windsor, Newport, Walton, Shubenacadie, and a number of other places; and, in 1861, 124,241 tons* were quarried, amounting to the value of over $83,000 at the ports of shipment. The greater part of this large annual produce of gypsum is exported to the United States for agricultural purposes. The quantity of gypsum in this district is enormous, and probably cannot be exhausted by any demand ever likely to occur. It is now quarried only in the places most accessible to shipping, and its small value per ton indicates the facility with which it can be obtained, in a country in which the price of labour is by no means low.

Limestone is also extremely abundant in this district, and might be quarried and exported as readily as the gypsum. Limestone being abundant in New Brunswick and in the United States, is not, however, in demand for exportation, and the wants of the country are at present small; especially in a district in which the land is in most places well supplied with calcareous matter. It may be anticipated, however, that a demand will arise for lime to supply the wants of the shore-districts, which are almost entirely destitute of this mineral.

Iron Ore occurs in veins traversing the Lower Carboniferous lime-

* 118,215 in Hants and 6026 in Colchester.
stones and sandstones near the mouth of the Shubenacadie and in Brookfield. The ores are red ochre, red hematite, and brown hematite, associated with sulphate of barytes and calcareous spar. One of the veins of the east side of the Shubenacadie, near its mouth, is of considerable magnitude, and it is probable that such veins, more or less valuable, will be found in the country between this place and Brookfield, where, however, the quantity of iron seems much greater than on the Shubenacadie.

At Brookfield, about 2½ miles east of the Brookfield station on the railway between Halifax and Truro, a deposit of fibrous brown limonite has been discovered, and has been examined by Mr Barnes of Halifax and Professor How of Windsor, to whose reports I am indebted for the following information:—The ore occurs in large boulders, scattered over a surface of 50 acres, and some of them containing three to four tons of ore. They are apparently nearly in situ, as veins of the same mineral are found in the locality, enclosed in a brownish ferruginous quartz rock or hardened sandstone, of a character frequently seen in this part of Colchester, and which is either of Devonian or Lower Carboniferous age—probably the former. The ore occurs at or near the junction of these rocks with ordinary Lower Carboniferous shales and limestones, which would seem to be unconformable to them. Sulphate of barytes, of excellent quality, is found in the latter rocks at no great distance, associated with iron ore, and probably under the same conditions in which these minerals occur near the mouth of the Shubenacadie.

The ore of Brookfield is of excellent quality, and should the quantity prove considerable when the mine is opened in the solid rock, its vicinity to the railway will render it a very valuable property. The masses on the surface have no doubt been left by the denudation or washing away of the containing rock, and would seem to indicate an important deposit; but veins and masses of this kind are often very irregular and uncertain, so that, to determine the real value of the deposit, better openings than those which now exist would be required.

Ores of Manganese.—These are found at several places in this district, in veins or disseminated in nodules in the Lower Carboniferous limestones. The most important localities at present are Teny Cape in Hants, and Onslow Mountain in Colchester. From the former place about 1000 tons, worth £8 to £9 per ton, are stated by Professor How to have been extracted up to this time. The following account of the Teny Cape locality is taken from a paper by Professor How in the Philosophical Journal for March 1866:—
Pyrolusite.—This species is found at numerous localities in different parts of the province, and is now being mined in considerable quantity at one of them, viz., at Teny Cape in Hants Co., about five miles from Walton, where about a thousand tons have been got out within the last two years, the bulk of which has been readily sold in England. It occurs here in the form of nodules of irregular, generally rather flattened shape, of all sizes, from that of a bean up to that of a man’s head, or even twice as large, and weighing proportionately up to about twenty-five pounds. These masses lie loose in a bed of ‘soil’ about a foot thick and a foot below the surface: they consist of pyrolusite and psilomelane. Some feet below this bed, in a gray and brick-coloured limestone containing magnesia, the ore is found, in very thin deposits, which, from the easily separable nature of the rock, can be laid bare in sheets, and also in ‘pockets’ or interrupted chains of deposits of very variable dimensions, sometimes but a few inches in depth, and thickening out to several feet. I have seen one egg-shaped mass exposed in situ estimated to be of three tons weight. One of these ‘pockets,’ running east and west at a depth of 15 feet from the surface, was about 72 feet in length, varied in thickness from 6 inches to 14 feet, and was practically exhausted on the removal of about 130 tons of ore. A second runs parallel with this, at a depth of 30 feet from the surface, and has been found to extend at least 105 feet: it had yielded up to August last about 300 tons of ore; and a large quantity remained. Below this, again, at a depth of 50 feet from the surface, other deposits have been met with, the form and dimensions of which have not, so far as I know, been fully made out, but which have afforded many tons of good ore. The whole thickness of the limestone holding manganese is estimated at about 300 feet.

The minerals associated with pyrolusite at Teny Cape are iron ore (brown hematite, I believe), barytes, and calcite. The first of these is occasionally found at the line of junction of the ore and rock, which, as before mentioned, is sometimes red. The barytes is of pure white colour, is often disseminated in varying quantity through the pyrolusite, and is probably constantly present in all but the pure crystals of the species. The calcite is also occasionally imbedded, in transparent crystals, but more often exists as an inerustation; it sometimes forms specimens of great beauty, when it lies in opaque snow-white mammillar masscs of finely crystalline structure, or in piles of nail-head crystals, half an inch or an inch across; of gray or snow-white colour, on black lustrous masses of well crystallized pyrolusite.

The pyrolusite found at Walton is sometimes attached to brown hematite in a reddish limestone resembling that at Teny Cape.
"The forms of the mineral are various. It is generally highly crystalline. The masses at Teny Cape are sometimes of a gray black, and consist of closely packed fine long fibres, sometimes are made up of bunches of stellated short crystals, and often of distinct and lustrous jet-black crystals with perfect terminations; all these varieties yield readily to the knife. The Pietou ore (found at a distance of about seventy miles) is coarsely fibrous. The greater part of that from Walton is in soft, black, lustrous, short crystals; one specimen, however, has been met with almost crypto-crystalline in structure and of bluish-gray colour, closely resembling the ore from Saxony. A very similar specimen from Amherst, Cumberland Co., forty miles from Walton, gave on analysis in the air-dry state,—

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>0.61</td>
<td></td>
</tr>
<tr>
<td>Binoxide of manganese</td>
<td>97.94</td>
<td></td>
</tr>
<tr>
<td>Gangue and loss</td>
<td>2.45</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100.00</td>
<td>Total</td>
</tr>
</tbody>
</table>

The insoluble matter (gangue) was brownish white, and most probably consisted of barytes.

"I have no doubt that specimens of the greatest possible purity could be selected at Teny Cape. I have examined a good many samples of dressed ores, and have commonly found from 80 to 93 per cent. bin-oxide; a specimen obtained at a depth of 50 feet from the surface, taken as a sample of dressed ore, and weighing about a quarter of a pound, gave me in the air-dry state, in summer, 93.83 per cent. bin-oxide of manganese, with barytes and a mere trace of iron. It is a very valuable property of this ore, as regards its use by glass-makers, that, when cleaned, it contains remarkably little iron. The first shipment sent to England, consisting of about seven tons and a half, gave, on analysis in Liverpool, 91.5 per cent. binoxide, and less than a half per cent. of iron.

"South of Teny Cape, at a distance of some ten miles, large nodules of manganese ore are found resembling in appearance those described as occurring in the 'soil' at the former place. One of these weighed 180 pounds; a fragment from another, weighing thirty-five pounds, was examined by Mr. H. Poole, a pupil of mine. The mass was black, of unequal hardness, portions scratching apatite, and therefore about 5.5, while the rest yielded easily to the knife. The powder of the harder parts was nearly as black as that of the softer. The water of composition was found by weighing in chloride of calcium; the binoxide of manganese by oxalic acid; the results were these:
which show that the mass consisted chiefly of pyrolusite. That the associated mineral was psilomelane follows from its appearance and hardness, the colour of its powder, and the amount of water contained, which is too little for manganite, and too much for any of the other manganese minerals.

"It is an interesting fact that silver, to the amount of five ounces to the ton of ore, has been found in a specimen from Teny Cape, on assay by J. Taylor and Co., in London."

The deposit of manganese ore on the property of the "Onslow East Mountain Manganese and Lime Company" occurs under similar geological conditions with that of Teny Cape, and has been very favourably reported on, both as to the quantity and quality of the mineral, by Mr. Barnes, Professor How, and Dr. Honeyman.

Galena, or sulphuret of lead, is found in disseminated crystals and small veins in limestone at Gay's River and some other places. Some specimens which I have examined contain a considerable proportion of silver; and one bed of limestone at Gay's River, pointed out to me many years ago by the late Mr. G. Duncan, has so much disseminated galena that favourable opinions have been expressed as to its economic value; but I am not aware that it has yet been worked. The occurrence of valuable ores of lead in the Lower Carboniferous limestones in England and other countries gives some reason to hope that more important indications of this metal may yet be discovered. Sandstone suitable for building purposes occurs at Horton, Halfway River, Windsor, the Shubenacadie, and probably many other places; but not in such quantity nor of such excellent quality as in the Coal formation of Cumberland and Pictou. For this reason it may not, for some time at least, be worthy of attention as an article of export, but it can be abundantly obtained for domestic use.

Clays suitable for bricks and common pottery can also be procured in large quantity on the Shubenacadie. Yet in the last census Hants made no return of bricks, while the quantity made in Colchester was stated at 420,000.

Coal in small seams occurs at Salmon River, North River, Chiganois
River, De Bert River, Folly River, and Great Village River, in the Carboniferous System.

Coal measures extend along the south base of the Cobequids, and these small seams appear at intervals as far west as Cape Chieguno. I have seen the outcrops of these coals in several places, and according to my own observations and the best information I can obtain from others, none of them exceed eighteen inches of clean coal. Better seams may possibly be found, but the measures are exposed by so many river sections that it seems unlikely that they should have so long escaped observation. Indications of coal have also been observed in the Coal measure band extending from Lower Stewiacke toward and along the Kennebecook River. These measures are not well exposed, and I believe that nothing definite is known as to their real value. The occurrence of coal in this central district would, however, be of so great importance to the province, and to the success of its main line of railway, that the subject well merits a thorough investigation.

Sulphate of Barytes, which is manufactured into a pigment employed as a substitute for or adulteration of white lead, has been quarried on the banks of the Stewiacke. The deposit, which at first appeared to be large, is stated to be now exhausted, at least in so far as it can be reached by the ordinary operations of the quarryman. As already stated, this mineral is said to occur in connexion with the iron deposits of Brookfield.

Brine Springs issue from the Lower Carboniferous rocks in several parts of Nova Scotia. In the district now under consideration they are found at Walton in Hants county. A specimen analyzed by Professor How gave, in the imperial gallon of water,—

<table>
<thead>
<tr>
<th>Substance</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloride of sodium, or common salt</td>
<td>787.11 grains.</td>
</tr>
<tr>
<td>Sulphate of lime</td>
<td>161.16 "</td>
</tr>
<tr>
<td>Carbonate of lime</td>
<td>14.73 "</td>
</tr>
<tr>
<td>Chloride of magnesium</td>
<td>4.48 "</td>
</tr>
<tr>
<td>Carbonate of magnesia, carbonate of iron, and phosphoric acid</td>
<td>traces.</td>
</tr>
</tbody>
</table>

Total: 967.48

The large quantity of sulphate of lime contained in this brine is, without doubt, connected with the abundance of gypsum in the Lower Carboniferous series, and points to the association of gypsum and common salt, probably in the gypseous marls. Professor How expresses a favourable opinion of this and other saline springs in Nova Scotia as profitable sources of common salt.
Gold.—A deposit of this metal, perhaps of even more interest in a geological point of view than practically, though apparently of some value in this last respect, occurs in the Lower Carboniferous conglomerate at Corbitt’s Mills, four miles north of Gay’s River in Colchester county. It was described in the Canadian Naturalist for 1864 by Mr. C. F. Hartt, and Dr. Honeyman has favoured me with manuscript notes of a visit to the place in 1866. From these sources I extract the following information:—The locality is at the junction of the Lower Carboniferous conglomerate with the slate and quartzite, forming the extremity of the ridge separating the valleys of the Stewiacke and Musquodoboit Rivers. The slates belong to the Silurian gold-bearing formation, and contain small but rich auriferous quartz veins. The conglomerate is formed of the debris of these older rocks, and gold occurs in it exactly as in modern auriferous gravels, being found in the lower part of the conglomerate, and also in the hollows and crevices of the underlying slate. The fact is interesting, as showing that the gold veins existed in their present state at the beginning of the Carboniferous period, and that the causes which produce the more modern gold alluvia were then in operation. By a later repetition of this process, the drift or boulder clay which overlies the conglomerate is at this place also slightly auriferous. In the Report of the Commissioners of Mines for 1866, it is stated that the high prices charged for land at this place had interfered with the operations of those desirous of opening the deposits; but that a crushing-mill had been erected, and that mining operations on such a scale as would prove the value of the deposit would soon be undertaken. Should they prove successful, they will present a curious and perhaps unique instance of mining for gold in rocks of the Carboniferous system, and will stimulate inquiry as to the possible productiveness of the Lower Carboniferous beds in other places where they come into contact with the older auriferous slates, as is the case in many places in the valleys of the Stewiacke, Musquodoboit, and St Mary’s Rivers, as well as in the eastern part of Hants.
CHAPTER XVI.

THE CARBONIFEROUS PERIOD—Continued.

THE MARINE FOSSILS OF THE CARBONIFEROUS LIMESTONES.

The short list of those published in the first edition of "Acadian Geology" was derived principally from that given by Sir C. Lyell in his "Travels in North America," on the authority of M. De Verneuil, who examined the collections made by Sir Charles. This list was, however, necessarily very imperfect; and since it was prepared, a large amount of additional material has accumulated, and some important investigations have been made. In 1862, being aware that Mr T. Davidson was engaged in the examination of British Carboniferous Brachiopods for the Palaeontographical Society, I sent to that eminent palaeontologist, the best living authority on Brachiopods, a collection of these shells, representing all the species known to me, and he very kindly undertook their examination along with those in Sir C. Lyell's collection. The results were given to the world in an able memoir in the Proceedings of the Geological Society of London for 1863. This was an important step in advance; but the other fossils, not Brachiopods, still remained untouched. In the meantime, Professor How of Windsor, and his pupil, H. Poole, Esq., jun., had made some interesting discoveries at Windsor and Stewiacke, and a new Trilobite from the latter place, sent to me by the former gentleman, was described by Mr Billings in the Canadian Naturalist, under the name Phillipia Howi. About the same time, Mr C. F. Hart undertook the work of collecting carefully and systematically at Windsor and Stewiacke; and not only found several new species, but developed characteristic differences in the fossils of the successive limestones of the Windsor section. Mr Hart proposed to prepare for publication the results of these researches, and has written a paper on the subject for the Canadian Naturalist; but a voyage to Brazil and subsequent engagements have prevented him from completing the task of describing and fully cataloguing the species. In these circumstances, I have been obliged to prepare such a list as was possible under the circumstances. It is much in advance of that previously given, and will, I trust, aid materially in subsequent investigations. Aid was also afforded by Prof. Lyell, and the knowledge of the species has been extended, in the course of other researches.

Before proceeding to our attention to the fossils of other periods, a few words regarding the fossils of the Carboniferous limestone are necessary.

With the exception of the possible occurrence of Cartilaginous Fish and lower vertebrates in their range, all the limestones of the Acadian period are of the same character. With the exception of the Cambrian, or the earliest Carboniferous limestones, in the Bahamas and on the Brazilian coast, the limestones of this period have not seen the lighter of many important series. The rocks of the Carboniferous limestone have been well described by Mr. H. M. How of Windsor, and the former gentleman found abundant Crinoidal Limestones, with a large species of the genus *Phyllocoelidae* var. *Nova Scotia* and *Chonconella Ida*. The fossils of this period have been examined by Dr. R. H. Lyell, who has not seen the Carboniferous limestones of the Acadian region. Mr. H. M. How has collected and described a large number of fossils, and has published his observations on the subject in the Proceedings of the Geological Society of London for 1863.

(a.) *Lime* (var. *Cretaceous*).—A limestone, not of the Carboniferous period, but of the Cretaceous period, has been found in the vicinity of Shubenacadie, and is of considerable extent. The fossils of this limestone have not been examined, and the species have not been described. The fossiliferous beds are about 10 feet thick, and are distinguished by the presence of large Crinoidal Limestones, with a large species of the genus *Phyllocoelidae* var. *Nova Scotia* and *Chonconella Ida*. The fossils of this period have been examined by Dr. R. H. Lyell, who has not seen the Carboniferous limestones of the Acadian region. Mr. H. M. How has collected and described a large number of fossils, and has published his observations on the subject in the Proceedings of the Geological Society of London for 1863.

(b.) *Lime* (var. *Crinoidal*).—The crinoidal limestones of the Acadian period are of great extent, and are distinguished by the presence of large Crinoidal Limestones, with a large species of the genus *Phyllocoelidae* var. *Nova Scotia* and *Chonconella Ida*. The fossils of this period have been examined by Dr. R. H. Lyell, who has not seen the Carboniferous limestones of the Acadian region. Mr. H. M. How has collected and described a large number of fossils, and has published his observations on the subject in the Proceedings of the Geological Society of London for 1863.
investigations; but it is still incomplete, and will no doubt be much modified by future investigations. In preparing it, I have been much aided by the notes and collections of Mr Hartt, by specimens furnished by Professor How and Mr Poole, and by the extensive paleontological knowledge of Mr Billings. I shall copy Mr Davidson’s descriptions of the Brachiopoda, and shall give as many figures as possible, to aid students and collectors, and to facilitate comparisons with the fossils of other countries.

Before proceeding to give the list of these fossils, there are two important geological questions in relation to them which must engage our attention. The first is the possibility of dividing the marine limestones of the Carboniferous period into different stages or sub-formations. The second is the precise geological and geographical relations of the fauna.

With regard to the first of these points, I have myself indicated the possible division of the Lower Carboniferous limestones into an upper and lower series, and also the fact of some of the species extending their range to the Upper Coal formation. But Mr Hartt has gone into the subject much more minutely, and I shall give, in the first place, a summary of his results, in connexion with my own.

In the section at Windsor above referred to, several limestones appear; but owing to faults and bends of the beds, their precise relations to each other are not very evident; still an approximation to these can be obtained; and I believe that the order given below will be found in the main to be an ascending one—each limestone being separated from those next it by a considerable thickness of sandstone, marl, or gypsum.

(a.) Limestone of Avon Bridge (Avon Limestone, Hartt)—Spirifer Limestone. A thick band of compact, laminated, oolitic, and brecciated limestone, not highly fossiliferous, but containing Productus cora (var Nova Scotia, Hartt)—Spirifer glaber, S. octoplicatus (?), Rhynchonella Ida, Phillipsia and Bakevella, and an Area-like shell which I have not seen elsewhere (A. punctifer). This is a very thick and important series of beds, and appears to correspond with the lowest Carboniferous limestone as seen in other localities.

(b.) Limestone, laminated, oolitic, compact, and concretionary—Crinoidal Limestone. Abounds in fragments of crinoids, minute shells of a Dentalina, Serpulites, and small Gasteropods, especially species of Plesiotomaria. Bakevella antiqua also abounds in it, and it is a remarkable repository of minute shells, many of which are yet undescribed. A limestone similar to this exists apparently in a similar position on the Shubenacadie River.
(c.) Gray or bluish earthy limestone, laminated and concretionary (Kennetcook Limestone, Hartt)—Zaphrentis Limestone. Contains Phillipisia Howi, Zaphrentis Minas, Cyathophyllum Steviacum, Spirifer striata, Athyris subtilita (?), Productus semireticulatus, Strophomena analoga, Edmondia Hartti, Cypricardia insecta, Orthoceras laterale, Stenopora, and Fenestella. This limestone has been recognised by Mr Hartt as the equivalent of the beds containing Zaphrentis and Phillipisia on the Kennetcook River, and it can be identified with one of the limestones of Lower Stewiacke.

(d.) Brownish or buff-coloured impure limestone, very rich in shells (Windsor Limestone, Hartt)—Aviculopecten Limestone. This limestone especially abounds in Lamellibranchiates, particularly species of Aviculopecten, Pteronites, Macrodon, and Modiolia. Naticopsis Howi is also very characteristic. It also contains Productus cora (var.), Terebratula sacculus, Rhynchonella Evangelini, Hartt, a Leperditia, and a Serpula; and the little coral Stenopora exilis is very common. Bakevella antiqua also occurs in it, and a Conularia. The Brachiopods in this bed are small and depauperated, indicating probably shallow and turbid water. This limestone appears to correspond to the shell limestone of Gay's River, near Wordsworth's, that of "Anthony's Nose," Shubenacadie, and the yellow limestone of De Bert River.

(e.) Compact gray shelly limestone (Stewiacke Limestone, Hartt), Productus Limestone. This is the richest of all the beds in fossils, and contains the greater number of those mentioned in the following lists. More especially it abounds in Productus cora, Athyris subtilita, Terebratula sacculus, Fenestella Lyelli, Macrodon Hardingi, Conularia planicostata; and it is the special habitat of Nautilus Avonensis, and Orthoceras dolatum, O. Vindobonense, O. taqueueum, and O. perstri- tum. It is the equivalent of the upper or red De Bert limestone, the Admiral's Rock on the Shubenacadie, and the Brookfield shell limestone.

Are these subdivisions of the Windsor limestones, as indicated by Mr Hartt, merely local, or have they a more general value? In writing to Mr Davidson, in 1862, I was inclined to believe that the lithological differences in the limestones are local, and "may have been caused through the limestones having been deposited in limited basins or narrow straits, and probably at a time of much volcanic disturbance," and that the only general distinctions are those between the Lower limestones and the Upper, the former being "darker in colour, more laminated, and less fossiliferous," and characterized by the prevalence of certain species of fossils. Mr Hartt's investigations have so far modified these conclusions, that I am prepared to admit, for the area
of Colchester and Hants at least, a more minute general subdivision. I would still, however, group sections (a), (b), and (c), as the Lower series, which I believe can be traced throughout Nova Scotia, and sections (d) and (e) as the Upper series, which is also very generally distributed. To these I would add a third group (f), including the Upper Carboniferous marine limestone of Wallace, with Productus semireticulatus (f), a small and depauperated form, Aviculopecten simplex, Terebratula sacculus, and Cardiomorpha, sp. Taking this view, the following table will give the distribution of these sub-formations as far as known to me:

Tabular View of the Subdivisions of the Carboniferous Limestone of Nova Scotia (in descending order).

<table>
<thead>
<tr>
<th>Subdivisions</th>
<th>Colchester and Hants</th>
<th>Cumberland</th>
<th>Pictou and Antigonish</th>
<th>Cape Breton</th>
</tr>
</thead>
<tbody>
<tr>
<td>(e) Productus Limestone</td>
<td>Lower Limestones of Windsor and De Bert R., Anthony's Nose, Shubenacadie; Woodworth's Limestone, Gay's River.</td>
<td>Minnilee, Napan, and Pugwash Limestones.</td>
<td>Streptolychnite Shale, East R. (?).</td>
<td>Lower Limestone, Irish Cove, etc.</td>
</tr>
<tr>
<td>(g) Aviculopecten Limestone</td>
<td>Blue Limestones of Windsor, Kennedy, and Cockmugun R.; Steven's Limestone, Lower Stewiacke (?); Lower Limestone, De Bert R.</td>
<td>It is doubtful if these appear in Cumberland but they may be looked for in the neighbouring parts of New Brunswick.</td>
<td>Limestones of Ohio R. and Locher.</td>
<td>These Limestones probably exist at Mahone, and on the Bras d'Or Lake, in various places.</td>
</tr>
<tr>
<td>(h) Crinoidal Limestone</td>
<td>Crinoidal Limestones of Windsor; Lower Limestone of Admiral's Rock and Rose's Plaster Quarry, Shubenacadie, Upper Musquodoboit.</td>
<td></td>
<td>Limestones and Shale of Grant's Bridge, East R. and Forks of East R.</td>
<td></td>
</tr>
<tr>
<td>(e) Spiteri Limestone</td>
<td>Lower Limestones of Windsor; Lower Gray's R. Limestone, Black Rock, Shubenacadie, Economy Limestone.</td>
<td></td>
<td>Lower or Lithostreon Limestone of Springville, East R.</td>
<td>Lower Limestone at C. Dauphin (f)</td>
</tr>
</tbody>
</table>
With regard to the second point above referred to, the age of these limestones and their equivalency with those of other countries, it is necessary to relate the history of the question, and then to state the peculiarities of these beds which have caused so various opinions to be entertained in regard to them. The earliest statement as to their age was that of Mr R. Brown, in Haliburton's "Nova Scotia." He correctly regarded the limestones of northern Cumberland as Lower Carboniferous, on the evidence of their stratigraphical position, as underlying the Cumberland Coal-field. At the same time, in the central part of the province, where the relation to the Coal formation was not clear, and the physical aspect of the rocks was peculiar, these beds were assigned to the New Red Sandstone. Messrs Jackson and Alger and Dr Gesner continued to hold this last view, and the latter extended it to the Cumberland beds previously placed in their true position by Mr Brown. Sir William Logan, in 1841, visited Horton Bluff and Windsor, and finding that the beds at the former place, which he supposed to be the Coal measures, were lower than the Windsor limestones, naturally supposed the latter to be of Permian age. Mr Lonsdale, after a hasty examination of the fossils, concurred in this view. Sir Charles Lyell, in his examination of the province in 1843, saw good reason to doubt this; and, with the aid of the writer, explored with care the sections in the East River of Pictou and the Avon. His results were published in his "Travels" in 1845, and were subsequently fully confirmed by more extended observations made by the writer and by Mr R. Brown. The Carboniferous date of these beds is now established on the surest grounds, both stratigraphical and paleontological. In regard to the former, the fact that in the sections at Cape Dauphin, at the East River of Pictou, and in Cumberland, the marine limestones underlie the productive Coal measures is indisputable, and these limestones contain the fossils of the upper beds of the Windsor series. In regard to the fossils, Davidson, the best authority on the subject, affirms them to be Carboniferous; and in so far as the Brachiopods are concerned, many of them identical as to species with those of the British Carboniferous limestone. De Koninck, the celebrated Belgian paleontologist, confirms this view; stating, as quoted by Davidson, that this fauna "completely recalls that of the Carboniferous limestone of Visé in Belgium." Yet it is true that the rocks themselves, the limestones, the red sandstones, the marls, and the gypsiums, have much the aspect of Permian rocks, and that the fossils, though Carboniferous, have, in the upper beds especially, an unusual number of forms common to the Carboniferous and Permian; while on the other hand, as has been observed by Mr Hartt, they do
not resemble the so-called Sub-Carboniferous limestones and fossils of the Western States, but are more nearly allied to those upper members of the Carboniferous known in the west as Perm-o-carboniferous. Dr Newberry and Mr Meek, to whom specimens have been shown by Mr Hartt, were much struck by these differences and resemblances; and the latter suggests the idea that we may here have what M. Barrande would call a "colony" of Permian forms in the Carboniferous age,—a suggestion which contains the germ of the true solution. This same solution, in another form, is also indicated in the following extract from Mr Davidson's paper in reference to the remarkably rich shell limestone of Brookfield:—

"The very remarkable shell-rock above described occurs at Brookfield, a little east of the Shubenacadie River; it was first discovered by the late Mr G. Duncan, and by him made known to Dr Dawson. It is in the line of strike of the Shubenacadie beds, and is doubtless a continuation of them. This rock has such a great general resemblance to certain Permian shelly limestones with which I am acquainted, that, had the specimens been submitted to me without any indication as to their geological age, I should certainly have felt somewhat puzzled to determine whether I had to deal with a Permian or a Carboniferous rock and its fossils; and, indeed, when M. de Verneuil determined these fossils for Sir C. Lyell in 1845, he enumerated, among others, Terebratula elongata and T. sufflata, Schl., Spiriferia cristata, Sch., Aricula antiqua, Münster, a Modiola, a Littorina, and one or two other fossils which he considered to be common to both the Permian and the Carboniferous strata. Although I may modify to some extent the lists of species published by Sir C. Lyell and Dr Dawson, I quite coincide with what is stated by the former author, at p. 205 of his 'Travels,' viz., 'That geologists should at first arrive at this result (of considering the rocks in question as the equivalents in age of the Permian of Russia) will surprise no one who is aware how many of the fossils of our Magnesian limestone and Coal resemble each other, or who studies the lists given at p. 218, in which several species both of shells and corals from Nova Scotia, identical or closely allied to well-known Permian or Magnesian limestone forms, are enumerated.'"

I venture to give the explanation of the whole difficulty in the following statements, the illustration of which must be sought in the descriptions of these rocks in other parts of this work:—

(1.) The fauna of the seas of the Lower Carboniferous, Coal formation, and Permian periods, both in Europe and America, present so great similarities that they may, in a broad view of the subject, be regarded as identical.
(2.) The changes and subdivisions of this fauna are related not merely to lapse of time, but to vicissitudes of physical conditions. At Windsor, for example, the fauna of the *Ateolopecten* bed is manifestly that of a shallower and more sandy sea than that of the *Productus* bed; and further, the change from the fauna of the Lower series to that of the Upper series coincides with the deposition of the great gypsiums and gypseous marls. It is the same in the Shubenacadie section.

(3.) It follows that, if the peculiar Permian conditions indicated by the rocks came in earlier in Nova Scotia than in Europe, the character of the fauna might also be changed earlier. In other words, we have both rocks and shells with Permian aspect in the Lower Carboniferous period.

(4.) In accordance with this, it is the Upper series of limestones, and those most nearly related to the gypsiums and marls, that have the most Permian aspect. The lower Windsor limestones and those of Economy and Pictou have much more the ordinary Lower Carboniferous character and fossils.

(5.) In the little bed of marine limestone at M'Kenzie's Mill, Wallace, we have an example of the existence of some members of this fauna in the period of the Upper Coal formation, where we have also a greater number of the fossil plants that extend upward from the Coal formation into the Permian; and there is nothing to preclude the supposition, already stated in the preceding chapter, that some of the upper limestones of Colchester and Hants may have been deposited contemporaneously with the Middle Coal formation. At the same time, it must be admitted that this last supposition is not proved, and that the appearances in those places where the Coal measures occur are not in its favour.

(6.) It is evident that the marine fauna of the Lower Carboniferous in Nova Scotia more nearly resembles that of Europe than that of the Western States. This is no doubt connected with the fact that the Atlantic was probably an unobstructed sea bed as now, while the Appalachians already, in part, separated the deep sea fauna of the Carboniferous seas east and west of them. In the Permocarboniferous period the connexion may have been more complete, or perhaps the shallow-water species may have at all times been able to migrate. Perhaps, however, there was no migration in the case, but only the recurrence of similar and representative species under similar conditions of existence.

(7.) It must not be overlooked that, as a set-off to the Permian appearance of the fossils of the Lower Carboniferous in Nova Scotia, we have the occurrence of such old forms as *Phillipsia, Centronella,*
LOWER CARBONIFEROUS FOSSILS.

Conularia, Strophomena, Zaphrentis, etc., either not found, or rarely found, higher than the Lower Carboniferous in other countries.

It is a matter of regret to me that I have not had time fully to investigate all the facts bearing on this curious question. I would commend it to those who may follow me, to whom that which I have been able to do may at least be of service in guiding their researches.

Descripive List of Fossils of the Carboniferous Limestone.

PROTOZOA.

Dentalina priscilla, n. sp. (Fig. 82), coll. Hartt, Windsor.—Shell formed of several elongated or short cells, separated from each other externally only by slight constrictions; diameter about 1-40th of an inch. This little shell is very abundant on the surfaces of bed (b), Windsor, but always in fragments. I do not feel at all certain as to its affinities, more especially as in the longitudinal section it does not show true septal plates, but only slight constrictions at the nodes.

Fig. 82.—Dentalina ; nat. size and magnified.

Fig. 83.—Lithostrotion Pictense.

RADIATA.

Lithostrotion Pictense, Billings (Fig. 83), coll. J. W. D., East River, Pietou.—This fine coral is characteristic of a thick bed of limestone at Lime Brook, East River. The following description has been kindly prepared by Mr Billings:

"Corallum fasciculatum, dendroid. The corallites are elongate, cylin-dro-turbinate, the young individuals springing from the sides of the adult at various heights, rapidly attaining the full size; at first slightly divergent, then parallel, and usually in contact with each other, or nearly so. They seem to be covered by a thin compact epitheca, and
to be strongly and irregularly annulated. The greatest diameter observed is seven lines, but it is probable that the average is about six lines. In a transverse polished section, six lines across, the inner area is three lines in diameter, and shows twenty-four septa, which do not penetrate more than half a line. The columella is obscurely indicated in the centre. The external area is one and a half lines in width, with the inner side of the epithea crenulated by about forty-eight septa, one half of which can be indistinctly traced across to the inner wall. In the longitudinal section the external area exhibits a tissue of imbricating meniscoid cells, inclining upwards and outwards, their upper sides convex, lower sides with one or two concavities, due to the convexity of the cells below them. The average size of these cells is one line in length by half that in width; there are many smaller and larger ones. In the inner area the transverse diaphragms or tabule are thin and crowded, apparently four or five, on an average, in one line; they seem to be much elevated in the centre, and also sometimes turned upwards at their junction with the inner wall. The axis is indistinctly indicated.

"The only species with which this need be compared is L. affine (Fleming), of the Carboniferous limestone of England and Ireland. According to the description and figures of Edwards and Haime, that species has the corallites about five or six lines in diameter, and grouped together as they are in this; but they are not annulated exteriorly, except by small wrinkles; the inner wall is not so distinctly defined; the inner area narrower, and the columella more compact and perfectly developed. It has also thirty or thirty-two principal septa, while in this there are only about twenty-four.

"The two specimens on which the above description is founded are imbedded in compact limestone, and although in the polished sections their internal characters are well defined, yet in a large collection individuals might be found to connect it to L. affine. It is a closely allied species, but I think distinct."

Zaphrentis Minas, n. sp. (Fig 84, a), collected by Professor How at Kennebecook.—Corallum conical, slightly curved. Calice circular, thin-edged, rather shallow; septal fossula narrow, extending from the centre to the concave side. Principal septa about thirty-two. Tabulae irregular. Epithea thin, marked externally with longitudinal striae and coarse scaley ridges, especially near the upper part. My longest specimen is two inches in length, and has probably lost an inch of the lower part. It is one inch in diameter. The same species occurs at Cockmegun River and Stewiacke; and small specimens, possibly...
Cyathophyllum Billingsii, n. sp. (Fig. 84, b).—Corallum circular in cross section, short, curved at the base. Unbroken surface with vertical low ribs and strong transverse plates; broken surface with square reticulation. Calice shallow, with about forty equal, straight septa. Coll. Hartt, Lower Stewiacke.

Stenopora exilis, n. sp. (Fig. 85, a), coll. J. W. D. and C. F. Hartt, Shubenacadie, Windsor, Stewiacke.—This is the coral, or one of the corals, designated as Ceriopora spongites in my former edition, and it is scarcely distinguishable by external characters from Calamopora Macrothii, of King's Permian fossils; but it wants entirely the generic characters of Calamopora, and therefore I describe it here as a distinct species, though by no means affirming that it may not be identical with some of the species of little branching Carboniferous corals about which so much confusion exists. It presents slender cylindrical branches, ramifying irregularly and sometimes anastomosing, from half a line to a line in diameter, and covered with minute contiguous hexagonal cells with small spines or papilla on their separating walls.
In a longitudinal section the cells are seen to rise vertically, and then suddenly curve to the surface, increasing at the same time in diameter, and having near the aperture a few thin transverse plates. It is perhaps worthy of inquiry whether this may not have been a Polyzoan allied to Helopora. It is very abundant at Windsor and on the Shubenacadie, subdivision (d).

Chactetes tumidus (Fig. 85, b), Edwards and Haim.—I refer to this common Carboniferous species, a coral very abundant at Steviake, and occurring also at Windsor and in Cape Breton, and which a careless observer might readily confound with the preceding. It is, like it, a slender branching coral, but often more robust, and sometimes presenting even rounded or papillose masses; and in the longitudinal section its tubes do not curve suddenly outwards, but turn from the centre with a gentle sweep toward the surface. Externally also it has no spines on the separating walls. Though I suspect that the synonymy given by Edwards and Haim includes several species, I feel certain that the present is one of them, and I have no hesitation more particularly in identifying it with Favoris seabra of De Konineck. All these small branching corals of the Palaeozoic rocks require a thorough microscopical examination.

Crinoidea.—Though some beds of limestone on the Shubenacadie at Windsor, and on the East River of Pictou, are full of crinoidal fragments, more particularly the joints of the stems, no specimens sufficiently complete for description have yet been found.

Mollusca.

Polyzoa.

Fenestella Lyelli, n. sp. (Fig. 86), coll. J. W. D., Windsor; coll. Hartt, Steviake.—This beautiful species is very characteristic of Fig. 86.—Fenestella Lyelli.

(a) Natural size. (b) Portion enlarged. (c) Cells and spines in profile.
one of the limestones of the Windsor series, and is, I think, certainly new and undescribed. The non-poriferous side has thick parallel bifurcating ribs, with rounded surfaces finely striated longitudinally, connected by much thinner and rounded cross bars, enclosing oval fenestrae. The poriferous side has the bars angular above, and with a central carina, bearing a row of small tubercles, which in the best specimens are seen to bear delicate spines. The pores are in two rows at the sides of the ribs. Its nearest allies are *F. reteformis*, Schlot., and *F. carinata*, M'Coy, but it differs materially from both, more especially in its characteristic spines.

Fenestella, another species, coll. J. W. D., Stewiacke, with two rows of large contiguous pores. Resembles *F. Morrisii*, M'Coy, but has the pores closer to each other.

Fenestella with larger fenestrae, not determinable. Coll. J. W. D., West River, Pictou.

Berenicea, Lamx.—Two species of encrusting Polyzoa occur on shells in Mr Hartt’s collections from Windsor. They may, in the meantime, be referred to this genus, but are not determinable.

Brachiopoda.

The following descriptions of the Brachiopods of the Carboniferous limestones of Nova Scotia are extracted from Mr Davidson’s paper above referred to, and the figures are from his drawings:—

* Terebratula sacculus, Martin, sp., 1809, and varieties (Fig. 87).

* Terebratula elongata and *T. suflata*, De Verneuil, in Sir C. Lyell’s ‘Travels in North America,’ vol. ii., p. 220, 1845; and in Dawson’s ‘Acadian Geology,’ p. 219 (Fig. 27), 1855.

Fig. 87.—*Terebratula sacculus*, Martin; and interior, showing loop.
a 'gibbous variety of the preceding one' is referable to *T. sufflata* of the same author.

"During a lengthened examination of *T. hastata* and *T. saeculatus* from the Carboniferous rocks of Great Britain, as well as of *T. elongata* and *T. sufflata* from the Permian strata of the same kingdom, I was led to the conclusion that the specific identity of *T. saeculatus* and *T. sufflata* was clearly established; and, when treating of the Carboniferous *T. hastata* and of the Permian *T. elongata*, I observed that, although it was an unquestionable fact that some specimens of these two so-called species could not be distinguished, more difference is shown between the greater number of *T. hastata* and *T. elongata*, and that the strong resemblance appeared to be the exception. It must also be allowed that it is often impossible to distinguish certain examples of *T. saeculatus* and of *T. hastata*, which forms appear to merge the one into the other, and that the same may be said sometimes with reference to *T. sufflata* and *T. elongata*. All this proves how intimately connected are the British forms of Carboniferous and Permian *Terebratula*.

"But to return to the Nova-Scotian specimens, I could not perceive in any of them the wide and gradually depressed or shallow sinus, which, in the larger valve of all well-shaped examples of *T. elongata*, commences towards the middle of the valve and extends to the front, and which produces in the frontal margin a convex curve. In nearly every specimen the ventral valve is uniformly convex or but very slightly depressed near the front, as is the case with the larger number of *T. saeculatus* and of its synonym *T. sufflata*. I think, therefore, that it will be perhaps preferable to refer the Nova-Scotian *Terebratula* to Martin's *T. saeculatus*; and in this view I am supported by Professor De Koninck, notwithstanding some examples may resemble certain specimens of *T. elongata*, *T. fusiformis* (Vern.), or *T. hastata*. The largest specimen I have seen was not quite an inch in length, and the greater number were much smaller. The interior, with its perfect, short, simple loop, is often found, and is exactly similar to the one we find in Martin's species. Sir C. Lyell mentions that he obtained this shell at Windsor, Brookfield, Shubenacadie, Gay's River, De Bert River, Middle River, and Cape Breton. Dr Dawson obtained it in the same localities, to which he has added Pugwash, East River of Pictou, Lennox Passage, etc.

"*Athyris subtilita*, Hall, 1852 (Fig. 88, a, b, c).

"*Athyris subtilita*, in Howard Stansbury's 'Exploration of the Valley of the Salt Lake of Utah,' p. 409, pl. 2 (figs. 1, 2).

"The Nova-Scotian specimens all appear to be small in size, but are
exactly similar (except in dimensions) to those found in other parts of America and Europe. The spiral processes are often preserved.

Fig. 88 (a, b).—*Athyris subtilita*, Hall; (c) interior, showing spires.

“This shell occurs by millions in the Lower Carboniferous limestone of Shubenacadie, Brookfield, etc.

Spiriferia.—The four so termed species referred to in the lists given by Sir C. Lyell and Dr Dawson appear to belong to two, or at most three (?) species.

Spirifer glabra, Martin, sp. (Fig. 89).

Conchylolithus Anomites glaber, Martin, Petrif. Derb., pl. 48 (figs. 9, 10), 1809.

Fig. 89.—*Spirifer glabra*, Martin.

“This appears to be a common fossil in the Lower Carboniferous limestone of Nova Scotia. It is identical in character with those found in Great Britain; one example brought home by Sir C. Lyell measured 13 lines in length by about 17 in breadth.

“It occurs at East River of Pictou, Mabou, Cape Breton, Windsor, Brookfield, Mergomish, etc.

Spiriferina cristata, Schlotheim (Fig. 90).

Spirifer octoplicatus, Sow., Min. Couch, pl. 562 (figs. 2, 3, 4); Dav. Mon. Carb. Brach, p. 38, pl. 7 (figs. 37, 47).
At p. 221 of his 'Travels,' Sir C. Lyell mentions *Spirifer cristasatus*, Schh., *S. minimus*, Sow., and *S. octoplicatus*, Sow., as having been found in the Lower Carboniferous limestone of Nova Scotia; but it is probable that at least two of the shells so termed—namely, *S. cristasatus* and *S. octoplicatus*, are referable to a single species. The Nova-Scotian specimens of the shell under notice are all very small, none of those that have come under my notice exceeding four lines in length by five in width; they exactly resemble some specimens of the same species found in the Carboniferous shales of Capel Rig, East Kilbride, Scotland.

Sir C. Lyell mentions having found this shell at Windsor, Brookfield, Shubenacadie, and De Bert River, in Nova Scotia; and Dr Dawson adds East River, but that it is nowhere so plentiful as in the shell conglomerate of Brookfield.

Spirifer cristasatus, De Koninck (Fig. 90).
Spirifer acuticostatus, De Koninck, 'Description des Animaux Fossiles qui se trouvent dans le Terrain Carbonifère de la Belgique,' p. 265, pl. 17, fig. 6.

'Shell small and transversely oval; valves convex, and ornamented with from twelve to fourteen small angular ribs. The mesial fold is comparatively wide, flattened, and longitudinally grooved along the middle. The sinus in the ventral valve has a small median angular rib, which commences at about the middle of the valve and extends to the front. Beak small, incurved; area triangular and of moderate dimensions. Length four lines, width five lines, depth three lines.

Upon sending a proof of the plate illustrating this paper to Professor De Koninck, he wrote back that two of my figures were referable to *S. acuticostatus*; and, except in size, they certainly resemble those given by the distinguished Belgian Professor. It must, however, be remembered that in some specimens of *S. cristasatus*, or of its Carboniferous representative, *S. octoplicatus*, the mesial fold is flattened along its middle, and even possesses in some cases a shallow groove along its centre, as seen in De Koninck's *S. acuticostatus*. All these modifications in British specimens have been described and illustrated at pages 38 and 226 of my 'Monograph of British Carboniferous Brachiopoda.'
This small shell is very abundant in the shell limestone of Brookfield, Shubenacadie, and in some other localities in Nova Scotia, where it is always associated with *Sp. cristatus*, of which it may perhaps after all be no more than a modification.

Camarophoria and *Rhynchonella*.—The specimens referable to these genera sent me by Dr. Dawson, as well as those brought to England by Sir C. Lyell, are generally very small, and not in all cases sufficiently complete to warrant a satisfactory determination. I hav', however, carefully represented the principal forms.

Fig. 92 (a).—*Camarophoria globulina*, Phillips; nat. size and magnified; (b) variety of the same.

Camarophoria (?) globulina (?), Phillips (Fig 92, a, b).

Of this very small shell I have been able to examine only three specimens; but it is stated to be abundant in a yellow arenaceous limestone at De Bert River, where, according to Dr. Dawson's experience, it is always small. I have also felt somewhat puzzled in the determination of this fossil; but, after having consulted Professor De Koninck, I concluded to refer the specimens to the same species, notwithstanding the apparent difference they present. Professor De Koninck referred one of them to *T. rhomboidea*, Phillips, which is a synonyme of *Camarophoria globulina*; and after minutely comparing the Nova-Scotian specimens with the Carboniferous and Permian types, I could perceive no difference sufficient to warrant the creation of a new species. The three specimens were exactly of the same size, namely, three lines in length by three in width, and two and a half in depth. The uncertainty which both Professor De Koninck and myself have experienced refers to a specimen which much resembles, in miniature, a form of *Rhynchonella acuminata*; but when we remember
that Phillips himself figures a specimen of his *Terebratula rhomboidea* with a simple mesial fold, we need not be surprised to find the same peculiarity in one of those from Nova Scotia. Indeed, after carefully examining the three examples forwarded by Dr Dawson, I cannot bring myself to believe that they should be specifically separated. It is well known that the same peculiarity occurs with *Rhynchonella acuminata*; and any one who examines plates 20 and 21 of my 'Monograph of British Carboniferous Brachiopoda' must feel surprised at the immense variability of which some species are susceptible.

Fig. 93.—*Rhynchonella Dawsoniana*, Davidson; nat. size and magnified.

"*Rhynchonella Dawsoniana*, n. sp. (Fig. 93, a, b).

"Shell very small, almost circular, a little wider than long; dorsal valve moderately and uniformly convex to about half its length from the umbo, at which point a very slightly elevated and flattened mesial fold begins to rise, and extends to the front; the surface of the shell is also either almost entirely smooth or ornamented with from eight to twelve slightly marked ribs. The ventral valve is gently convex, with a wide sinus; beak small and incurved. Length three and a half lines, width four lines, depth two and a half lines.

"This small species does not appear to be rare in a black Lower Carboniferous limestone at Lennox Passage, and is not unlike, except in size, certain examples of M. de Verneuil's *Terebratula superstes*; but this last-named Permian shell belongs to the genus *Camarophoria*, while the one under description belongs to *Rhynchonella*. I have compared it with a number of equally small young examples of *Rhynchonella pugnus*, from which it appears to differ.

"*Rhynchonella Acadiensis*, n. sp. (Fig. 94).

"Shell small, obscurely rhomboidal, about as wide as long; dorsal valve rather more convex than the ventral, and presenting, when viewed in profile, a regular curve. The mesial fold commences towards the middle of the valve, while the surface is ornamented with twelve or thirteen small radiating ribs, of which four or five occupy the surface of the fold. The sinus in the ventral valve is of moderate depth, and the surface is ornamented as in the dorsal valve. The
beak is gently incurved, and exhibits a small circular foramen under its angular extremity. Length five lines, width five lines, depth three lines.

Fig. 94.—Rhynchonella Acadieensis, Davidson; nat. size and magnified.

"Of this shell I have seen but two specimens, which I detached from a lump of the Brookfield shell-limestone, and of which one exhibited the two curved internal lamellae characteristic of the genus Rhynchonella. It is quite distinct from young shells of Rhynchonella pugnum and R. pleurodon. In the last-named species the ribs that adorn the lateral portions of the dorsal valve are very much curved, while those of the ventral are nearly straight, with their extremities bent upwards; in addition to which, the ribs begin to be longitudinally grooved along their median portion at some distance from the margin. None of these characters are observable in the small Rhynchonella under description.

"Rhynchonella, sp.—Upon some fragments of Lower Carboniferous limestone brought from Nova Scotia by Sir C. Lyell are several imperfect, undeterminable valves of a Rhynchonella, which differs from the preceding species by its size, as well as by the number of its small radiating ribs. Of these last I have counted as many as thirty-five or forty upon each valve. In size it appears to have measured about seven or eight lines in length by nine in width. I abstain from proposing for it a specific denomination, as the material is so imperfect. The specimen belongs to the Geological Society.

"Rhynchonella pugnum (?) Martin, sp., Petrif. Derb., tab. 22, figs. 4, 5, 1809.

"Two or three very small specimens, received from Dr. Dawson after my plate had been completed, much resemble certain young shells of Martin's species; they are derived from the Lower Carboniferous limestone of Windsor and East River.

"Strophomena analoga, Phillips (Fig. 95).

"Upon a specimen of dark, impure limestone brought from Nova
Scotia by Sir C. Lyell, and now in the Society's Museum, I found a well-characterized example of this species, which in Sir C. Lyell's list had been confounded with *Productus Martini*.

Fig. 95.—*Strophomena analoga*, Phillips.
Fig. 96.—*Streptorhynchos crenistria*, Phillips, and sculpture magnified.

"*Streptorhynchos crenistria*, Phillips (Fig. 96).

Several crushed valves, referable to this species, occur on a specimen of Carboniferous shale from East River, Pictou, for which I am indebted to Dr. Dawson. These valves exactly resemble certain small specimens found in several British Carboniferous shales. Their surfaces are covered with numerous radiating raised striae, with a smaller rib between the larger ones, the whole being closely intersected by fine concentric lines, thus giving to the longitudinal ribs a crenulated appearance. Professor De Koninck coincides in my identification.

"*Productus*.—Although Sir C. Lyell and Dr. Dawson mention seven species of this genus as having been found in the Lower Carboniferous rocks of Nova Scotia, all these, as well as the specimens I have been able to examine, can be referred to two species only, namely, *P. semireticulatus* and *P. cora*; and I may mention that Prof. De Koninck coincides in this view.

"*Productus semireticulatus*, Martin (Fig. 97).
Anomites semireticulatus, Martin, Petrif. Derb., pl. 32, figs. 1, 2, and pl. 33, fig. 4, 1809.

This species is so well known that all I shall require to state is, that the Nova-Scotian specimens are exactly similar to those found in Europe. *Producta Martini*, *P. conchina*, *P. antiquata*, *P. Scotia*, mentioned by Sir C. Lyell at p. 220 (vol. ii.) of his 'Travels in America,' as well as by Dr. Dawson in various pages of his 'Acadian Geology,' belong to a single species, namely, *Productus semireticulatus*, Sow. The *P. spinosa*, Sow. (? var. of *P. Martini*), of Sir C. Lyell's

* The locality is incorrectly given Shubenacadie in the paper quoted.
list, belongs likewise to the species under description; but *P. spinosa*, Sow., specimens of which I have not seen from Nova Scotia, is a distinct species. Sir C. Lyell mentions Windsor, Brookfield, Shubenacadie, East River, De Bert River, and Minudie. Dr Dawson states that the shell is found almost everywhere—at Pugwash, near Amherst, Boulardie, Cape Breton, Horton Bluff, Gay’s River, etc.

Fig. 97.—*Productus semireticulatus*.—Martin.

(a) Ventral valve.
(b) Small specimen showing dorsal valve.

“The largest specimen measured one inch and a half in length by about the same in width. The variety *Martini* is also found in the same locality.

Fig. 98.—*Productus cora*.—D’Orbigny.

(a) Dorsal, and (b) ventral valve.

Productus cora, D’Orbigny, 1842 (Fig. 98).
Productus cora, D’Orbigny, ‘Palaéont. du Voyage dans l’Amérique Mérid.,’ p. 55, pl. 5, figs. 8, 9, 10, 1842.
P. conoides and *P. Scoticus*, De Kon. 1843 (not of Sow.)
P. tenuistrata and *P. Neffedievii*, De Vern., ‘Russia and the Ural Mountains,’ 1845.
"P. cora, De Konineck, 'Mon. du Genre Productus,' pl. 4, fig. 1, 1847.

"P. pileiformis, M'Chesney, 'Deser. of New Species of Fossils from the Palæozoic Rocks of the Western States of America,' p. 40, 1849.

"P. Lyelli, Dawson, 'Acadian Geology,' p. 219, fig. 9, 1855.

"P. Cora, Dav., 'Mon. Carb. Brach.,' pl. 36, fig. 4, pl. 42, fig. 9, 1861.

"After a very careful examination of nine or ten specimens of P. Lyelli from the Lower Carboniferous limestone of Nova Scotia, I have reluctantly been obliged to place M. de Verneuil's species among the synonomes of P. cora, the latter name (as may be seen by the list of synonomes above given) claiming three years' priority. All the Nova-Scotian specimens I have been able to examine were small, not exceeding about 11 lines in length by some 12 or 13 in width. But it must be remembered that, as a general rule, the Nova-Scotian species and specimens, although adult, are small, and in this respect are exactly similar to those we find in Scotland. The surface is covered with numerous longitudinal, straight, or slightly flexuous, narrow, thread-like, rounded striae, with sulci, or interspaces, of rather less width; smaller striae are also here and there intercalated between the larger ones. The ribs are also regularly and closely crossed by small concentric lines.

"P. cora is a widely spread Carboniferous species, having been found in many parts of America, India, Europe, etc.

"Sir C. Lyell found this shell at Windsor, Horton Bluff, Shubenacadie, Gay's River, Minudie, and Cape Breton, in Nova Scotia. Dr Dawson states that it occurs almost everywhere—at Pugwash, on the eastern coast of Cumberland, at Lennox Passage, M'Kenzie's Mill, at the eastern extremity of Wallace Harbour, etc."

Mr Hartt has kindly furnished the following descriptions and specimens of additional species of Brachiopoda:

Rhynchonella Ida, Hartt, Bed A, Windsor. Coll. C. F. Hartt.—Shell elliptical, transverse, wider than long, rounded on the sides, truncate in front, angular at the umbo, inequivalve. Dorsal valve large, more inflected than the ventral, moderately arched, slightly depressed in umbonal region, with a wide, slightly elevated mesial fold.

Ventral valve less arched than dorsal, highest in the middle, from which point it curves regularly to the umbo and posterior margin. Umbo sharp, angle made by sides of valve at the umbo a right angle. Outline of valve a right angled triangle rounded at the acute angle. Sides of valve depressed. A shallow sinus corresponds to the fold of the dorsal valve. It originates near the middle of the valve. Umbo more or less strongly recurved. Foramen small, triangular. Deltidium...
Fossils of the Carboniferous Limestones. 299

in two narrow pieces. False hinge area narrow. Surface marked by 16—21 large elevated rounded radiating plaits, each one of which increases in size from the umbo to the margin. They also increase in size from the sides to the sinus or fold, on the side of which the largest one occurs. The sinus is occupied by 3—4 small plaits of equal size. Length, 5-16th inch; breadth, 9-16th inch; thickness, 4-16th inch.

The above is believed to be identical with a species referred to by Mr Davidson, as represented in the collections submitted to him, by only one imperfect specimen, and delineated at fig. 15 of his paper.

Rhynochonella Evangelina, Hartt. —Shell minute, length about 5-16ths of an inch, length and breadth about equal, greatest breadth at middle. In dorsal aspect square, the umbo forming an angle, the three others rounded, in umbonal aspect triangular. Dorsal valve very much larger, and more inflated than the ventral; would be semi-globose but for a prominent mesial fold, which originates at or about the middle of the valve, and seems growing higher and higher to the posterior margin, beyond which it projects, forming one of the angles of the square. In profile the fold describes a more or less regular quadrant, the posterior part of which becomes parallel, or nearly so, with the longitudinal axis of the shell. The summit of the fold bears two or three angular plaits, separated by a deep groove or grooves, which originate with the fold, and grow deeper as the latter becomes more elevated. Fold with steep flattened sloping sides; occasionally these bear minor supplementary grooves. On each side of the shell are two or three large radiating angular plaits, originating about half-way from the umbo to the margin, in running towards which they increase in size, describing in profile a regular curve. As the valve has a more or less steep slope from the fold to the sides of the valve, these plaits have a narrow slope on the inner and a long one on the outer side, so as to give them an imbricated appearance. Ventral valve depressed forward, with a deep, wide mesial sinus, beginning near the umbo, and corresponding to the mesial fold of the opposite valve. Sinus occupied by prominent plaits corresponding to the grooves on the summit of the fold. On the sides of the shell, plaits, corresponding in like manner to these grooves of the opposite valve. Where there are two grooves on the fold, the two corresponding ventral plaits are formed near the anterior part of the sinus by the bifurcation of a single plait. Umbo angular, sharp-pointed, and quite strongly recurved. Poromata narrow, triangular, with deltum in two pieces. Interior of dorsal valve with the two short curved processes so characteristic of the apophyseal system of Rhynochonella.
This is probably the species referred by Mr. Davidson, with doubt, to *R. pugnax* (?) in his paper above referred to.

Centronella Anna, Hartt (Fig. 99).—Shell orbicular, lentilary, equilateral, inequivalve, the dorsal (ventral, *Hall*) valve being considerably more arched than the ventral (dorsal, *Hall*). *Dorso-ventral* diameter about half that of the width of shell—length about a quarter of an inch.

Fig. 99.—*Centronella Anna*, Hartt.

(a) Shell natural size. (b) Internal loop.

Ventral valve with lamellæ which take their origin near together. These lamellæ separate slightly from one another until they are inclined to one another at an angle from 30°-45°; when they curve towards the mesial line, and meeting at a very acute angle, are prolonged backward in a pointed arch to three-quarters—four-fifths the length of the shell, the width of the arch being approximately one-half its length. The planes of the lamellæ are at first parallel, but their dorsal edges soon become moderately inclined outward. The lateral bands are not only bent toward the mesial line, but they are strongly curved, with the convexity towards the ventral valve, the curve being slightly greater than that of the valve. This loop supports on the dorsal side a thin plate, whose plane coincides with the dorso-ventral and antero-posterior diameter of shell, and a thin plate extends from the apex of the arch forward (backward *auct.*) for about two-thirds its length. This plate seems to be of uniform thickness throughout. At the point of the arch the supporting lamellæ are exceedingly slender. Tracing them anteriorly, they are seen running along the ventral border of the mesial plate, on each side, like a raised line. Increasing in width, they separate themselves more and more along the dorsal margin from the mesial plate, to whose ventral border they are attached for its whole length. The plate has an outline similar to that of a transverse section of a biconvex lens whose diameter is twice its thickness, but in both the loops under examination there is on the dorsal edge a notch which appears to be organic, and to correspond to that of the loop of *Centronella Julia*, Billings.

The mode of attachment of the mesial plate with the lateral bands is very well shown in my specimens. Professor Hall has called attention to the strong resemblance between the loops of *Centronella* and *Rensselaria*, but there is a much greater resemblance between the...
loops of my Carboniferous species and that of *Rensselaria*. This species is not uncommon in the Windsor limestones at Windsor, where it is usually so preserved as to show the interior with loop. The shell appears to be very fragile, and specimens showing the external characters are rare; at least I do not possess an example. There is a species of *Centronella* occurring in the Stewiacke limestones at Windsor and Stewiacke which may be identical with this, but I have no good specimens for comparison.

Centronella, as far as I am aware, has been found only in Devonian rocks. Its occurrence in the Carboniferous limestones of Acadia, with forms so Permian in character, is very interesting.

Spirea striata, Martin, coll. Hartt, from Windsor.—A ventral valve, 1½ inch in breadth, has been found by Mr Hartt in the Windsor limestones. It does not appear to differ from specimens of the well-known British *S. striata* in my collection. It is the largest *Spirea* yet found in Nova Scotia, and helps to redeem our Lower Carboniferous shells from the charge of prevailing smallness.

Crania.—A valve attached to a specimen of *Productus cora* in the collection of Mr Hartt from Windsor. It is too obscure to be determined or named.

Modiola Polii, n. sp. (Fig. 100), coll. J. W. D. and H. Poole, Shubenacadie, Windsor, Irish Cove, C. B.—Tumid, elongate; nearly cylindrical, but more tumid in front; surface with delicate lines of growth.

Fig. 100.—*Modiola Polii* (cast).

Modiola Avonia, n. sp., coll. Hartt, Windsor.—A regularly ovate, smooth (?) species, known to me only by casts which abound in bed (d).

Pteronites Gayensis, n. sp. (Fig. 101), coll. J. W. D., Gay's River, Chester, similar in general form to *P. latus*, McCoy. Beaks prominent, pointed; hinge-line straight, reflected, anterior extremity very short, posterior part flattening and widening with a regular curve to the broad rounded posterior extremity. Surface with rounded concentric wrinkles.

Bakevilia antiqua, Munst., coll. J. W. D., Gay's River.—A very characteristic and abundant shell, with the last species, and also in the
Aviculopecten limestone at Windsor. The elongated form *Ceratophaga* is also present.

Macrodon Hardingi, n. sp. (Fig. 102), coll. J. W. D. and Hartt, from Windsor, especially in bed (e), where it is very abundant. Hinge-line nearly straight, with the short cardinal teeth and long narrow posterior teeth characteristic of the genus. Length about twice the depth, but variable; beak one fourth of the length from the front, which is pointed, and descends with a regular curve to the straightish

Fig. 102.— *Macrodon Hardingi.*

(a) Cast. (b) Outer surface. (c) Sculpture magnified.

or slightly incurved ventral margin. Posterior extremity truncated, almost vertically, angular above, slightly rounded below. In old specimens very tumid at the beaks, so that the thickness sometimes exceeds the breadth. The shell, which seems to have been thick, is usually represented by casts of the interior, which are smooth, sometimes with deep marks of the muscular impressions and a trace of a rib proceeding from the front of the beak; but when the outer surface is preserved, it is seen to be covered with regular squamous concentric folds, fringed at the edges with delicate radiating lines. This beautiful shell, most characteristic of the upper stages of the Lower Carboniferous limestones, is allied to *Byssarea reticulata*, M'Coy, of the Irish Carboniferous, and to *Arca M'Coyana* and *anatina*, De Koninck, of Belgium, also to *Byssarea tumida* of the Permian,—but it is decidedly a new species. The specimens figured are of medium size. The largest are one and a quarter inch long and seven lines thick at the beaks.

Macrodon curtus, n. sp., coll. J. W. D., Windsor, etc., with the preceding.—This shell differs from the last in the following particulars:—It is much shorter, broad opposite the beaks, and narrowing posteriorly, and covered with irregular lines of growth. As I have not seen the teeth, it may belong to a different genus. On the other hand, it may be a depauperated variety of the preceding, but I have no connecting forms.

Macrodon (?) Shubenaciensis, n. sp. (Fig. 103), coll. J. W. D., Shubenacacie.—Short and ovate, hinge-line straight, umbo one-third of the distance from front. Posterior extremity broadly and regularly
Ceratopyrgus Harttii, n. sp. (Fig. 104), coll. Hartt, Windsor. - Transversely oblong, flattened, regularly rounded posteriorly; marked with very coarse concentric lines of growth. Resembles E. sulcata, Phil., of the English Carboniferous limestone, but is more elongated and rounded posteriorly. Length one inch six-tenths, breadth eight-tenths.

Edmondia Harttii, n. sp. (Fig. 105), coll. Hartt, Windsor. - Transversely elongate; anteriorly elongate and pointed; posteriorly descending abruptly from a line passing backward from the tumid beaks to the lower side of the posterior margin. Surface marked in the central part with regular concentric folds. Fulcrum plate extending more than half-way from the beak to the posterior end, widening and abruptly rounded posteriorly. Resembles a Scogwicilia in form, but differs in the hinge.

Cypricardia insculpta, n. sp. (Fig. 106), coll. Hartt, Windsor, bed (a). - Transversely oblong. Thrice as wide as long, anterior end very short, posterior somewhat keeled. Hinge-line rather more than half as long as the shell, posterior margin rounded. Surface covered with strong concentric folds. Length, one inch nine-tenths.
Pleurophorus quadricostatus n. sp. (Fig. 107), coll. Hartt, Stewiacke.
—Shell elongate, beaks near anterior end. Hinge-line nearly straight, central margin with a fold and sinus under the beak, and curving thence to the rounded posterior end; four obscure radiating ridges diverging from the beak to the posterior margin, crossed by low concentric undulations. Length, five lines. Bed (e).

Fig. 107.—Pleurophorus quadricostatus. Fig. 108.—Cardinia sub-angulata.

Isocardia.—Like I. transversa, De Koninck, but narrower. A cast from East River, Picton. Collected by Mr D. Fraser.

Cardinia nana, De Koninck, coll. J. W. D., Onslow, in an impure, black, flaggy limestone.—The specimens are larger than the Belgian, but otherwise similar.

Cardinia sub-angulata, n. sp. (Fig. 108), coll. J. W. D., Pugwash.—Form oval, with an obscure ridge from the beak to the lower part of the posterior end. Surface covered with irregular lamellar lines of growth.

Cardinia Antigonesensis, n. sp., coll. J. W. D., Antigonish.—Regularly oval, but somewhat narrower posteriorly; beak a little in front of the middle. Breadth rather less than half the length. Surface marked with delicate growth lines, but smooth.

Area punctifer, n. sp., coll. Hartt, Windsor.—Shell broad oval in form, truncate posteriorly, the tumid beaks and middle portion descending abruptly behind to the straight hinge-line. Surface with regular flattened concentric ridges, crossed, especially near the posterior margin, by oblique radiating lines, each composed of a thin ridge bearing a row of minute papillae. Bed (a). The specimen is only a fragment, but must have been nearly an inch broad and two inches long when entire.

Cardiomorpha Vindobonensis, Hartt (Fig. 109).—This species is known only by casts, one of which is faithfully represented in the figure.

Cardiomorpha Archica, De Koninck, occurs with the above in the Windsor limestones.

Conocardium Acadianum, Hartt (Fig. 110), coll. Hartt, Windsor.—Triangular, with a very prominent central ridge. Prolonged posteriorly into a very long wing or siphonal tube. Anterior slope marked
with radiating ribs, about twelve in number, and becoming wider and flatter toward the margin. Length about three lines.

Fig. 109.—Cardiomorpha Vendobonensis (cast). Fig. 110.—Conocardium Acadianum; nat. size and magnified.

Conocardium.—A fragment of a cast of a much larger species, with very distinctly marked scaly ribs, occurs in Mr. Hartt's collection from Stevianke.

Ariculopecten Lyelli, n. sp., coll. J. W. D. and C. P. Hartt (Fig. 111), Windsor, Shubenacadie, etc.—Shell orbicular, as wide as long, narrowed behind, hinge-line equal to three-fourths the longitudinal diameter. Left valve slightly convex, greatest convexity being just behind the middle, sloping thence gradually to the border, where it is almost plane; umbo well marked, and quite strongly incurved. Ears flattened, the posterior not separated from the umbo, but sloping gently therefrom. Anterior separated from the umbo by a narrow, steep, smooth slope. Anterior ear rounded, and with a wide shallow notch under it; posterior pointed, and with its lateral margin concave. Surface of valves ornamented by about sixty rounded, well marked, radiating plaits, separated by deep furrows as wide as the plaits. The plaits increase both in height and breadth in going from the umbo to the margin. They increase near the front and sides by implantation. Those on the side of the valve are slightly curved; on the umbo they can scarcely be distinguished. The plaits are ornamented by numerous sharp squamous processes, which appear to be arranged in concentric rows. These rows are separated by a space equal to that between
the plaits. The plaits in the internal cast appear nodose. The ribs are visible in the cast of the interior, but less distinctly. In some specimens which have the surface well preserved, the tubercles in the ribs become elegant scaly processes, and in others the spaces between the ribs have regular microscopic concentric lines between the ribs. In others there are occasional coarse concentric ridges. Though at first disposed to regard some of these varieties as distinct, the comparison of a great number of specimens induces me to regard them as varieties of the same species. It is allied to A. fullax, M'Coy, and A. occidentalis, humard.

Aviculopecten reticulatus, n. sp., coll. J. W. D. (Fig. 112), Gay's River.—In form and size similar to the last, but the left valve much flattened, and the surface marked with numerous sub-equal ribs, crossed by strong concentric striae, giving a reticulated appearance.

Fig. 112.—*Aviculopecten reticulatus*; sculpture magnified.

(a) Sinistral, and (b) dextral valve.

Aviculopecten simplex, n. sp. (Fig. 113), coll. J. W. D., Shubenacadie Windsor, etc.—Shell semi-orbicular, equivalve, very convex, the thickness being equal to half the transverse diameter, greatest just behind the middle, sloping thence with a gradual curve to the front, hinge-line less than longitudinal diameter. Ears well marked, anterior ones abruptly flattened, that of the right valve being flatter than the other, and separated from the umbo by an oblique groove. Anterior ear of left valve with a shallow rounded notch; that of the right valve much deeper. The groove separating the ear from the umbo is concave, narrow and shallow at first, but becomes wider and deeper until it runs into the notch. The right valve has a narrow, concave, triangular are. Umbones approximat, much inflated. That of left valve touches and passes slightly beyond the hinge-line. That of the right is elevated above the hinge-line by the hinge-area. Surface of valves generally smooth, ornamented by a few more or less prominent concentric lines of growth.

This species approaches to *A. pusillus* of the Permian, but differs in being more tumid, more nearly circular, and having longer ears. A single valve found in the Upper Coal formation limestone approaches still more nearly to *A. pusillus*. It may represent another species, or a variety of species of Europe.

Aviculopecten 5-32ds of the general appearance, seen, &c., is worthy of notice. It is separated by the right valve. In these specimens the primary rib, of which there is a series of small lines running into the fine ridges to the outer margin. A single specimen from the collection from the New and others.

Aviculopecten simplex—Similar in many respects, being longer, with more concentric striae, and with a fine radiating ridge to the hinge-line.

Fig. 114.—*Aviculopecten simplex*; sculpture magnified.

Aviculopecten pusillus, var. breton, Shubenacadie; have been observed.

Aviculopecten various—Lower Limestone, Shubenacadie. Shell long, small; broad, becoming convex, separated by a series of small ridges into small areas, giving to the external surface a more nearly in the hinge-line, and in the other ears is nearer to the anterior edge of the valve.
or a variety of the preceding. Its nearest relative in the Carboniferous of Europe is, I think, *P. gibbosus* of M'Coy.

Aviculopecten Acadicus, Hartt (Fig. 114).—Left valve minute, 5-32ds of an inch in width, circular, arched, umbones not distinctly seen; surface of valve, exclusive of the ears, which are not exposed, ornamented by ten primary, narrow, prominent, raised radiating lines, separated by a space equal to twice the width of one of the lines; there are also a series of delicate concentric lines, which gives to the surface a reticulated appearance.

A single specimen of this pretty little shell occurs in Mr Hartt's collection from bed (a) at Windsor. It seems quite distinct from the others.

Aviculopecten cora, n. sp. (Fig. 115), coll. J. W. D., Shubenacadie. —Similar in general form to *A. Lyelli*, but more regularly tumid, longer, with smaller ears, and the surface regularly marked with very fine radiating stria; resembling those of *Productus cora*.

Aviculopecten Dehertianus (Fig. 116), n. sp., collected by J. W. D., Lower Limestone, De Bert River.—Shell rather flat, broader than long, small; breadth less than half an inch. Anterior ear narrow, convex, separated by a deep notch from the margin. Posterior ear very small. Surface in perfect specimens marked with concentric furrows and obscure radiating lines. This species resembles *P. pusillus* more nearly in general form than any of the preceding, but in the ears is nearer to *P. depilis*, M'Coy.

Pteropoda.

Conularia planicostata, n. sp. (Fig. 117), coll. J. W. D., Irish Cove, Cape Breton, Windsor, and Shubenacadie.—Form very elongate, pyramidal. Cross section square, but by pressure becoming rhombic; surface marked by thin raised ribs, in perfect specimens with very
delicate oblique striae on their edges. The ribs vary much in their distance in different parts of the same specimen, and in different specimens (from five in a line to ten in a line). They form an angle of about 120° in the middle line of each face—breadth of full-grown specimens about half an inch; length, two inches or more. There is no indication whatever that this shell had any internal partitions, though it occurs both flattened, as at Big Plaister Rock, and retaining its original form, as at Irish Cove and Windsor. Mr Hartt has proposed the name "Nova Scotia" for a more elongated form, with finer and more numerous ribs; but on comparing numerous specimens, I am inclined to regard it as a variety. The shell of Conularia is usually regarded as that of a Pteropod, which seems the most probable view. If the shell of a Cephalopod, it must have been of the nature of a straight Argonauta. It is curious to observe in the flattened specimens that the shell always gives way at the edges, without breaking, as if there was a suture or weak line there. The shell was exceedingly thin, especially at the smaller extremity, where it seems to terminate in an obtuse rounded form. The aperture in the best specimens rises at the sides in angles corresponding to those of the plications.

Gasteropoda.

Euomphalus, a small species with narrow whorls, resembling E. quadratus, M'Coy, but slightly rounded above and marked with lines of growth, appears in fragments in Mr Hartt's collections from Windsor, and seems to be the same with still more imperfect specimens in my own collection from the galena-bearing limestone of Gay's River. A small species, similar to E. lavis, also occurs in Mr Poole's collections from Windsor.

Euomphalus exorticus (Fig. 118), n. sp., coll. J. W. D., East River, Pictou.—About half an inch in diameter, with about five narrow whorls coarsely marked with lines of growth, and with a strong rib along the middle of the whorls above. Collected by Mr D. Fraser.

Bellerophon.—I have a specimen collected by Professor How at
Kennefcoochee.

Turbo.—To this genus I refer, in the meantime, two pretty little species contained in my own collections from Pugwash, and those of Mr. Hartt from Windsor. One is a little shell with four whorls, and about twenty folds in the suture. It occurs at Pugwash and Windsor. The other is similar in size and form, with seven or eight revolving lines. It is found at Windsor.

Dentalium.—In my collection from Economy and Pugwash are casts which may represent two species of this genus,—one circular in outline, the other oval and slightly curved; but both are too imperfect for description.

Naticopsis Howei, Hartt (Fig. 119), coll. J. W. D. and C. F. Hartt, Windsor, Gay's River, De Bert River, etc.—Allied to N. plicatula, Phillips, but different in markings, having merely delicate growth lines on the whorls, and always of small size.

Naticopsis dissipata, n. sp. (Fig. 120), coll. J. W. D., Pugwash, Windsor.—A small species of the type of N. ampliata, Phil., and marked in the same way with delicate transverse lines of growth, but flatter in general form, and less depressed in the spine.

Platyschisma dubia, n. sp. (Fig. 121), coll. H. Poole, Windsor.—I refer to this genus with doubt the shell represented in the figure. It seems to be very rare, as I have only met with one example.

Loculina acuta, n. sp. (Fig. 122), coll. Hartt, Windsor.—An extremely slender species, scarcely two lines long, and with fifteen or more whorls, marked with traces of four or five revolving lines. It corresponds to L. polygyra, McCoy, and L. acicula, Phillips, but is more slender and delicate than either.
Murchisonia gypsea, n. sp. (Fig. 123), coll. H. Poole, Windsor.—Like *M. nana*, De Koninck, but larger, and with only two revolving ridges on the whorls.

Fig. 122.—*Loxonema acutula*, magnified.

Fig. 123—*Murchisonia gypsea* (cast)

Murchisonia tricingulata, n. sp., coll. J. W. D., Windsor, Pugwash.—Resembles *M. angulata*, Phil., but has a keel above as well as below the central band on the whorls.

Pleurotomaria dispersa, n. sp., coll. H. Poole, and Hartt, Windsor.—There are several small species of this genus. One, which is very abundant in bed *b*, Hartt, at Windsor, is that above named. It has four flat whorls, giving it an almost regular conical form, with delicate striae across the whorls.

Pleurotomaria ignobilis, n. sp., coll. Hartt, Windsor—Almost exactly of the form and markings of *P. nobilis*, De Koninck, with three revolving carinae; but without the delicate sculpture between the carinae.

Cephalopoda.

Fig. 124.—*Nautilus Avonenais*.

(a) Shell of small size. (b) Cross section.
Fossils of the Carboniferous Limestones.

Nautilus Avonensis, n. sp. (Fig. 124), coll. J. W. D., Windsor, Minnecic.—A large species, the outer chamber sometimes two inches or more in diameter. Whorls much flattened dorso-ventrally, slightly angulated at inner edge. Siphuncle dorsal, septa convex, about one-eighth of an inch apart. Belongs to genus Cryptoceras, D'Orbigny. Abundant at Windsor, and named after the Avon River, on the banks of which it occurs.

Gyroceras Harttii, n. sp. (Fig. 125). A fragment of a small angulated species, resembling N. sulcatus, Sowerby, coll. J. W. D., Windsor.—It has the whorls somewhat quadrature, with two broad flutings at the sides, and two narrower flutings at the edges of the flat dorsal surface. The inner surface is regularly rounded, and the siphuncle is dorsal.

Orthoceras laterale, Phil., collected by Professor How at Kennetcook.—Resembles this species, as figured by De Koninck, too closely to permit me to distinguish it.

Orthoceras dolatum, n. sp. (Fig. 126), coll. J. W. D., Windsor.—Like O. pygmaeum, De Koninck, in external form. Siphuncle marginal, slightly beaded; shell flattened at one side. Septa one-half the larger diameter distant from each other.

Orthoceras Vindobonense, n. sp. (Fig. 127), coll. J. W. D., Windsor.—Section nearly round. Siphuncle about one-third the diameter.
from the side. Septa distant from each other rather less than one half the diameter. Resembles _O. laterale_, but is smaller, more cylindrical, and with the septa more distant in proportion.

Orthoceras laqueatum, Hartt (Fig. 128), coll. Hartt, Windsor.—Round, with submarginal siphuncle, and about twenty-six regular smooth flutings. Resembles _A. Gesneri_, De Koninck, but differs in being round, destitute of sculpture on the flutings, and with septa more distant from each other—about one-third of the diameter of the shell.

Orthoceras perstrictum, n. sp. (Fig. 129), coll. Hartt, Windsor.—A fragment of a small species with very regular transverse microscopic striae, much finer than those of _O. conquestum_, Koninck, the siphuncle sub-marginal, and the septa deeply concave, and distant from each other nearly the diameter of the shell.

Fig. 129.—_Orthoceras perstrictum._ Fig. 130.—_Scrupulites Hortonensis._

Articulata.

Spirorbis angulus, n. sp., coll. J. W. D., Windsor, on shells of Brachiopods.—Diffs from _Spirorbis carbonarius_ in the angular form of the whorls, which rise to an edge above, and in being smooth, with fewer whorls more rapidly increasing in size. It is very like the modern _S. Nautiloides_ of our coasts.

Scrupulites Hortonensis, n. sp. (Fig. 130), coll. Professor How, Halfway River.—Smooth or obscurely annulated, half a line in diameter. Nearly straight toward the aperture, coiled in a discoid manner at the smaller end. Some specimens have a grooved appearance longitudinally, but I believe this to be due to crushing. This shell perhaps belongs rather to the Lower Coal formation shales than to the properly marine beds.

Scrupulites annulatus, n. sp. (Fig. 131), coll. II. Poole and C. F. Hartt, Windsor.—Cylindrical, about a line in diameter, coarsely marked with rings of growth and coiled in a loose irregular spiral.

Scrupulites inelegans, n. sp., coll. Hartt, Windsor, bed (b).—Cylindric, tapering, marked with faint transverse striae, slightly waving in form; greatest diameter, 1-6th inch; length, 1 1/2 inch.

Beysrichia Jonesii, n. sp. (Fig. 132), coll. Hartt, Windsor.—Length about 1-10th inch, breadth 2-3ds of length. Very tumid; surface
divided by two deep furrows, proceeding toward the ventral margin form a circular pit nearly in the centre, and diverging at an angle of about 60°. Margin very narrow; outline nearly semi-circular. It is nearly allied to B. Kloedeni of the Devonian.

Phillipsia Howi, Billings (Fig. 133), "Canadian Naturalist," vol. viii. p. 209.—This species was described by Mr Billings from specimens found by Prof. How of Windsor, at Kennetcook, Hants County. It is closely allied to *P. meramecensis*, Shumard, and *P. insignis*, Winchell, from the Lower Carboniferous of the United States, but differs in the greater number of rings in the axis of the pygidium.

Phillipsia Vindobonensis, Hartt.—Pygidium semi-elliptical, very convex; one or two segments appear to be wanting from the anterior margin; but the width of the pygidium in that part must have been greater than its length. Ten or eleven articulations are visible on the side lobes and twelve on the axis, which is very prominent and moderately tapering. The axial rings are depressed, convex, becoming smaller, more crowded, and more indistinct toward the apex. Ribs on side lobes depressed, convex, decreasing in length, breadth, and distinctness from before backward, while at the same time they become more and more inclined backward. The six anterior ribs preserved show a distinctly marked groove, originating on the posterior margin at about one-third the length of the rib from the axis, and running obliquely, increasing in depth to the end of the rib. Smooth border none, or extremely narrow at anterior angles, but becoming 3-5ths the width of the axis near the posterior part of pygidium, which is not visible in the only specimen I have examined.

Crustacea.—In Mr Hartt’s collection there is a single fragment which would seem to indicate a Crustacean different from the Trilobites, and probably of higher type. It occurred in bed (e), and must await the discovery of additional remains.
Actinoceras.—The species represented at the end of this chapter (Fig. 133 a), and which has only recently come under my notice, was collected by Mr D. Fraser on the East River of Pictou. I have named it A. inops.

Anthracosia.—The only species of this genus known to me in Nova Scotia was omitted inadvertently from its proper place in this chapter. It was found by Mr J. Barnes at Baddeck, Cape Breton, in a brownish shale of the Lower Carboniferous, and is figured at the end of the chapter under the name A. Bradorica (Fig. 133 b).

It is a curious fact that, except a few teeth of fishes, no remains of vertebrate animals have yet been found in the marine limestones which have afforded the above species of invertebrates. This is the more remarkable since remains of fishes are so abundant in the Lower Carboniferous shales, and also in the Coal formation.

Though I have noticed in the above list about 87 species of animals, I think it probable that many more remain to be discovered; indeed there are in the collections now in my hands imperfect specimens which indicate the existence of several others. These limestones must continue for some time to afford a rich field to industrious collectors; and it is much to be desired that those who may engage in this work would place their collections where they may be studied and described, as there is no doubt that many fine specimens from these beds are buried in the cabinets of amateurs, and have been practically lost to science.

Fig. 133 a.—Actinoceras inops, n. sp. Fig. 133 b.—Anthracosia Bradorica, n. sp.
CHAPTER XVII.

THE CARBONIFEROUS PERIOD—Continued.

CARBONIFEROUS Districts of Pictou, Antigonish, and Guysborough; Isolated patches at Margaret’s Bay and Chester Basin.

Carboniferous District of Pictou.

In noticing this and the following districts, I shall avail myself of the details into which we have entered, to enable me to condense my descriptions; and to dwell only on those features that may be peculiar, or very dissimilar from those already described. In entering the Pictou coal district from Colchester, we pass over disturbed and somewhat altered Lower Carboniferous sandstones and conglomerates, with intrusive and metamorphic rocks on either side, forming outlying masses of the Eastern Cobequids. The first characteristic and distinctly marked beds that we find are the limestones on the upper part of the West River. At the Salt Springs these limestones, with their accompanying sandstones, are seen in a vertical position, and with their fissures filled with micaceous iron-ore,—a very decided proof of igneous action. There appears to be in this part of the Pictou district a considerable area of altered Carboniferous rocks, showing that in this vicinity active volcanic agencies have subsisted after the deposition of the Lower Carboniferous series. A little farther down the West River, at M’Kay’s Lime Rock, we find the limestone unaltered, and containing Crinoids, Terebratulae, Fenestella, Corals, and other fossils, similar to those of the limestones of Hants and Colchester, and more especially to the lower limestones already mentioned. Having thus reached a known member of the Carboniferous series, we may take a general glance over the district, with the aid of the map, and mark the distribution of its principal rock formations.

From the West River we can trace the limestones and other members of the Lower Carboniferous series to the East River, along the valley of which they enter, in the form of a narrow bay, into the metamorphic district to the southward. Beyond the promontory of these latter rocks bounding this inlet on its eastern side, the Lower Carboniferous
rocks continue to skirt the older hills as far as the coast of the Gulf of St Lawrence at McCara's Brook, near Arisaig, where they rest unconformably on slates belonging to an older formation. The lowest Carboniferous rocks seen here are conglomerates interstratified with beds of amygdaloidal trap, which have flowed over their surfaces as lava currents, just as the trap of the Bay of Fundy has flowed over the red sandstone. Several of these ancient lava streams alternate with beds of conglomerate; and while their lower parts have by their heat slightly altered the underlying bed, their upper parts, cooled and acted on by the waves, have contributed fragments to the overlying conglomerate. Over these conglomerates is a great series of reddish and gray sandstones and shales, similar to those we have observed elsewhere. They contain no gypsum, but there is a thick limestone with a number of the fossil shells already noticed in similar beds of this age. Along the whole southern edge of the Pictou district, therefore, we observe the Lower Carboniferous series, distinguished by its characteristic fossils, and containing beds of limestone and gypsum, though the latter, as well as the associated marly beds, is less important than in Hants County. To the northward of these older members of the system, we find in some localities, and especially on the East River, a large development of the productive or Middle Coal measures; and the remaining part of the district, stretching along the coast of Northumberland Strait, and connected with the eastern part of Cumberland, presents precisely the same characters which we have observed in the last-mentioned district, of which it is strictly a continuation.

The most remarkable feature in the Pictou district is the enormous thickness of Coal measures on the East River, forming the Albion Mines Coal-field; and these deserve a detailed notice, not only from their economical importance, but their geological interest, as presenting a vastly greater development of coal seams and their accompaniments than we have observed elsewhere. I shall therefore describe the general arrangement of the rocks on the East River with the aid of the sections (Figs. 134 and 136).

The oldest Carboniferous bed that I have observed on the East River is a limestone resting directly on the edges of a hard metamorphic slate, which must have formed the sea-bottom on which the former rock was deposited. Angular fragments of the slate are included in the lower part of the limestone. This limestone, which appears at Lime Brook on the east branch of the East River, contains in its upper part fossil corals of the genus Lithostroton, already described as L. Picioense. On this limestone rest marls with gypsum veins, and at least one large bed of gypsum and anhydrite, the outcrop of which
CARBONIFEROUS DISTRICT OF PICTOU.

appears distinctly at Forbes Lake and Creelman’s Farm on the East Branch, and less conspicuously at Springville. Above these gypseous rocks, which, being soft, have been eroded into a valley, is another limestone rich in fossil shells, including many of those already noticed and some others. Succeeding this in ascending order is a great series of hard brownish sandstones and shales, like those of Eagle’s Nest on the Shubenacadie, and probably corresponding to the lower members
of Sir W. Logan's Joggins section. These occupy the East Branch and Main River for some distance. They contain a few fossil plants, in one instance impregnated with carbonate and sulphur of copper; and at least two beds of limestone, not rich in fossils, but affording the characteristic species Terebratula sacculus, Streptorhynchus crenistr'ia, and Productus semireticulatus. One of these limestones, seen near the forks of the river, is remarkable for showing, when slices are examined under the microscope, that it is made up of small fragments of shells with entire specimens of very minute species.* The rocks in this part of the section are much fractured; but a comparison with the continuation of the same beds in M'Lellan's Brook, shows that the order is ascending, and that the Coal measures rest on the rocks last described.

The Coal measures of the Albion Mines consist of the same materials, and contain many of the same fossil remains with those of the Joggins; but they differ in the arrangement of these materials and fossils. Instead of a great number of thin beds of coal and bituminous shale, we have here a few beds of enormous thickness, as if the coal-forming processes, so often interrupted at the Joggins, had here been allowed to go on for very long periods without interference. It is almost a necessary consequence of this that erect plants are not found in the Albion measures, and that well-preserved vegetable fossils are comparatively rare, while vast quantities of vegetable matter have been accumulated in the state of coal. The sections at the Albion Mines are not perfect. They show, however, five or six seams of coal, and an immense thickness, perhaps 800 feet, of black shales with Cypris and remains of ferns and other leaves. There are also underclays and ironstones abounding in Stigmaria.

In attempting to give a general idea of the structure of this coalfield, I shall first notice the order and succession of the beds, then their distribution, and next some remarkable and exceptional features which they present, as compared with the districts previously noticed.

The section of the beds, in descending order, as made up from a comparison of the results of borings and excavations by the different coal companies, is as follows:

<table>
<thead>
<tr>
<th>Gray freestone or sandstone</th>
<th>Ft.</th>
<th>in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black shale and clay, with layers of dark argillaceous sandstone and ironstone</td>
<td>419</td>
<td>9</td>
</tr>
</tbody>
</table>

Ft. in. 435 0

* See Table in last chapter.
† These beds are given from the observations of Mr Hudson in the Forster Pit, Albion Mines.
<table>
<thead>
<tr>
<th>Description</th>
<th>Ft</th>
<th>in</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Coal seam (greatest thickness)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sandstone, shale, and ironstone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deep Coal seam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shales, sandstone, and ironstone, with several thin coals, viz. Third seam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purves seam, and Fleming seam</td>
<td>280</td>
<td>0</td>
</tr>
<tr>
<td>Mc Gregor Coal seam</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Shale, with many beds of sandstone and layers of ironstone and underclays</td>
<td>240</td>
<td>0</td>
</tr>
<tr>
<td>Coal and earthy bitumen, "Frazer coal and Stellar coal"</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1192</td>
<td>3</td>
</tr>
</tbody>
</table>

The above is to be regarded as a mere approximation, and the measurements are taken in a line perpendicular to the surface, the beds being inclined at an angle of about 20°. In this section it will be observed that the total thickness of beds is less than in the Middle Coal measures of the Joggins section, but that the quantity of coal is vastly greater. In other words, the deposit of vegetable matter has been greater and more continuous, and that of earthy matter less.

When the first edition of this work was published, the extension of the Picton Coal seams was known only in the Albion mining area near the East River, where the dip is to the north-east and the strike north-west. Subsequent explorations by Mr. Poole, recorded in a paper published in the "Canadian Naturalist," showed that about a mile and a half westward of the river the beds are bent and faulted, and turn suddenly to the southward. It was afterwards ascertained by Mr J. Campbell, and by the agents of the "Acadia" and "Nova Scotia" Companies, that the line of outcrop takes an extensive curve of more than a mile to the southward, forming the area of the "Intercolonial" Company, and then, sweeping again to the northward, resumes a north-westerly course, passing toward the Middle River. Here it would seem to turn round the end of a synclinal, or to be cut off by a fault in its extension with northerly dip, and it is next seen to return on a curved line, skirting a ridge of older rock, probably of Devonian age, and a conglomerate connected with this, toward New Glasgow; near which, on the Haliburton or "Montreal and Picton" area, the beds appear with high dips to the southward. The East River Coal area between that river and the Middle River would thus appear to constitute an irregular trough with a deep bay to the southward, and
possibly a gap on the north, as represented on the sketch-map (Fig. 135), which I must, however, remark is merely an attempt to reduce to order complexities not as yet fully intelligible. The relations of this trough to the rocks to the northward we shall leave until we have attempted to trace the synclinal in its extension to the East.

Fig. 135.—Sketch-map of Pictou Coal District.

At the date of the publication of the first edition of "Acadian Geology," little was known of the extension of the Albion Coal measures to the eastward of the East River. I could at that time only indicate the occurrence of Coal measures with a dip showing a considerable fold or bend of the measures in M'Cullan's Brook, and the probable extension of the productive Coal measures in the direction of Merigomish. Subsequent observations by Mr Poole threw additional light on the bend of the measures, and more recently several discoveries of coal have been made, and I have seen, through the kindness of Mr Moore of Montreal, plans prepared by Mr Barnes of Halifax which appear to me approximately to establish the true distribution of the beds.
It would appear that immediately to the east of the East River, a synclinal fold, apparently with some disturbance in its axis, occurs. This throws the beds round into the north-westerly dips seen in M'Lellan's Brook. Beyond this there is an anticlinal, succeeded by a second synclinal, on the east side of which, in the vicinity of Sutherland's River, the coal beds reappear with north-westerly and northerly dips.

The most eastern exposure on this tortuous line of outcrop is a bed stated to be ten feet in thickness, seen near Sutherland's River, about two miles from its mouth.

No doubt the coal beds extend still farther to the eastward, along or under Merigomish Harbour, and they will also be found in all the belt of country between Sutherland's River and the East River.

The line above indicated refers to the northerly dipping outcrop continuous with that of the Albion Mines; but fronting this there is, on the east side of the East River, as indicated in the general section in the first edition of this work, and reproduced without alteration in Fig. 134, a narrow line of outcrop, in which some at least of the beds reappear with southerly dips along the line of the fracture which skirts the outcrop of the great New Glasgow conglomerate. This exposure is continuous with that already noticed immediately opposite New Glasgow, and includes the beds long known in the vicinity of that place on the east side of the river, with others recently traced farther to the south and east.

Eastward of New Glasgow, according to observations made by Mr Kirby on his coal areas, the line of strike curves somewhat to the northward, forming a broad indentation parallel to the projection on the opposite side of the trough, and then, returning toward the south, passes toward the shores of Merigomish Harbour, where its extension has not yet been observed. The beds of the Upper Coal formation which are seen at Little Harbour, appear in Merigomish Island apparently without any synclinal arrangement between them and the Lower Carboniferous rocks of the adjacent mainland. There is, however, a considerable space concealed by Merigomish Harbour, and by the beach between Merigomish Island and the mainland, and it is to be observed that the Upper Coal formation beds on the island dip to the north, while those on the nearest part of the mainland dip to the N. W., and seem to belong to the lower part of the Coal formation. This indicates either intervening curves or dislocations, or that the upper series is unconformable to the lower.

In the above general notice mention has been made of a great bed of conglomerate occurring immediately to the northward of the East River Coal trough, and which, as it appears very conspicuously at
New Glasgow Bridge, we may designate as the "New Glasgow Conglomerate." At New Glasgow this conglomerate dips at a high angle to the north, but at the Middle River and several other places it is found dipping to the south, and the relations of the Coal measures to it on the northern side of the Albion Mines trough, in the vicinity of New Glasgow, would seem to render it certain that the conglomerate underlies the productive Coal measures, and crops out from beneath them on an anticlinal line. This would give it the geological position of the Millstone- grit series, but no such massive conglomerate is known in that series elsewhere, though there are conglomerate beds of minor dimensions. Again, the beds on the north side of the conglomerate, and evidently overlying it, are not those of the productive Coal measures as developed at the Albion Mines, but Coal measures of minor importance, believed to represent the Upper Coal formation; and these supposed Upper Coal formation beds exhibit very regular northerly dips, as if they had not participated in the foldings and fractures of the beds of the Middle Coal formation. Lastly, toward the Middle River there appears, rising from beneath the conglomerate, a series of hard and altered grits and coarse shales, with obscure remains of fossil plants, which were pointed out to me in the summer of 1866 by Mr John Campbell, and which I believe to be an island of older rock which must have penetrated the Carboniferous beds, and protruded above them at the time of their deposition, representing on a very small scale the attitude of the Cobequid Hills with reference to the Coal formation of Colchester and Cumberland.

These statements being premised, as well as the further fact that the opinions of geologists in regard to this conglomerate have oscillated between the extreme views that it is a bed overlying the Middle Coal measures, and forming the base of the Newer Coal formation, and, on the other hand, that it is the Lower Carboniferous conglomerate thrown up along the line of an anticlinal,—I proceed to quote from the first edition of this work and the supplement thereto, published in 1860, the reasons which I then assigned for believing that it is a contemporary beach of shingle, limiting the area of deposition of the thick coal seams of the Albion Mines area, and giving rise to their exceptional character. This view was first advocated in my paper on the structure of the Albion Coal Measures in the Journal of the London Geological Society, 1853; and the reasons for it are thus given in the first edition of this work:

"1. The outcrop of the conglomerate extends from a point opposite the promontory of metamorphic rock east of the East River to the high lands of Mount Dalhousie, in the eastern extremity of the Cobe-
quid range of hills, crossing the mouth of an indentation in the metamorphic district, which in the older part of the Carboniferous period must have been a bay or arm of the sea, exposed to an open expanse of water lying to the northward. 2. The conglomerate cannot be traced to the margin of the metamorphic country, except at its extremities; so that in all probability it never extended over the low Carboniferous district included within its line of outcrop. This is the more remarkable, inasmuch as the conglomerate has evidently resisted denudation better than any of the associated beds. 3. The conglomerate is full of false stratification and wedge-shaped beds of reddish sandstone in the manner of ordinary gravel-ridges, and it even presents the appearance of passing into sandstone toward the dip, as if the coarse conglomerate were limited to the vicinity of the outcrop. 4. In the sandstone overlying the Albion measures, as well as in portions of the Coal formation manifestly overlying the great conglomerate, there are small seams of coal corresponding in their characters with those of the Joggins and Sydney, where no similar conglomerate occurs. 5. The supposition that the Albion coal was formed in a depressed space, separated by a shingle-bar from the more exposed flats without, accounts for the great thickness of the deposits of coal and carbonaceous shale, the comparative absence of sandstones, and the peculiar texture and qualities of the coal, as well as the association with it of remains of fish and Cypris; since modern analogies show that such an enclosed space might be alternately a swamp and lagoon without any marked change in the nature of the mechanical deposits. 6. Movements of depression causing the rupture of the barrier, or enabling the sea to overflow it, and perhaps also admitting currents of oceanic water through the valleys of the metamorphic district to the southward, would sufficiently account for the overlying sandstones, as well as for the denudation of the Coal measures supposed to have preceded the accumulation of these sandstones.* 7. The dislocation extending along the outcrop of the conglomerate is easily explained by the supposition that, in later elevatory movements, this hard and strong bed determined the direction of fracture of the deposits.

"To these reasons I may add, that if in the Carboniferous as in the modern period, westerly winds prevailed in this latitude, it would be very natural that a beach should be thrown out from the eastern end of the Cobequid range across the bay to the eastward, in which the Albion Coal measures are situated."

In the supplementary chapter (1860), after referring to some

* These sandstones overlie the Coal measures near the Albion Mines, but with dip to the N.
additional observations made by Henry Poole, Esq., I concluded as
follows:—

"The facts above stated in no respect shake the conclusion that
the New Glasgow conglomerate is contemporary with the Albion Coal
measures, and the remains of a great accumulation of shingle separ-
ating these from the more open space without. On the contrary,
they tend to confirm it; and none of the fossils obtained by Mr Poole
indicate any recurrence of Lower Carboniferous rocks in the antclinal
which throws up the conglomerate in association with beds of the
Middle Coal measures. A very remarkable fact stated by Mr Poole
is perhaps a proof of the contemporaneous disturbances and changes
of level connected with the original formation of this conglomerate.
He says,—"There are numerous small faults running across the mea-
sures in the Fraser Mine, which are uniformly downthrows to the
west; and I may here mention that I observed, some years ago, in
the Deep seam, several faults from four to ten feet each, which could
not be found in the main coal workings above (the distance between
the two seams is 157½ feet), which shows that the disturbances must
have taken place previous to the formation of the Main Coal Seam."

I now hold that the additional fact above stated, of the occurrence
of a ridge of older rock penetrating the conglomerate between the
East and Middle Rivers, gives further confirmation of this theory
of the relation of the conglomerate. This ridge of older rocks must
have been surrounded with a deposit of gravel in the Millstone-grit
period, and so often thereafter as the area was submerged, either on
one side or the other; and with its associated gravel-ridge must have
formed just such a dam or barrier as is required to account for the
very exceptional character of the enormous coal beds of the area
included within it. It results that the New Glasgow conglomerate is
not that of the Lower Carboniferous, which underlies the marine lime-
stones, but is to be regarded as an anomalous and peculiar modifi-
cation of the Millstone-grit, succeeded in ascending order on the south side
by the great Coal measures of the Albion Mines, and on the north by a
depauperated representative of these beds, graduating upward into
the Upper or Newer Coal measures.

I may further remark that the relation of these latter beds to the
conglomerate and the hard rocks below it, is similar to that which I
believe obtains on a larger scale along some parts of the northern and
eastern slope of the Cobequids. If the view above given is correct,
it would follow that the Coal measures on their return dip to the south
near New Glasgow should present some marked points of difference,
as compared with those of the Albion Mines, and that there may be
places where their outcrop has been so far spared by denudation as to
approximate to the original margin of the thick beds in this direction. Such a place I should expect to find in the bend of the outcrop to the westward of Mr Haliburton's mine opposite New Glasgow.

I have endeavoured to represent to the eye the above theoretical views in the following ideal sections:

If these views are correct, we have a right to expect that the tract of Coal formation country to the northward of the great conglomerate, and extending from it to the eastern extremity of the Cumberland district, should present characters similar to those of that district. Accordingly the section on the tideway of the East River, and the corresponding sections on the Middle River, and on the coast toward
Merigomish, show a series of Coal formation rocks not very dissimilar from some parts of the Joggins section. Their dips are to the northward, and in their lower part there is a bed of concretionary and laminated limestone, the only fossil in which appears to be the little *Spirorbus* already so frequently mentioned. Almost immediately above this limestone is a small bed of impure coal, probably two feet thick. These beds are accompanied by some black shales, and succeeding them, in ascending order, is a series of sandstones and shales abounding in leaves of ferns, calamites, etc. The highest beds seen on the south side of Pictou Harbour and at Merigomish are thick bedded gray sandstones, which afford grindstone and building stone, and abound in petrified coniferous wood; and with these are associated some shales and underlay, with thin seams of coal, one of which in Merigomish Island is eleven inches thick. In the continuation of the same series, coal has been found at the loading ground at South Pictou, and near the mouth of the Middle River.

Northward and westward of Pictou Harbour, which occupies a synclinal depression, is a series of rocks, nearly resembling those just described, and generally dipping to the south-east at angles of 15° to 25°. In Roger’s Hill, six miles westward of Pictou, are thick beds of coarse conglomerate, considerably disturbed, associated with greenstone and hard claystone, and showing in one part a vein of crystalline sulphate of barytes. This conglomerate I believe to be geologically identical with that of New Glasgow. It is succeeded by a great series of deposits, chiefly consisting of reddish sandstones and shales; but including several thick beds of gray sandstone, affording quarries of valuable grindstone and freestone, and accompanied by gray shales, conglomerates, thin beds of coarse limestone, and thin beds of coal. As there are no very good natural sections in this part of the country, it would be difficult to ascertain the aggregate thickness of these deposits; but it must, however, be great, since they occupy, with general south-east dips, the whole country from the hills last named to the entrance of Pictou Harbour. The principal fossils found near Pictou are *Calamites*, *Lepidodendron*, *Endogenites*, coniferous wood, ferns, *Sternbergia*,* and carbonized fragments of wood impregnated with iron pyrites and with sulphur and carbonate of copper. In this series also, and near the town of Pictou, is a bed of sandstone containing erect calamites, evidently rooted in situ, and described in a paper by the writer in the Proceedings of the Geological Society for 1849. The appearances at this place are so similar to those observed at the Joggins, and they need not be noticed here; but these and the occurrence of *Stigmaria* in situ in some of the shales and sandstones

* Transversely wrinkled stems, believed to be casts of the pith of plants.
of the same neighbourhood, serve to indicate the analogy that obtains between the coal-rocks of Cumberland and this part of Pictou. Some of the shales near the town of Pictou are loaded with ferns and Cordaites; and shells of a Naiaudites (N. arenacea) also occur, though rarely. Small seams of coal are believed to occur in this neighbourhood, but their outcrops cannot at present be seen.

The coast section, westward of the entrance of Pictou Harbour, is for some distance very imperfect. Much red sandstone, however, appears; and a bed of limestone from two to three feet thick, and a small bed of coal, have been discovered. Some gray sandstones also appear; in one of which there are numerous fragments of carbonized wood, containing sulphuret and carbonate of copper. This deposit, and others of a similar nature found in this series at various places, have given rise to hopes that valuable deposits of copper may be found in this part of the Coal formation. These ores of copper are always associated with remains of fossil plants, and they have no doubt been produced by the deoxidizing effects of this vegetable matter on water impregnated with sulphate of copper, and probably rising in the form of springs from some of the older subjacent rocks.

The rocks in the coast section west of Pictou Harbour dip to the south-eastward as far as the mouth of Carrilon River, beyond which the same beds are repeated, but better exposed, and dipping to the north. One of the cupriferous beds above referred to, a coarse gray sandstone, appears in Carrilon River, and was at one time worked for the copper it contains, but is now abandoned. At the mouth of the river are gray sandstones, red sandstones, and red and gray shales, and associated with these is a bed of coal five inches in thickness, with the usual underlay with Stigmaria rootlets. Beyond this place, as far as the second brook beyond Toney River, there is a great series of beds having precisely the aspect of the Upper Coal formation of Cumberland, and containing one thin bed of non-fossiliferous limestone, and a great thickness of reddish shales, some of them finely ripple-marked and worm-tracked, and with leaves of ferns. The beds then become horizontal, and are repeated with southerly dips (S.S.E.), at first at a small angle, but toward the extremity of Cape John the dip increases, and the rocks at length become vertical. The lowest beds seen at the extremity of the cape are gray coarse sandstones, with Calamites and carbonized trunks of trees. Associated with these are reddish sandstones and shales, and in front of the cape, but under water, is the outcrop of a small bed of gypsum. The northerly dipping beds in the above section extend to the westward across River John, and are continuous with those described (vide Cumberland District) as occurring on the French river of Tatamagouche. The
southerly dipping beds towards Cape John probably extend under Tatamagoucho Bay; and are continuous with the rocks on the south side of Cape Malagash.

A coal district so singular in its structure, and probably also in the mode of formation of its beds, as that of the Albion Mines, might be anticipated to afford interesting and peculiar fossils. Unfortunately, however, these beds are not exposed in good natural sections, and the operations of the miner are a very imperfect substitute for these. One bed, however, included in the Albion main coal has afforded some interesting facts. It is a seam of coaly ironstone varying in thickness from four inches to a foot, and in some portions of the mine is extracted with the coal and thrown aside as rubbish, so that large quantities of it can be examined at the surface. It contains abundance of Spiro7'bis, attached to much-decayed plants. Scales and teeth of large fishes are also found in it, as well as fragments of the bony spines with which they were armed. Some of the latter are half an inch in diameter. A still more interesting fossil was found by the writer in this bed in 1850. It is the upper part of a skull, seven inches in breadth and five inches in length, and armed with strong conical teeth, somewhat curved, and finely striated longitudinally (Fig. 137). This fossil was sent to London, and examined by Professor Owen, by whom it was described and figured in the Proceedings of the Geological Society (1853) under the name of Baphetes Planiceps, alluding to its supposed amphibious habits, and the flatness of its skull. This creature was probably a large frog-like reptile, which preyed on the fishes whose remains are found with it in the "holing stone," as the bed is called by the miners. It will be more fully described in the next chapter. This Land, with its peculiar fossils, shows that, at Pictou as at the Joggins, the coal-forming area was

* See page 210 ante.
occasionally submerged under brackish water, perhaps by the partial rupture of the great conglomerate bank to which we have already referred.

Useful Minerals of the Pictou District.

Coal is the most important of these; and Pictou was long the principal producer of this valuable mineral in British America, having only recently been outstripped by the Coal-field of Cape Breton. Upwards of 237,000 tons were raised in 1866. The greater part of the Pictou coal is shipped to the United States, and is used in iron-foundries and gas-works, and for the production of steam. The principal mines are those worked by the General Mining Association and the Acadia Company, though several other collieries are being put into working condition. I may shortly notice the principal coal areas in succession.

(1.) General Mining Association (Fig. 135—1).

The coal hitherto exported by this Company has been obtained principally from the "main seam" (see p. 319), and chiefly from its upper twelve feet, though in recent years the lower part of this seam, and also the "deep seam," have been worked. The pits originally worked were on the low ground immediately west of the East River, where an engine-pit was sunk to the depth of about 400 feet. In the progress of these works, however, it was found that the coal deteriorated very much in quality in its extension to the eastward; and this circumstance, in connexion with a serious "crush" in the mine, determined the proprietors to make new openings to the westward, named the Dalhousie pits, as well as others toward the dip. These are the present working pits. In the Dalhousie pits the whole thickness of the main seam and also the deep seam are worked. In 1866, the Foster pit, 450 feet deep, was sunk near the Dalhousie pits, and a new shaft is being made in advance of the old eastern workings, and will be of considerably greater depth. An interesting historical sketch of these mines, with a notice of their present state, is given by Mr. Rutherford, Inspector of Mines, in his Report for 1866, from which I quote the following:

"The extraordinary thickness of the beds of coal in these collieries has given them a well-deserved celebrity; the number as well as the size of the seams in this coal-field being perhaps unparalleled. Having been in operation many years, a large extent of coal has been mined. Only two seams have, however, been sunk to and worked, viz., the main seam and the deep seam,—the latter lying 25 fathoms below the
former, and being the next in the series in descending order. They dip to the north-east at an angle of 20°, or about 1 in 2½. The thickness of the main seam is so well known that it is unnecessary to give a section of it. Its average thickness may be stated to be 38 feet. Several shafts have been sunk to the seam, the workings in connexion with which have received a peculiar classification, which had its origin in the following circumstances:—A large tract of workings to the rise of the shafts, which are distant from the crop 250 yards, extending 800 yards to the west and 200 yards to the east of them, and covering an area of about 40 acres, forms the earliest worked portion of the seam. In nearly the whole of this district about 12 feet only of the upper part of the seam has been worked, the lower portion being considered inferior in quality. These workings are locally known as the "burnt mines," and are so designated in consequence of a fire that occurred some years ago in the stables, and was only extinguished by closing the shafts to prevent the admission of the air into the mines. Further to the dip other shafts have been sunk, and they, with some situated near 960 yards to the west, and known as the Dalhousie pits, are the present working shafts. From the former of these workings were considerably extended both east and west; they are in the upper part of the seam only, and their extent is about 90 acres. In some workings to the dip of these an accident occurred in May 1861, which was attended with still more disastrous results than the preceding one, it being found necessary to fill the mine with water in order to extinguish the fire. An attempt was made to get into those workings in 1862, but their condition was such that they were abandoned, and this district, from this circumstance, has received the name of "Crushed Mines,"—a designation sufficiently indicative of the state of the workings on re-opening the mine.

"The main seam is at present worked on the east side of the 'Crushed Mines,' and in the Dalhousie pits on the west side. In the latter, the seam has been worked the entire thickness, the lower portion being much improved in quality. The extent of workings in this district is now upwards of 100 acres.

"The difficulty of working a seam of such a thickness and with such a declination has unfortunately been exemplified during the last two years in this district of the mine. Whilst the modus operandi remained the same, a change appears to have been made in the scale of pillarage to meet the requirements of so largely an increased height of seam, which, however, proved inadequate, and a large extent of workings has been and still is under the effect of a crush in consequence.

"The system of working pursued from the commencement of the
The 'deep seam' is worked at the Dalhousie pits only. Its average thickness is 15' 6". It is worked the entire height of the seam, and on the same principle as the main seam; the bords and pillars being of a similar size. The workings are altogether on the west side of the pits; and the main level in that direction has been driven 1600 yards. It is about 250 yards from the crop. The workings extend over an area of 60 acres, the whole of which is standing in pillars, with the exception of a few near the face, a partial working of which has recently begun.

"An extension of the works at these mines is in progress. During the year a new shaft has been sunk to the main seam near the face of the west workings. This shaft is 450 feet deep to the top of the seam, and is intended to be used for drawing coal. A steam-engine for hoisting has been erected, and a railway between the pit and the main line in part constructed. Another shaft has also been begun to the dip of the 'Crushed Mines' pits, and is now upwards of 300 feet deep. An additional shaft for ventilation has been put down near the crop of the deep seam, and a slope is being driven in the main seam, to be connected with the pit above referred to. The working powers of this already extensive colliery will, on the completion of these works, be much increased."

The following detailed section, taken from a continuous specimen of the main seam, extracted for the New York Industrial Exhibition by Mr Poole, late manager of the mine, will enable the reader to understand the available amount of good coal which the main seam contains, as well as the structure of the bed. As this section has, since the publication of my first edition, been copied without acknowledgment, and in terms leading to the inference that it was drawn up in New York, I may state that it was prepared by myself from a careful inspection of the specimen, to which I was kindly invited by Mr Poole, while it lay on the ground after having been extracted from the mine.

Table of Section

<table>
<thead>
<tr>
<th>Description</th>
<th>Pl. in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Roof shale</td>
<td>0 3</td>
</tr>
<tr>
<td>vegetable fragments and attached Spirorbis</td>
<td></td>
</tr>
<tr>
<td>(in specimen)</td>
<td></td>
</tr>
<tr>
<td>2. Coal, with shaly bands</td>
<td>0 6 1/2</td>
</tr>
<tr>
<td>3. Coal, laminated; layers of mineral charcoal and bright coal; band of ironstone balls in bottom</td>
<td>2 0</td>
</tr>
</tbody>
</table>

Carry forward, 2 9 1/2
IMAGE EVALUATION
TEST TARGET (MT-3)
THE CARBONIFEROUS SYSTEM.

<table>
<thead>
<tr>
<th>Fl.</th>
<th>In.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>9 1/2</td>
</tr>
</tbody>
</table>

4. Coal, fine, cubical, and laminated; much mineral charcoal

5. Carbonaceous shale and ironstone, with layer of coarse coal ("holing stone"); remains of large fishes and coprolites. This bed varies much in thickness

6. Coal, laminated and cubical, coarser towards bottom

7. Ironstone and carbonaceous shale, with coaly layers and trunks of Lepidodendron, Ulodendron, Sigillaria, Stigmaria, etc., all prostrate

8. Coal, laminated as in No. 6, a line of ironstone balls in bottom

9. Coal, laminated and cubical, a few small ironstone balls; many vascular bundles of ferns in this and underlying coal

10. Ironstone and pyrites

11. Coal, laminated and cubical, as above

12. Coal, coarse, layers of bituminous shale and pyrites

13. Coal, laminated, with a fossil trunk in pyrites

14. Coal, laminated and cubical, with layers of shale, passing downward into black slicken-sided underclay with coaly bands

15. Underclay (to bottom of specimen)

Thickness perpendicular to horizon

Vertical thickness

From this seam at least 24 feet in vertical thickness of good coal can be extracted. A cubic foot of Picton coal weighs about 82 lbs., rather less than 28 feet being equal to a ton of coal; hence a square mile of this seam would yield in round numbers 23,000,000 tons of coal—an enormous quantity as compared with the present annual produce, but less than two-thirds of the annual consumption of Great Britain. The other seams in the Albion measures may be safely estimated at half the value of the main seam.

The Albion coal has a laminated texture, and much mineral charcoal on its surfaces, and is a highly bituminous caking coal. Its specific gravity, according to the trials of Professor W. R. Johnston, is 1.318 to 1.325. The result of twelve trials made by the writer of samples from different parts of the mine was, that the specific gravity varies

* Report to the United States Government on American Coals.
CARBONIFEROUS DISTRICT OF PICTOU.

from 1·288, which is that of the best coal extracted, to 1·447, which is that of the coarsest coal that has been worked. The mean specific gravity of six samples, taken from the top, middle, and bottom of the seam, in the central part of the mine, was 1·325, or exactly the same with one of Professor Johnston's results. According to Professor Johnston's trials, 1 pound of this coal is capable of converting 7·45 to 7·48 pounds of water into steam, or from the temperature of 212°, 8·41 to 8·48 pounds. This gives it a high place among bituminous coals as a steam-producer. The worst defect of Pictou coal is, that it contains a considerable quantity of light bulky ashes; and this causes it to be much less esteemed for domestic use than on other grounds it deserves. It is very free from sulphur, burns long, with a great production of heat, and remains alight when the fire becomes low much longer than most other coals.

The following assays show the composition of the coal from the upper floor in different parts of the mine, and illustrate its gradual deterioration at either extremity of the workings.

<table>
<thead>
<tr>
<th></th>
<th>S.E. side: Old workings (about 1 mile E. of Dalhousie Pits)</th>
<th>N.W. side: Old workings</th>
<th>W. side: Dalhousie Pits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture</td>
<td>Volatile combustible</td>
<td>Fixed carbon</td>
<td>Ashes</td>
</tr>
<tr>
<td>Fall Coal</td>
<td>1·750</td>
<td>25·875</td>
<td>61·950</td>
</tr>
<tr>
<td></td>
<td>1·550</td>
<td>27·988</td>
<td>60·837</td>
</tr>
<tr>
<td>Top Bench</td>
<td>1·500</td>
<td>24·800</td>
<td>51·428</td>
</tr>
<tr>
<td></td>
<td>1·500</td>
<td>28·613</td>
<td>61·087</td>
</tr>
<tr>
<td></td>
<td>100·000</td>
<td>100·000</td>
<td>2·2</td>
</tr>
<tr>
<td>Bottom Bench</td>
<td>2·250</td>
<td>22·375</td>
<td>52·475</td>
</tr>
<tr>
<td></td>
<td>1·800</td>
<td>27·075</td>
<td>59·950</td>
</tr>
<tr>
<td></td>
<td>100·000</td>
<td>100·000</td>
<td>2·5</td>
</tr>
<tr>
<td></td>
<td>100·000</td>
<td>16·0</td>
<td>22·7</td>
</tr>
<tr>
<td></td>
<td>2·2</td>
<td>58·8</td>
<td></td>
</tr>
</tbody>
</table>

It will be observed that in all parts of the mine the lower coal is inferior to that of the middle of the seam, and still more so to that of the upper part above the "holing stone," or the "fall coal," as it is termed by the miners. It will also be observed that all the coals in the first column are inferior to those in the second, and that those in
the third are also inferior, while in this part of the mine the upper three feet of fall coal have disappeared, or been reduced to an insignificant thickness, by thinning out or being replaced by shaly matter.

The following table gives the composition of all the varieties of coal in the whole thickness of the seam, as ascertained by an elaborate series of assays made by the writer in 1854:

Assays of Samples of Albion Coal, taken at distances of one foot in thickness, in the main seam.

<table>
<thead>
<tr>
<th>No.</th>
<th>Coal</th>
<th>Volatile matter by rapid coking</th>
<th>Volatile matter by slow coking</th>
<th>Carbon fixed</th>
<th>Ashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Coal</td>
<td>26·9</td>
<td>19·9</td>
<td>63·8</td>
<td>16·3</td>
</tr>
<tr>
<td>2.</td>
<td>Do.</td>
<td>27·8</td>
<td>24·1</td>
<td>63·8</td>
<td>12·1</td>
</tr>
<tr>
<td>3.</td>
<td>Do.</td>
<td>27·4</td>
<td>25·7</td>
<td>60·0</td>
<td>14·3</td>
</tr>
<tr>
<td>4.</td>
<td>Do.</td>
<td>27·2</td>
<td>25·0</td>
<td>65·5</td>
<td>9·5</td>
</tr>
<tr>
<td>5.</td>
<td>Do.</td>
<td>25·8</td>
<td>25·1</td>
<td>64·8</td>
<td>10·1</td>
</tr>
<tr>
<td>6.</td>
<td>Do.</td>
<td>25·2</td>
<td>24·9</td>
<td>62·5</td>
<td>12·6</td>
</tr>
<tr>
<td>7.</td>
<td>Do.</td>
<td>27·4</td>
<td>22·0</td>
<td>68·5</td>
<td>9·5</td>
</tr>
<tr>
<td>8.</td>
<td>Do.</td>
<td>26·8</td>
<td>22·9</td>
<td>66·7</td>
<td>10·4</td>
</tr>
<tr>
<td>9.</td>
<td>Do.</td>
<td>27·0</td>
<td>23·9</td>
<td>61·3</td>
<td>14·8</td>
</tr>
<tr>
<td>10.</td>
<td>Carbonaceous shale</td>
<td>16·4</td>
<td>15·9</td>
<td>26·3</td>
<td>58·8</td>
</tr>
<tr>
<td>11.</td>
<td>Coal</td>
<td>28·8</td>
<td>25·8</td>
<td>59·7</td>
<td>14·5</td>
</tr>
<tr>
<td>12.</td>
<td>Do.</td>
<td>27·2</td>
<td>25·4</td>
<td>62·5</td>
<td>12·1</td>
</tr>
<tr>
<td>13.</td>
<td>Do.</td>
<td>27·6</td>
<td>24·7</td>
<td>65·5</td>
<td>9·8</td>
</tr>
<tr>
<td>14.</td>
<td>Do.</td>
<td>26·6</td>
<td>23·9</td>
<td>61·0</td>
<td>15·1</td>
</tr>
<tr>
<td>15.</td>
<td>Do.</td>
<td>26·8</td>
<td>23·1</td>
<td>65·1</td>
<td>11·8</td>
</tr>
<tr>
<td>16.</td>
<td>Do.</td>
<td>28·8</td>
<td>24·9</td>
<td>62·3</td>
<td>12·8</td>
</tr>
<tr>
<td>17.</td>
<td>Do.</td>
<td>30·4</td>
<td>26·0</td>
<td>65·0</td>
<td>9·0</td>
</tr>
<tr>
<td>18.</td>
<td>Do.</td>
<td>26·0</td>
<td>26·1</td>
<td>63·0</td>
<td>16·9</td>
</tr>
<tr>
<td>19.</td>
<td>Do.</td>
<td>26·0</td>
<td>25·0</td>
<td>66·3</td>
<td>8·7</td>
</tr>
<tr>
<td>20.</td>
<td>Do.</td>
<td>26·8</td>
<td>22·7</td>
<td>63·6</td>
<td>13·7</td>
</tr>
<tr>
<td>21.</td>
<td>Coarse coal</td>
<td>25·8</td>
<td>23·3</td>
<td>58·3</td>
<td>18·4</td>
</tr>
<tr>
<td>22.</td>
<td>Do.</td>
<td>27·2</td>
<td>22·5</td>
<td>60·3</td>
<td>17·2</td>
</tr>
<tr>
<td>23.</td>
<td>Coal</td>
<td>29·4</td>
<td>23·6</td>
<td>64·3</td>
<td>12·1</td>
</tr>
<tr>
<td>24.</td>
<td>Coarse coal</td>
<td>25·8</td>
<td>22·4</td>
<td>57·6</td>
<td>20·0</td>
</tr>
<tr>
<td>25.</td>
<td>Do.</td>
<td>25·8</td>
<td>23·1</td>
<td>60·2</td>
<td>16·7</td>
</tr>
<tr>
<td>26.</td>
<td>Do.</td>
<td>27·8</td>
<td>21·9</td>
<td>54·8</td>
<td>23·3</td>
</tr>
<tr>
<td>27.</td>
<td>Coal</td>
<td>27·0</td>
<td>24·3</td>
<td>65·5</td>
<td>10·2</td>
</tr>
<tr>
<td>28.</td>
<td>Do.</td>
<td>25·6</td>
<td>22·4</td>
<td>65·0</td>
<td>12·6</td>
</tr>
<tr>
<td>29.</td>
<td>Do.</td>
<td>25·8</td>
<td>22·7</td>
<td>62·7</td>
<td>14·6</td>
</tr>
<tr>
<td>30.</td>
<td>Do.</td>
<td>27·2</td>
<td>23·1</td>
<td>67·4</td>
<td>9·5</td>
</tr>
<tr>
<td>31.</td>
<td>Do.</td>
<td>32·6</td>
<td>22·4</td>
<td>66·5</td>
<td>11·1</td>
</tr>
<tr>
<td>32.</td>
<td>Coarse coal</td>
<td>22·2</td>
<td>21·5</td>
<td>50·4</td>
<td>28·1</td>
</tr>
</tbody>
</table>
These coals being taken from the western part of the workings, do not show the fall coal of the old pits, this part of the seam having there, as already explained, thinned out. All these coals afford a fine vesicular coke, and their ashes are light gray and powdery, with the exception of those of the coals marked "coarse," which are heavy and shaly.

The Deep Seam, situated at the vertical depth of 150 feet below the main seam, and consequently cropping out to the surface about 150 yards to the south-west of the outcrop of the latter, contains about twelve feet of good coal, divided by intervening layers of shaly and impure coal into three bands. The best coal of this seam is superior to that of the main seam, but owing to the division above mentioned, it cannot be worked so economically as the main seam, and is therefore likely to be left until the latter is exhausted, at least in its more accessible portions. The comparative purity of some portions of this seam, however, would entitle them to demand a higher price in the market than the ordinary produce of the Pictou mines. Its best portions contain only from 5·3 to 11 per cent. of ashes, and afford much illuminating gas, and a fine vesicular coke, similar to that of the main seam coal. The ashes of some of the deep seam layers are of a reddish colour, whereas those of the coal from the main seam are invariably white or light-gray. There can be no doubt that nothing but its association with a bed of so much greater magnitude prevents this seam from being more extensively worked.

The following sectional view of the Deep Seam as it occurs at the Dalhousie pits, is taken from a series of samples furnished to me by Mr Poole in 1854:

2. Tender laminated coal, much mineral charcoal.
3. Laminated compact coal, less mineral charcoal.
4. "
5. Carbonaceous ironstone, crusts of Cyprids.
7. Laminated coarse coal.
8. Laminated compact coal.
9. Laminated coarse coal.
10. Laminated compact tender coal.
11. Laminated compact coal.
12. Laminated compact coarse coal.
13. Laminated compact hard coal.
15. Laminated compact coal.
16. " " much mineral charcoal.
17. " "

The results of assays of these several samples are given in the following table:—

Assays of Samples of Coal taken at distances of one foot in the Deep Seam.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td>23-8</td>
<td>23-9</td>
<td>70-8</td>
</tr>
<tr>
<td>5.</td>
<td>Ironstone and coal</td>
<td>26-8</td>
<td>27-5</td>
<td>18-5</td>
</tr>
<tr>
<td>6.</td>
<td>Coarse coal</td>
<td>23-2</td>
<td>20-5</td>
<td>59-1</td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td>23-6</td>
<td>20-4</td>
<td>48-0</td>
</tr>
<tr>
<td>8.</td>
<td>Good coal</td>
<td>26-2</td>
<td>22-4</td>
<td>70-3</td>
</tr>
<tr>
<td>9.</td>
<td>Coarse coal</td>
<td>25-2</td>
<td>22-1</td>
<td>49-3</td>
</tr>
<tr>
<td>10.</td>
<td></td>
<td>24-8</td>
<td>20-4</td>
<td>68-9</td>
</tr>
<tr>
<td>11.</td>
<td>Good coal</td>
<td>24-8</td>
<td>22-3</td>
<td>64-3</td>
</tr>
<tr>
<td>13.</td>
<td></td>
<td>23-0</td>
<td>20-1</td>
<td>55-3</td>
</tr>
<tr>
<td>14.</td>
<td></td>
<td>27-4</td>
<td>23-9</td>
<td>68-1</td>
</tr>
<tr>
<td>15.</td>
<td></td>
<td>29-0</td>
<td>22-9</td>
<td>71-5</td>
</tr>
<tr>
<td>17.</td>
<td>Coarse coal</td>
<td>24-6</td>
<td>19-9</td>
<td>63-8</td>
</tr>
<tr>
<td>18.</td>
<td>Shale and coal</td>
<td>17-6</td>
<td>21-1</td>
<td>23-0</td>
</tr>
</tbody>
</table>

The following summary of these two beds and the intervening measures, from the observations of Mr Poole in sinking the first engine pit at the Dalhousie Mine, gives at the same time an idea of the gigantic development of workable coal at this place.

<table>
<thead>
<tr>
<th></th>
<th>Ft.</th>
<th>in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface clay</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Shale and bands of ironstone alternate</td>
<td>64</td>
<td>10</td>
</tr>
</tbody>
</table>

Main Seam—

<table>
<thead>
<tr>
<th></th>
<th>Ft.</th>
<th>in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse coal</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Good coal</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Ironstone</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Good coal</td>
<td>14</td>
<td>4</td>
</tr>
<tr>
<td>Ironstone</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Coarse coal</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Ironstone</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

Carry forward, 28 3 73 0
CARBONIFEROUS DISTRICT OF PICTOU.

<table>
<thead>
<tr>
<th></th>
<th>Ft.</th>
<th>in.</th>
<th>Ft.</th>
<th>in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brought forward,</td>
<td>28</td>
<td>3</td>
<td>73</td>
<td>0</td>
</tr>
<tr>
<td>Coarse coal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ironstone</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coarse coal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ironstone</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coarse coal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>39</td>
<td>11</td>
<td>39</td>
<td>11</td>
</tr>
</tbody>
</table>

Shale and bands of ironstone alternate . 157 7

Deep Seam—

Bad coal				
Good coal				
Ironstone				
Coal				
Slaty coal				
Good coal				
Coarse coal				
Good coal, "worked by Carr"	3	8		
Inferior coal				
			24	9

Total 295 3

As Pictou coal is now largely used in the manufacture of illuminating gas, the following comparative trials of the volume of gas which it affords, made by the writer in the spring of 1854, may be interesting. They were made on a small scale, by means of an iron retort and graduated glass vessels; but their accuracy was afterwards confirmed by trials of some of the coals on the large scale in the Pictou Gas-work.

Coal from upper nine feet of the main seam, from the Dalhousie pits,	.3902
Coal from middle of main seam, the portion now mined in the lower floor	.5080
Coal from upper three feet of best coal of deep seam,	.6668
Coal from lower three feet of best coal of deep seam,	.8504

The average yield of the first of these samples in the Pictou Gas-work is about 4000 cubic feet. As some of the other coals now worked are even more productive of gas, it may be anticipated that
the reputation of Pictou coal in the gas-works will increase. I may mention here that the value of Pictou coal for this purpose, as well as for family and steam uses, depends in part on the good quality of its coke, and in part on its comparative freedom from sulphur. These excellent qualities, in connexion with its great heating power, more than compensate for its large percentage of ash as compared with some other coals.

(2.) Acadia Coal Company (Fig. 135—2, 4).

The principal area worked by this Company lies immediately to the north of that of the General Mining Association, or toward the rise of the beds. Its chief value therefore depends on the lower seams of coal, and more especially those known as the M'Gregor and oil coals.* The M'Gregor seam is that from which the greater part of the coal of this Company is extracted. It is worked by "slopes" or galleries extending downward from the outcrop, and up which the coal is drawn on rails.

The M'Gregor seam is stated by Mr Hoyt,† the general agent of the Company, to be 12 feet in thickness, as follows:

<table>
<thead>
<tr>
<th>Coal (first bench)</th>
<th>Ft.</th>
<th>in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shaly band</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Coal (second bench)</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Coal (coarse)</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Shale</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Coal (good)</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0</td>
</tr>
</tbody>
</table>

At present only the two upper benches, or six feet in all, are worked, and the coal obtained from these is of very good quality, containing on the average, according to an analysis obtained from Mr J. D. B. Fraser of Pictou, the former proprietor of the mine, only about 8 per cent. of ashes. The thickness of the coal is stated to increase in working to the westward, and to diminish to the eastward; and it is somewhat remarkable that its quality improves with its thickness. According to the report above cited, the quality and reputation of this coal will depend much on the care taken to separate the material of the "shaly band" from the good coal, as the presence of this material greatly increases the amount of ash, and deteriorates the coke, though it does not seem materially to affect the yield of gas, which amounts to the large return of 9500 feet from a ton of 2240 lbs.

* For position of these coals, see section ante. † Report, 1866.
About five feet above the McGregor Seam there is a smaller seam, three feet three inches thick, and of good quality, which may perhaps in future be worked in connexion with the other. The other seams between the McGregor and Deep Seams, known as the "Purves Seam" and "Third Seam," are said to be each four feet in thickness, but are not worked.

Under the McGregor bed, as shown on the general section above, lies a very curious bed, known as the "stellar" or "oil" coal. It is five feet in thickness, having, according to Mr Hoyt, the following section:

<table>
<thead>
<tr>
<th>Material</th>
<th>Ft</th>
<th>in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bituminous coal</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Stellar oil coal</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>Bituminous shale</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>

The material known as stellar coal is, as I have maintained in previous publications, of the nature of an earthy bitumen; and geologically is to be regarded as an underlay or fossil soil, extremely rich in bituminous matter, derived from decayed and comminuted vegetable substances. It is, in short, a fossil swamp-muck or mud, which, as I have elsewhere pointed out,* is the character of the earthy bitumens and highly bituminous shales of the Coal formation generally. Its value depends on the high percentage of illuminating gas and of mineral oil which it yields on distillation; and it is likely, on this account, to form an important portion of the produce of this coal area. According to the results of different trials, it is stated to yield from 50 to 126 gallons of oil per ton, the larger amount being apparently the yield of the pure "stellar coal," so named from its scintillatory appearance in burning. According to an analysis by Professor How of Windsor, this gives:

<table>
<thead>
<tr>
<th>Component</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volatile matter</td>
<td>66.33</td>
</tr>
<tr>
<td>Fixed carbon</td>
<td>25.23</td>
</tr>
<tr>
<td>Ash</td>
<td>8.21</td>
</tr>
<tr>
<td>Moisture</td>
<td>-23</td>
</tr>
<tr>
<td>Total</td>
<td>100.00</td>
</tr>
</tbody>
</table>

The sample to which the above analysis refers gave of crude oil 120 gallons per ton.

The immense amount of petroleum obtained from wells in Canada

* Paper on Conditions of Accumulation of Coal, "Journ. of Geol. Soc."
and the United States has for the present diminished the demand for the earthy bitumens; but it is certain that they must again come largely into use, as the wells diminish in their yield and additional uses are found for the mineral oils.

In addition to the area south of that of the General Mining Association, the Acadia Company possess a property to the westward, in which the continuation of the main and other seams occurs in magnificent proportions, and with the same characters as in the Campbell or Bear Creek area of the Intercolonial Company, next to be noticed.

(3.) Intercolonial and Nova Scotia Companies (Fig. 135—5, 4).

In addition to the collieries above described, there are others organized, and which have made more or less progress toward extensive mining operations. The Bear Creek area, the property of the Intercolonial Company, and first developed by Mr John Campbell, is probably the most important, and has recently been examined and reported on very favourably by Mr Charles Robb and Mr Barnes. It includes the continuation of the main and other seams beyond the great flexure or downthrow at the western extremity of the area of the General Mining Association, already referred to. In a pit sunk on the main seam by Mr Campbell, I found the section of that bed to be as follows:

<table>
<thead>
<tr>
<th>Roof, black shale.</th>
<th>Ft. in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tender good coal.</td>
<td>0 11</td>
</tr>
<tr>
<td>Shaly coal</td>
<td>0 1</td>
</tr>
<tr>
<td>Good coal</td>
<td>5 3</td>
</tr>
<tr>
<td>Shaly parting</td>
<td>0 4</td>
</tr>
<tr>
<td>Good coal</td>
<td>4 0</td>
</tr>
<tr>
<td>Pyritous coal</td>
<td>0 2</td>
</tr>
<tr>
<td>Good coal</td>
<td>7 0</td>
</tr>
<tr>
<td>Coarse coal</td>
<td>2 0</td>
</tr>
</tbody>
</table>

Total thickness 19 9

The dip is N. 75° E. at an angle of 20°, and the actual thickness eighteen feet of coal, of which sixteen feet are of excellent quality. It appears from this section, and from trials which I have made of the coal, that the main seam in its extension to the westward, while it diminishes in thickness, improves in quality. Still farther west, on the property of the "Acadia" and "Nova Scotia" Companies, where slopes have been opened in this seam, the section is substantially the same, except that in the latter the shale or clay-parting thickens to eleven inches.
On the Bear Creek area the deep seam also has been recognised in its proper place, and has a thickness at right angles to the measures of eleven feet.* Other beds, supposed to be the equivalents of the Purves and McGregor Seams, the latter six feet in thickness, have also been found. These discoveries enormously increase the ascertained extent and value of the Pictou Coal-field, as compared with that at the time of the publication of my first edition; and when taken in connexion with the previous observations made by Mr Poole, leave no room whatever for the doubts which I find expressed by some practical men as to the precise equivalency of the beds last mentioned with those so long known at the Albion Mines.

(4.) Montreal and Pictou Company (Fig. 135—6).

The only colliery as yet opened on the northern side of the Coal trough, on this side of the East River, is that of the Montreal and Pictou Company, immediately opposite to New Glasgow. Here the Coal measures dip, according to Dr Honeyman,† S. 20° E. at an angle of 65°. A shaft has been sunk to a depth of 180 feet; and, according to a Report by Mr Rutherford, published by the Company, has exposed the following section of Coal measures. The measurements are at right angles to the horizon, so that the thickness given does not represent the actual vertical thickness:

<table>
<thead>
<tr>
<th>Layer</th>
<th>Ft.</th>
<th>in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drift clay</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>Shale</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>Freestone</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>Shale</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Coal</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>Fire-clay</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>Hard sandstone</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Fire-clay and Ironstone</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Dark shale</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Coal</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Shale and coal</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Fire-clay</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>Ironstone band</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Coal</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Fire-clay</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Coal</td>
<td>15</td>
<td>6</td>
</tr>
<tr>
<td>Fire-clay</td>
<td>16</td>
<td>0</td>
</tr>
</tbody>
</table>

* Robb's Report. † Letter to the Author.
If, as is probable, these beds represent the Albion Mines Coal measures, or a part of them, it is evident that in crossing the trough they have materially changed in the character and thickness of the beds of coal. This was to have been anticipated from the views previously stated, as the shaft which afforded the above section is only about 600 yards from the conglomerate, and consequently the locality cannot be very far from the original margin of the trough in this direction. In the circumstances, the discovery that the coal preserves its value thus near to the conglomerate, and is so accessible, is very gratifying, and greatly enhances our estimation of the value of this coal-field as a whole. I must add, however, that it is scarcely fair to say, in the words of a recently published public Report, that this discovery has given to the coal-field "a conformation which appears to have been entirely unsuspected." The synclinal form of the measures was indicated in the former edition of this work, and is a necessary consequence of the view as to the character of the great conglomerate advocated therein. It was more fully stated in the paper by Mr Poole and myself in the "Canadian Naturalist" for 1860, and in my supplementary chapter in "Acadian Geology"; and the outcrops of coal near New Glasgow, on this side of the trough, had long been known. This conformation or structure of the area had thus been established by geological investigation before the coal was discovered opposite New Glasgow; but this in no respect detracts from the credit due to the gentlemen whose energy and enterprise have developed the coal-beds in that locality. It is all the more creditable to them that their operations were not undertaken on chance, but on a consideration of probabilities established by facts previously ascertained. The facilities for shipping the coal in the area above referred to are very great, and there can be little doubt that the outcrops discovered will be traced farther to the westward, and perhaps afford scope for additional collieries in this direction. The high angle at which the beds lie will require different management in the details of mining from that which has been usual in the Pictou Coal-field, and it is not improbable that this high angle will be connected with numerous fractures and abrupt flexures of the strata.

(5.) Coal Areas on the East Side of the East River (Fig. 135—7, 8, 9).

Openings have been made by the "German" Company on the continuation of the main seam eastward of the East River. The result is stated to have been, that the quality of the coal was found to be unsatisfactory,* and operations were consequently abandoned. This would appear to show that the inferiority of the main seam coal

* Rutherford's Report, 1860.
observed in the eastern working of the General Mining Association extends beyond their property on the east side of the river. I have attributed this to the effects on the process of coal formation produced by the spur of older metamorphic rock which extends forward into this part of the coal area from the southward, and in this case the deterioration may apply to a considerable area near the southern edge of the trough, but the coal may be expected to improve in following it toward the dip. I regret that I have not any details as to the precise aspect and character of the coal as exposed by the German Company, as this might have enabled more precise conclusions as to its cause and extent to be arrived at.* The appearance of workable coal farther eastward toward Sutherland's River has been already referred to, and on the opposite side of the trough, eastward of New Glasgow, two beds of coal, stated at four feet each in thickness, have been found. Much additional exploration is required in this part of the area, to ascertain the arrangement of the strata, and also the peculiar character and distribution of the beds of coal, which may be expected to differ materially from those on the west side of the river.

(6.) Other Parts of the Pictou Coal-field.

The small seams of coal seen at Merigomish Island, Little Harbour, Fraser's Mountain, South Pictou, and Carribou, appear to belong to a second and upper series of coal seams, as compared with those of the Albion Mines, or more properly, perhaps, two distinct groups of coals.† They have not been ascertained to be of workable value, and, as already stated, may be considered as the representatives of the Upper Coal formation or the upper part of the Middle Coal formation, as developed at the South Joggins. The facts already stated show that the productive Coal measures on the East River belong to a special and limited coal area, while the beds northward of the New Glasgow conglomerate belong to a larger area, continuous to the north with that of Cumberland. For this reason, we should not be disposed to expect in this wider area, surrounding Pictou Harbour, a repetition of the great beds of the Albion Mines, but there is no reason to suppose that the coal actually present is limited to the thin beds just mentioned. On the contrary, the analogy of the Cumberland Coal-field would lead us to expect that under these beds, and cropping out northward and

* A hand specimen from this mine, for which I am indebted to Mr. Barnes, in its highly laminated and shaly character, corresponds with what might be expected on the views above stated.

† The coal-beds of Fraser's Mountain, Little Harbour, and Merigomish Island, are very probably members of one group of coal-seams, and those of the loading ground and other places near Pictou Harbour of a second and higher group.
westward of Pictou Harbour, there should be other and perhaps more valuable beds. At present, however, little is known of the detailed structure of this part of the Pictou Coal-field, and the distance from navigable water of those portions of it in which coal is likely to be found, prevents any expensive explorations from being made. I anticipate that the careful tracing, for practical purposes, of the northern edge of the East River Coal-beds, along and around the New Glasgow conglomerate, will, in a few years, give data which may be employed to work out the true relations and practical value of such beds as may occur in the area now under consideration.

Minerals other than Coal.

Clay Ironstone occurs in the Pictou Coal measures, apparently of good quality, and in sufficient abundance to be extracted profitably, if in a country in which smelting-furnaces are in operation. At present, however, no attention is paid to it. From the abundance of boulders of Brown Hematite scattered over the surface of the Lower Carboniferous rocks on the East River, I have inferred that veins of that rich ore of iron exist in these rocks, in the same manner as at the Shubenacadie. The outcrop of these veins had not been observed at the time of the publication of my first edition, but I am informed by Dr Honeyman that veins of this mineral have recently been discovered in situ, and that there is reason to believe that they penetrate the Silurian rocks. The presence of these ores, in connexion with a large bed of peroxide of iron in the older slates to be hereafter described, leaves little doubt that were other circumstances favourable, iron-works might be established on the East River without any deficiency in the raw material. The following analysis of the ore is by Professor How of Windsor:

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peroxide of iron, with traces of phosphoric acid</td>
<td>84.54</td>
</tr>
<tr>
<td>Alumina and phosphoric acid</td>
<td>0.19</td>
</tr>
<tr>
<td>Sesquioxide of manganese</td>
<td>0.76</td>
</tr>
<tr>
<td>Magnesia</td>
<td>0.43</td>
</tr>
<tr>
<td>Water</td>
<td>11.41</td>
</tr>
<tr>
<td>Siliceous gangue</td>
<td>2.22</td>
</tr>
<tr>
<td>Carbonic acid and loss</td>
<td>0.45</td>
</tr>
<tr>
<td>Total</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Gray Freestone, for architectural purposes, is found in a great number of places in the Pictou Coal formation, and is quarried both for domestic use and for exportation to the United States and neigh-
bouring colonies. Many buildings have been constructed of Pictou freestone in the large cities of the American Union; and its cheapness, durability, and fine colour, are likely to secure an extended demand. The principal quarries are on Saw Mill Brook, at the head of Pictou Harbour, where stone of excellent quality and colour, and both in blocks and flags, is found in great abundance. These quarries have been very extensively opened, and a railway and loading pier, three-fourths of a mile in length, have been constructed. The greatest quantity shipped in any year has been 3000 tons; but with the present facilities from 10,000 to 12,000 tons can be annually shipped from the “Acadia Quarry,” which is the principal opening.

Gypsum, in workable quantity, occurs only on the East River, and is at too great a distance from a port of shipment to be quarried at present, except for domestic use.

Limestone is quarried for use in the country, at the East and West Rivers, and small quantities are occasionally taken from the beds at Merigomish and Cape John. A curious concretionary limestone, belonging apparently to the Upper Coal formation, and occurring at Fraser’s Mountain and at Little Harbour, near New Glasgow, has attracted some attention as a marble for decorative purposes.

Manganese Ore, Sulphate of Barytes, Umber and Ochres, are found in small quantities. Brick and Pottery clays also occur.

The Copper Ores found in the Coal formation have been already mentioned. The principal localities are Caribou River, the West River, a little below Durham, and the East River, a few miles above the Albion Mines. Similar appearances also occur on French and Waugh’s Rivers, in the band of Coal formation rocks connecting the Cumberland and Pictou districts. In all these places the principal ore is the gray sulphuret of the metal, with films and coatings of the green carbonate. These ores are associated with fossil plants, to which, as already explained, their accumulation is to be attributed. The ores are rich and valuable, and the only reason which prevents them from being worked, is the belief that the deposits are too limited to be of economical importance. This has been found to be the case in two instances in which trials have been made by the agents of the Mining Association. The following is the composition of a sample from Caribou, analyzed by the writer:

<table>
<thead>
<tr>
<th>Substance</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper</td>
<td>40.00</td>
</tr>
<tr>
<td>Iron</td>
<td>11.06</td>
</tr>
<tr>
<td>Cobalt</td>
<td>2.10</td>
</tr>
</tbody>
</table>

Carry forward 53.16
THE CARBONIFEROUS SYSTEM.

Brought forward 53.16
Manganese 50
Sulphur 25.42
Carbonate of lime 92

80.00

Carboniferous District of Antigonish County.

The Pictou district is bounded on the south by an irregular tract of slaty and syenitic rocks, forming the hills of Merigomish and those extending toward Cape St George. In the coast section, the last and lowest rocks of the Pictou Carboniferous district are seen near M'Cara's Brook to rest unconformably on slates to be subsequently described, and which are of Silurian age. Passing these, towards Malignant Cove, the lower Carboniferous conglomerates and sandstones are again seen, but very much disturbed and altered by heat. It is a very instructive study to compare the soft conglomerates and their inter-stratified trap at M'Cara's Brook, with the continuation of the same beds eastward of Arisaig Pier, where they appear fused into hard quartzose rocks, in some of which the original texture is entirely obliterated.

The conglomerate and sandstone seen at Malignant Cove conduct us through a gap in the metamorphic hills, or round by Cape St George, to the gypsiferous rocks of the neighbourhood of Antigonish. These run along the south side of the metamorphic hills with general southerly dips, from Cape St George to the western extremity of this district, and exhibit a very large development of the gypsums and limestones, the latter containing some of the fossils already noticed in other localities.

At Cape St George, the Lower Carboniferous conglomerates appear to be largely developed, and associated with these there are sandstones and shales containing fossil plants, and also a bed of gypsum.

I am indebted to Dr Honeyman for specimens of these shales, showing *Lepidodendron corrugatum*, the most characteristic plant of the Lower Carboniferous Coal measures, and a stipe of *Cyclopteris Acadica*. They also hold scales of *Acrolepis* and *Palaeoniscus*. The shale and the fossils are precisely similar to those of Horton Bluff. Similar shales occur farther to the westward, holding the same fossils, and are stated to be so rich in bituminous matters that hopes are entertained of utilizing them as a source of coal oil. The beds noticed below as occurring in Right's River, are probably of the same age. In the vicinity of Morristown there are red sandstones, conglomerate,
and gray sandstone, the latter containing *Calamites*, *Sternbergia*, and other Coal formation fossils, and no doubt higher in the series than the beds last mentioned. Near Morristown these beds dip to the N.E., and have been disturbed by a spur of trappean or altered rock, containing kernels of epidote, and associated with contorted dark shales, probably Lower Carboniferous. Beyond this interruption, the coast shows soft reddish sandstones and shales, with some beds of gray sandstone and conglomerate, dipping to the S.S.E. at an angle of 50°, and on these rests a bed of limestone nearly 100 feet thick; in its lower portion laminated, the laminae being occasionally broken up so as to give it a fragmentary or brecciated appearance; in its upper part compact, and penetrated by small gypsum veins. On this limestone rests a rock consisting of alternate layers of limestone and gypsum, above which is a great thickness of pure flesh-coloured crystalline gypsum, and on this again, white laminated fine-grained gypsum, with minute grains of carbonate of lime. The whole thickness of the gypsum is about 200 feet, and it forms a beautiful cliff fronting the sea (Fig. 138).

Fig. 138.—Cliff of Crystalline Gypsum near Ogden’s Lake, Sydney County.

This gypsum and limestone can be traced with scarcely any interruption to the village of Antigonish, about five miles distant, where the same beds are seen in the banks of Right’s River. Near the mouth of this river, at the head of Antigonish Harbour, is a thick bed of white gypsum, dipping to the south-west. Succeeding this, in descending order, after a small interval (which appears to have been occupied by sandstones, now nearly removed by denudation), is a bed of dark-coloured limestone, in which, at different points where it
appears, I found *Productus semireticulatus*, with other shells, also occurring in the East River; and *Productus cora*, a shell not yet met with in the East River limestones, but very characteristic of the gypsiferous formation in other parts of the province. Below this limestone there is another break, also showing traces of sandstones and a bed of gypsum, and then a thick bed of dark limestone, partly laminated and partly brecciated, without fossils, and containing in its fissures thin plates of copper-ore. Beneath this limestone is a great thickness of reddish conglomerate, composed of pebbles of igneous and metamorphic rocks, and varying in texture from a very coarse conglomerate to a coarse-grained sandstone. In one place it contains a few beds of dark sandstones and shales. These are succeeded by red, gray, and dark sandstone and dark shales, in a disturbed condition, but probably underlying the conglomerate. They contain a few fossil plants, especially a *Lepidodendron* which appears to be identical with the species already mentioned as found in a similar geological position at Horton and Noel. The limestones, with their characteristic fossils, may be seen still farther west on the West River of Antigonish.

Dr Honeyman has recently discovered the pygidium of a *Phillipsia* in these limestones, being the second instance of the occurrence of Trilobites in the Lower Carboniferous of Nova Scotia. He has also, in the Transactions of the Nova Scotia Institute, published an interesting paper on the Geology of Antigonish County, in which he more accurately than heretofore defines the limits of the formation. I have availed myself of this paper in correcting the geological map in this edition.

On the west side of the Ohio River, about fifteen miles from Antigonish, this Carboniferous district terminates against the metamorphic hills, which here occupy a wide surface, and send off a long branch to Cape Porcupine in the Strait of Canscau. This branch consists in great part of slates older than the Carboniferous system, but it also appears to contain altered Carboniferous rocks. It bounds this district on the south. Along its northern side, the Lower Carboniferous limestones and gypsum appear at the north end of Lochaber Lake, at the South River, and at the northern end of the Strait of Canscau. They are probably continuous, or nearly so, between these points. In the coast between the place last mentioned and Antigonish, Carboniferous rocks, principally sandstones, appear in several places; and towards Pomket and Tracadie, in the central part of the district, the Coal formation, probably its lower portion, is seen; and small seams of coal have been found in it. I have had no opportunity of examining them, but have no doubt that they form the southern edge of the coal-field.
underlying St George's Bay, and the eastern side of which appears at Port Hood in Cape Breton.

The Antigonish area thus appears to be of triangular form, with the Lower Carboniferous beds extending along its western and south-eastern sides, and the Coal formation occupying a limited space on the northern side. It is rich in limestone and gypsum, and has that fertile calcareous soil which so generally prevails over the rocks of the gypsiferous series.

Coal and Salt of Antigonish County.

Until recently it was supposed that all the Carboniferous rocks in the vicinity of Antigonish Harbour were referable to the Lower Carboniferous; but I learn from a manuscript report of Mr J. Campbell, kindly communicated to me by Mr Chisholm of Antigonish, that a limited, though productive, coal-field has been discovered in the vicinity of South Lake Brook, extending north-easterly from the road to Malignant Cove. On the south side of the area the beds dip to the northward at angles of 30° to 40°, and are underlaid on the south by Lower Carboniferous bituminous limestones and shales. The northern side of the area has not been explored, but the Coal measures must be limited in this direction by the Lower Carboniferous and igneous rocks occupying the coast from Malignant Cove to Cape St George. It would appear from Mr Campbell's report that five beds of coal have been discovered as follows, in ascending order:

\[
\begin{align*}
1. & \quad \text{Coal} & \quad & 2 \text{ ft.} \\
2. & \quad \text{Shale} & \quad & 3\text{ in.} \\
3. & \quad \text{Coal} & \quad & 6\text{ in.} \\
4. & \quad \text{Beds, unknown} & \quad & 150\text{ ft.} \\
5. & \quad \text{Coal} & \quad & 9\text{ in., 5 in.} \\
6. & \quad \text{Beds, unknown} & \quad & 280\text{ ft.} \\
7. & \quad \text{Coal} & \quad & 3\text{ in., 6 in.} \\
8. & \quad \text{Beds—thickness not ascertained.} & \quad & \\
9. & \quad \text{Coal} & \quad & 4\text{ ft. to 6 ft.} \\
10. & \quad \text{Beds, thickness not ascertained.} & \quad & \\
11. & \quad \text{Coal} & \quad & 4\text{ ft. or more.} \\
\end{align*}
\]

The precise quality of the coal has not been ascertained, but specimens shown to me much resembled that of the Richmond Mine, or of the Lower beds at Pictou.

Brine Springs.—Salt springs arise from some parts of the Lower Carboniferous rocks, which have caused boring operations to be undertaken for brine, with good prospects of success. In a boring
made, under the superintendence of Mr. J. Deacon of Halifax, near the harbour landing-place, to the depth of 164 feet, the rock penetrated was gypsumous marl with thin bands of limestone. After passing through about 122 feet of this material, and a bed of limestone 1 foot 2 inches thick, a bed of gypsum was reached from which a flow of strong brine entered the bore hole. The gypsum has been penetrated to the depth of eighteen feet, and is probably one of the thick beds above referred to. The brine is said to be copious and rich in salt.

Carboniferous District of Guysborough.

This district is separated from that last described by a narrow belt of metamorphic country forming a range of low elevations. Part of these altered rocks may belong to the Lower Carboniferous series itself, but the greater part of them are of higher antiquity. On the south side of this ridge, we find a belt of Carboniferous rocks, extending from the Strait of Canscau along the north side of Chedabucto Bay. Westward of the head of this bay, the Carboniferous rocks extend in a narrow band, separating the inland metamorphic hills from those of the Atlantic coast, almost as far as the sources of the west branch of the St Mary's River, fifty miles west of Chedabucto Bay.

North of the town of Guysborough, and not very far from the metamorphic rocks, is a bed of blackish laminated limestone. I could find no fossils in it, but it has the character of the lowest Carboniferous limestones as seen elsewhere. It has some of its fissures filled with micaceous specular iron, and is associated with conglomerate and sandstone somewhat altered. This limestone dips N. 60° W. at a high angle. Limestone re-appears with a high easterly dip on the opposite side of the harbour, and near it are altered shales nearly in a vertical position. Southward of the town of Guysborough, limestone again appears in thick beds, and between it and the town are reddish sandstones and conglomerates dipping S. 60° E. Some of these beds are evidently made up of the debris of the granite-hills to the southward, proving that these older hills were land undergoing waste in the Carboniferous period.

The whole of the beds near Guysborough Harbour are much disturbed and in part altered; and, immediately to the westward of the town, a spur of porphyritic and trappean rock extends from the hills to the northward, nearly across the Carboniferous valley: the eruption of these igneous rocks has probably occurred in the Carboniferous period, and effected much of the baking and other alteration which the rocks of that period have experienced.

Beyond this ridge of igneous rock, the long valley extending to
the westward is occupied by gray and reddish sandstones and conglomerate, with gray shales in a few places, the whole forming a narrow trough. On the southern margin of this trough, the conglomerate contains pebbles of gray quartzite, micaceous flag, and blue slate, precisely similar to the metamorphic rocks immediately to the southward, and in these conglomirates and the sandstones resting on them, I found a few fragments of Calamites and Lepidodendron. Fossils appear, however, to be rare in this district, and I have not observed in it any coal; nor do the limestones appear, so far as I am aware, west of Guysborough.

With the exception of limestone and freestone for building, I am not aware that this district affords any useful minerals. Galena, or sulphuret of lead, is said to have been found in small quantities near Guysborough, and small veins of Specular Iron traverse many of the altered rocks in that vicinity. The soils of this valley, however, especially on the St Mary's River, are causing it to rise rapidly in importance as an agricultural district, and its scenery is in many places varied and beautiful.

Before passing to the coal-fields of Cape Breton, I may shortly notice two limited patches of Carboniferous rocks occurring on the margin of the metamorphic rocks on the south coast of Nova Scotia, at Margaret's Bay and Chester Basin.

At Margaret's Bay, red and gray sandstones and a bed of limestone appear, though much buried under masses of granitic drift. In limestone from this place, I have found the Terebratula sacculus, a characteristic Lower Carboniferous shell. At Chester Basin, the Lower Carboniferous rocks appear still more distinctly, and contain thick beds of limestone of various qualities. One of the beds is said to be a good hydraulic cement, and another, in weathering, leaves an umber of a rich brown colour, which is manufactured and sold under the name of Chester mineral paint. The limestone at this place contains several of the shells already mentioned as characteristic of the Carboniferous system. A small seam of coal is also stated to occur near Chester; but I have not seen it.

These isolated patches are interesting, as they are evidently portions of the margin of a Carboniferous district either sunk beneath the Atlantic or removed by the action of its waves.
REPTILES OF THE COAL PERIOD.

RESTORATIONS OF BAPHETES, DENDRIPETON, HILYOMUS, AND HYLERPETON.
CHAPTER XVIII.

THE CARBONIFEROUS SYSTEM—Continued.

LAND ANIMALS OF THE COAL PERIOD.

In the Carboniferous period, though land plants abound, air-breathing animals are few, and most of them have only been recently recognised. We know, however, with certainty that the dark and luxuriant forests of the coal period were not destitute of animal life. Reptiles crept under their shade, land snails and millipedes fed on the rank leaves and decaying vegetable matter, and insects flitted through the air of the sunnier spots. Great interest attaches to these creatures; perhaps the first-born species in some of their respective types, and certainly belonging to one of the oldest land faunas, and presenting prototypes of future forms equally interesting to the geologist and the zoologist.

It has happened to the writer of these pages to have had some share in the discovery of several of these ancient animals. The Coal formation of Nova Scotia, so full in its development, so rich in fossil remains, and so well exposed in coast cliffs, has afforded admirable opportunities for such discoveries, which have been so far improved that at least nine out of the not very large number of known Carboniferous reptiles, have been obtained from it. I propose in this chapter to give a general account of these interesting creatures, referring the reader for more full details to my special publication on the subject, "The Air-breathers of the Coal Period."*

Footprints.

It has often happened to geologists, as to other explorers of new regions, that footprints on the sand have guided them to the inhabitants of unknown lands. The first trace ever observed of reptiles in the Carboniferous system, consisted of a series of small but well-marked footprints found by Sir W. E. Logan, in 1841, in the Lower Coal measures of Horton Bluff, in Nova Scotia; and as the authors of all our general works on geology have hitherto, in so far as I am

THE CARBONIFEROUS SYSTEM.

aware, failed to do justice to this discovery, I shall notice it here in detail. In the year above mentioned, Sir William, then Mr Logan, examined the coal-fields of Pennsylvania and Nova Scotia, with the view of studying their structure, and extending the application of the discoveries as to Stigmaria underclays which he had made in the Welsh coal-fields. On his return to England, he read a paper on these subjects before the Geological Society of London, in which he noticed the discovery of reptilian footprints at Horton Bluff. The specimen was exhibited at the meeting of the Society, and was, I believe, admitted on the high authority of Prof. Owen, to be probably reptilian. Unfortunately, Sir William's paper appeared only in abstract in the Transactions; and in this abstract, though the footprints are mentioned, no opinion is expressed as to their nature. Sir William's own opinion is thus stated in a letter to me, dated June 1843, when he was on his way to Canada, to commence the survey which has since developed so astonishing a mass of geological facts:—

"Among the specimens which I carried from Horton Bluff, one is of very high interest. It exhibits the footprints of some reptilian animal. Owen has no doubt of the marks being genuine footprints. The rocks of Horton Bluff are below the gypsum of that neighbourhood; so that the specimen in question (if Lyell's views are correct*) comes from the very bottom of the coal series, or at any rate very low down in it, and demonstrates the existence of reptiles at an earlier epoch than has hitherto been determined; none having been previously found below the magnesian limestone, or, to give it Murchison's new name, the 'Permian era.'"

This extract is of interest, not merely as an item of evidence in relation to the matter now in hand, but as a mark in the progress of geological investigation. For the reasons above stated, the important discovery thus made in 1841, and published in 1842, was overlooked; and the discovery of reptilian bones by Von Dechen, at Saarbruck, in 1844, and that of footprints by Dr King in the same year, in Pennsylvania, have been uniformly referred to as the first observations of this kind. This error I now desire to correct, not merely in the interest of truth, but also in that of my friend Sir William Logan, and of my native province of Nova Scotia; and I trust that henceforth the received statement will be, that the first indications of the existence of reptiles in the coal period were obtained by Logan, in the Lower Coal formation of Nova Scotia, in 1841. Insects and arachnidans, it

* Sir Charles Lyell had then just read a paper announcing his discovery that the gysiferous system of Nova Scotia is Lower Carboniferous, in which he mentions the footprints referred to as being reptilian.
may be observed, had previously been discovered in the Coal formation in Europe.

The original specimen of these footprints is still in the collection of Sir William Logan. It is a slab of dark-coloured sandstone, glazed with fine clay on the surface; and having a series of seven footprints in two rows, distant about three inches; the distance of the impressions in each row being three or four inches, and the individual impressions about one inch in length. They seem to have been made by the points of the toes, which must have been armed with strong and apparently blunt claws, and appear as if either the surface had been somewhat firm, or as if the body of the animal had been partly water-borne. In one place only is there a distinct mark of the whole foot, as if the animal had exerted an unusual pressure in turning or stopping suddenly. One pair of feet, the fore feet I presume, appear to have had four claws; the other pair may have had three or four; and it is to be observed that the outer toe, as in the larger footprints discovered by Dr. King, projects in the manner of a thumb, as in the cheirotherian tracks of the Trias. No mark of the tail or belly appears. The impressions are such as may have been made by some of the reptiles to be described in the sequel, as, for instance, by *Dendrerpeton Acadium.*

Attention having been directed to such marks by these observations of Sir William Logan, several other discoveries of the same kind were subsequently made in various parts of the province, and in different members of the Carboniferous system. The first of these, in order of time, was made in 1844, in beds of red sandstone and shale near Tatamagouche, in the eastern part of Nova Scotia, and belonging to the Upper or newer members of the Coal measures. In examining these beds with the view of determining their precise geological age, I found on the surface of some of them impressions of worm-burrows, rain-drops, and sun-cracks, and with these, two kinds of footprints, probably of reptilian animals. One kind consisted of marks, or rather scratchles, as of three toes, and resembling somewhat the scratches made by the claws of a tortoise in creeping up a bank of stiff clay; they were probably of the same nature and origin with those found by Logan at Horton. The others were of very different appearance. They consisted of two series of strongly marked elongated impressions, without distinct marks of toes, in series four inches distant from each other, and with an intervening tail mark. They seem to have been produced by an animal wading in soft mud, so that deep holes, rather than regular impressions, marked its footsteps, and that in the hind foot the heel touched the surface, giving
a plantigrade appearance to the tracks. Rain-marks had been impressed on the surface after the animal had passed over it, and these had probably aided in obliterating the finer parts of the impressions. These observations were published in the Journal of the Geological Society of London, vols. 1 and 2.

Shortly afterward, Dr Harding of Windsor, when examining a cargo of sandstone which had been landed at that place from Parrsboro', found on one of the slabs a very distinct series of footprints, each with four toes, and a trace of the fifth (Fig. 139). Dr Harding's specimen

Fig. 139.—Footprints of Dendrerpeton (f) from Parrsboro,—slab with footprints reduced, and two impressions, natural size.

is now in the museum of King's College, Windsor. Its impressions are more distinct, but not very different otherwise, from those above described as found at Horton Bluff. The rocks at that place are probably of nearly the same age with those of Parrsboro'. I afterwards examined the place from which this slab had been quarried, and satisfied myself that the beds are Carboniferous, and probably Lower Carboniferous. They were ripple-marked and sun-cracked, and I thought I could detect trifid footprints, though more obscure than those in Dr Harding's slab. Similar footprints are also stated to have been found by Dr Gesner, at Parrsboro'. In these Parrsboro' beds Mr Jones, F.L.S., has recently found a series of larger footprints

...
LAND ANIMALS OF THE COAL PERIOD.

357

referable to the genus Sauropus, to be subsequently mentioned in connexion with the discovery of similar footprints in Cape Breton.

I have since observed several instances of such impressions at the Joggins, at Horton, and near Windsor, showing that they are by no means rare, and that reptilian animals existed in no inconsiderable numbers throughout the coal-field of Nova Scotia, and from the beginning to the end of the Carboniferous period. Two examples are figured in my "Air-breathers," with those already described. On comparing these with one another, it appears that Logan's, Harding's, and one of mine are of similar general character, and may have been made by one kind of animal, which must have had the fore and hind feet nearly of equal size. The other belongs to a smaller animal, which probably travelled on longer limbs, more in the manner of an ordinary quadruped. Its toes cannot be distinguished. On the whole, these footprints, while differing from those found by Dr King in Pennsylvania, do not prove the existence of any kind of animal distinct from those to be described in the sequel, and known to us by the preservation of portions of their skeletons.

The study of these footprints shows that the animals which produced them may, in certain circumstances, have left impressions of only two or three of their toes, while in other circumstances all may have left marks; and that, when wading in deep mud, their footprints were altogether different from those made on hard sand or clay. In some instances the impressions may have been made by animals wading or swimming in water, while in others the rain-marks and sun-cracks afford evidence that the surface was a sub-aerial one. They are chiefly interesting as indicating the wide diffusion and abundance of the creatures producing them, and that they haunted tidal flats and muddy shores, perhaps emerging from the water that they might bask in the sun, or possibly searching for food among the rejectamenta of the sea, or of lagoons and estuaries.

Mr Brown of Sydney has added to our knowledge of Carboniferous footprints by the discovery of a fine slab, now in the museum of McGill University, which indicates the existence of an animal of considerable size, the breadth of the foot being three inches (Fig. 140). The specimen was thus described by the writer in the "Canadian Naturalist":—

"The slab exhibits with some distinctness three footprints of the right side, and less distinct traces of the left feet. The fore feet are short and broad, the fore foot as large as the hind foot, the toes short, broad, and deeply impressed in the sand. Four toes are distinctly marked in both fore and hind feet, and there are indications of a fifth in one
of the footprints. The stride is considerably greater than the breadth of the body. The toes are somewhat turned inward. The figure is reduced to one-sixth, so that the animal must have been rather larger than *Dendrerpeton Acadianum*, with shorter toes and broader body."

Fig. 140.—Footprints of Sauropus Sydness (reduced).

These footprints are quite different in form from those previously found by Sir W. E. Logan, Dr Harding, and the writer. They more nearly resemble those figured by Dr King and Mr Lea from the Carboniferous of Pennsylvania; and may have been produced by an animal generically related to that which has left the traces named *Sauropus primaeus* by the latter author. For this reason, until we shall obtain some knowledge of the animal from more definite remains, I propose for it the name of *Sauropus Sydness*. The specimen was found by Mr Brown in the Coal formation at North Sydney.

These footprints add a ninth species to the reptilian fauna of the Coal formation of Nova Scotia, and are the first traces of this kind discovered in the Cape Breton Coal-field.

The footprint already mentioned as having been found by Mr Jones of Halifax at Parrsboro', is almost precisely of the same size and form with the preceding, and may possibly have belonged to the same species. It has five distinctly marked toes.
In the summer of 1851, I had occasion to spend a day at the Albion Mines; and on arriving at the railway station in the afternoon, found myself somewhat too early for the train. By way of improving the time thus left on my hands, I betook myself to the examination of a large pile of rubbish, consisting of shale and ironstone from one of the pits, and in which I had previously found scales and teeth of fishes. In the blocks of hard Carbonaceous shale and earthy coal, of which the pile chiefly consisted, scales, teeth, and coprolites often appeared on the weathered ends and surfaces as whitish spots. In looking for these, I observed one of much greater size than usual, on the edge of a block, and on splitting it open, found a large flattened skull, the cranial bones of which remained entire on one side of the mass, while the palate and teeth, in a more or less fragmentary state, came away with the other half. Carefully trimming the larger specimen, and gathering all the smaller fragments, I packed them up as safely as possible, and returned from my little excursion much richer than I had hoped.

The specimen, on further examination, proved somewhat puzzling. I supposed it to be, most probably, the head of a large ganoid fish; but it seemed different from anything of this kind with which I could compare it; and at a distance from comparative anatomists, and without sufficient means of determination, I dared not refer it to anything higher in the animal scale. Hoping for further light, I packed it up with some other specimens, and sent it to the Secretary of the Geological Society of London, with an explanatory note as to its geological position, and requesting that it might be submitted to some competent osteologist for examination. For a year or two, however, it remained as quietly in the Society's collection as if in its original bed in the coal-mine, until attention having been attracted to such remains by the discoveries made by Sir Charles Lyell and myself in 1852, at the South Joggins, and published in 1853, the Secretary or President of the Society rediscovered the specimen, and handed it to Professor Owen, by whom it was described in December 1853, under the name of *Baphetes planiceps*, which may be interpreted the "flat-headed-diving animal," in allusion to the flatness of the creature's skull, and the possibility that it may have been in the habit of diving.

The parts preserved in my specimen are the bones of the anterior and upper part of the skull in one fragment, and the teeth and palatal bones in others (see Fig. 137, ante; also Fig. 141). The teeth are

conical and somewhat curved, the outer series from a line to two lines in diameter, and the inner series three lines or more. They are implanted in shallow sockets in the maxillary and premaxillary bones, and are ankylosed to the sockets. For the lower third, the outer surface presents shallow vertical grooves, conformably with the plicated character of the internal structure. The upper portion is smooth, and its internal structure presents merely radiating tubes of ivory, and concentric layers. The whole of these characters are regarded as allying the animal with the great crocodilian frogs of the Trias of Europe, first known as Cheirotheriæ, owing to the remarkable hand-like impressions of their feet, and afterwards as Labyrinthodonts, from the beautifully complicated convolutions of the ivory of their teeth.

The only additional remains attributable to this creature, found since the publication of Professor Owen's description, are a bone and a scute or scale. The former may be a scapular or sternal bone, and if so, would warrant the belief that the creature possessed anterior limbs of considerable size; the proportion relatively to the skull being much the same as in the American bullfrog. The latter is marked in the same way as the bones of the head, and would indicate that Baphetes was protected by bony dermal scales, resembling those of the crocodile.

Of the general form and dimensions of Baphetes, the facts at present known do not enable us to say much. Its formidable teeth and
strong maxillary bones show that it must have devoured animals of considerable size, probably the fishes whose remains are found with it, or the smaller reptiles of the coal. It must, in short, have been crocodilian, rather than frog-like, in its mode of life; but whether, like the labyrinthodonts, it had strong limbs and a short body, or like the crocodiles, an elongated form and a powerful natatory tail, the remains do not decide. One of the limbs, or a vertebra of the tail, would settle this question, but neither has as yet been found. That there were large animals of the labyrinthodontal form in the Coal period, is proved by the footprints of Sauropus, already noticed, which may have been produced by an animal of the type of Baphetes. On the other hand, that there were large swimming reptiles seems established by the recent discovery of the vertebrae of Eosaurus Acadianus, at the Joggins, by Mr Marsh. The locomotion of Baphetes must have been vigorous and rapid, but it may have been effected both on land and in water, and either by feet or tail, or both.

With the nature of its habitat we are better acquainted. The area of the Albion Mines Coal-field was somewhat exceptional in its character. It seems to have been a bay or indentation in the Silurian land, separated from the remainder of the coal-field by a high shingle beach, now a bed of conglomerate. Owing to this circumstance, while in the other portions of the Nova Scotia Coal-field the beds of coal are thin, and alternate with sandstones and shales, at the Albion Mines a vast thickness of almost unmixed vegetable matter has been deposited, constituting the "main seam" of thirty-eight feet thick, and the "deep seam" twenty-four feet thick, as well as still thicker beds of highly carbonaceous shale. But, though the area of the Albion Coal measures was thus separated, and preserved from marine incursions, it must have been often submerged, and probably had connexion with the sea, through rivers or channels cutting the enclosing beach. Hence beds of earthy matter occur in it, containing remains of large fishes. One of the most important of these is that known as the "Holing stone,"—a band of black highly carbonaceous shale, coaly matter, and clay ironstone, occurring in the main seam, about five feet below its roof, and varying in thickness from two inches to nearly two feet. It was from this band that the rubbish-heap in which I found the skull of Baphetes planiceps was derived. It is a laminated bed, sometimes hard and containing much ironstone, in other places soft and shaly; but always black and carbonaceous, and often with layers of coarse coal, though with few fossil plants retaining their forms. It contains large round flat scales and flattened curved teeth,

* Silliman's Journal, 1859.
which I attribute to a fish of the genus Rhizodus, resembling, if not identical with, R. lanceifer, Newberry. With these are double-pointed shark-like teeth, and long cylindrical spines of a species of Diplodus (D. acinaces).* There are also shells of the minute Spirorbis, so common in the Coal measures of other parts of Nova Scotia, and abundance of fragments of coprolitic matter.

It is evident that the "Holing stone" indicates one of those periods in which the Albion Coal area, or a large part of it, was under water, probably fresh or brackish, as there are no properly marine shells in this or any of the other beds of this Coal series. We may then imagine a large lake or lagune, loaded with trunks of trees and decaying vegetable matter, having in its shallow parts, and along its sides, dense brakes of Calamites, and forests of Sigillaria, Lepidodendron, and other trees of the period, extending far on every side as damp pestilential swamps. In such a habitat, uninviting to us, but no doubt suited to Baphetes, that creature crawled through swamps and thickets, wallowed in flats of black mud, or swam and dived in search of its finny prey.

Dendrerpeton Acadianum, Owen.

The geology of Nova Scotia is largely indebted to Sir Charles Lyell. Though much had previously been done by others, his personal explorations in 1842, and his paper on the gysiferous formation, published in the following year, first gave form and shape to some of the more difficult features of the geology of the country, and brought it into relation with that of other parts of the world. In geological investigation, as in many other things, patient plodding may accumulate large stores of fact, but the magic wand of genius is required to bring out the true value and significance of these stores of knowledge. It is scarcely too much to say that the explorations of a few weeks, and subsequent study of the subject by Sir Charles, with the impulse and guidance given to the labours of others, did as much for Nova Scotia as might have been effected by years of laborious work under less competent heads.

Sir Charles naturally continued to take an interest in the geology of Nova Scotia, and to entertain a desire to explore more fully some of those magnificent coast sections which he had but hastily examined; and when, in 1851, he had occasion to revisit the United States, he made an appointment with the writer of these pages to spend a few days in renewed explorations of the cliffs of the South Joggins. The object specially in view was the thorough examination of the beds of

* See pp. 202, 203, ante.
the true Coal measures, with reference to their contained fossils, and the conditions of accumulation of the coal; and the results were given to the world in a joint paper on "The Remains of a Reptile and a Land-shell discovered in the Interior of an erect Tree in the Coal Measures of Nova Scotia," and in the writer's paper on "The Coal Measures of the South Joggins;"* while other important investigations grew out of the following up of these researches, and much matter in relation to the vegetable fossils has only recently been worked out. It is with the more striking fact of the discovery of the remains of a reptile in the Coal measures that we have now to do.

These interesting remains were found in the interior of one of those fossil erect Sigillaria described in a previous chapter, and which, having fallen from the cliff, lay in large disc-like fragments on the beach. While examining these "fossil grindstones," we were surprised by finding on one of them what seemed to be fragments of bone. On careful search, other bones appeared, and they had the aspect, not of remains of fishes, of which many species are found fossil in these Coal measures, but rather of limb-bones of a quadruped. The fallen pieces of the tree were carefully taken up, and other bones disengaged, and at length a jaw with teeth made its appearance. We felt quite confident, from the first, that these bones were reptilian; and the whole being carefully packed and labelled, were taken by Sir Charles to the United States, and submitted to Professor J. Wyman of Cambridge, who recognised their reptilian character, and prepared descriptive notes of the principal bones, which appeared to have belonged to two species. He also observed among the fragments an object of different character, apparently a shell, which was recognised by Dr Gould of Boston, and subsequently by Mr Deshayes, as probably a land-snail, and has since been named Pupa vetusta.

The specimens were subsequently taken to London and re-examined by Professor Owen, who confirmed Wyman's inferences, added other characters to the description, and named the larger and better preserved species Dendrerpeton Acadianum, in allusion to its discovery in the interior of a tree, and to its native country of Acadia or Nova Scotia (Fig. 142).

In form, Dendrerpeton Acadianum was probably lizard-like; with a broad flat head, short stout limbs, and an elongated tail; and having its skin, and more particularly that of the belly, protected by small bony plates closely overlapping each other. It may have attained the length of two feet. The form of the head is not unlike that of

Baphetes, but longer in proportion; and much resembles that of the labyrinthodont reptiles of the Trias. The bones of the skull are sculptured as in Baphetes, but in a smaller pattern. The nostrils are small, and near the muzzle; the orbits are circular, and separated by

Fig. 142.—*Dendrerpeton Acadianum*, Owen.

(a) Skull; natural size.
(b) Teeth, inner and outer series; magnified.
(c) Section of one of the outer series; magnified.
(d) Bone scale; enlarged.
(e) Vertebra; natural size.
(f) Ribs; natural size.
(g) Cranial bone, showing sculpture.
(h) Humerus and ulna; natural size.
(i) Distal end of femur and portion of tibia and fibula; natural size.

a space of more than their own diameter. In the upper jaw there is a series of conical teeth on the maxillary and intermaxillary bones. Those on the intermaxillaries are much larger than the others, and have the aspect of tusks or canines. Within this outer series of teeth,
but implanted apparently in the same bones, there is a second series of teeth, closely placed, or with intervals equal to the diameter of one tooth. These inner teeth are longer than the others, implanted in shallow sockets, to which they are anchylosed, and have the dentine plicated, except toward the point. A third group of teeth, blunt at the points, largely hollow in the interior, and with the dentine quite simple, appears in detached bones, which may represent the vomer. Only a part of this formidable armature of teeth appears in the skull represented in Fig. 142, as the bones of the roof of the mouth have been removed, adhering to the opposite side of the matrix. It will be observed that all these teeth are anchylosed to the bone; and that those of the vomer are thinly walled and simple, the outer series on the maxillaries and intermaxillaries simple and flattened, while the inner series of teeth are conical and plicated. In the lower jaw there was a uniform series of conical teeth, not perceptibly enlarged toward the front, and an inner series of larger and plicated teeth, as in the upper jaw.

The scapular and sternal bones seem to have been well developed and strong, but only portions of them are known. The fore limb of the adult animal, including the toes, must have been four or five inches in length, and is of massive proportions. The bones were hollow, and in the case of the phalanges the bony walls were thin, so that they are often found crushed flat. The humerus, however, was a strong bone, with thick walls and a cancellated structure toward its extremities; still, even these have sometimes yielded to the great pressure to which they have been subjected. Fig. 142 shows the humerus of the original specimen of the species. The cavity of the interior of the limb-bones is usually filled with eale-spar stained with organic matter, but showing no structure; and the inner side of the bony wall is smooth, without any indication of cartilaginous matter lining it.

The vertebrae, in the external aspect of their bodies, remind one of those of fishes, expanding toward the extremities, and being deeply hollowed by conical cavities, which appear even to meet in the centre. There is, however, a large and flattened neural spine. The vertebrae are usually much crushed, and it is almost impossible to disengage them from the stone. Fig. 142 exhibits the usual form, and there are others with long spines above and below, reminding us of those of the batrachians and reptiles which have tails flattened for swimming, and probably indicating that this was the case with Dendrerpeton. The ribs are long and curved, with an expanded head, near to which they are solid, but become hollow toward the middle; and the distal
extremities are flattened and thin walled. The posterior limb seems to have been not larger than the anterior, perhaps smaller. The bones represented in Fig. 142, which I refer to this member, probably belonged to a somewhat smaller individual than that to which the humerus above mentioned belonged. The tibia is much flattened at the extremity, as in some labyrinthodonts, and the foot must have been broad, and probably suited for swimming or walking on soft mud, or both. That the hind limb was adapted for walking is shown, not merely by the form of the bones, but also by that of the pelvis.

The external scales are thin, oblique-rhomboidal or elongated oval, marked with slight concentric lines, but otherwise smooth, and having a thickened ridge or margin; in which they resemble those of *Archeodosaurus*, and also those of *Pholidogaster pisciformis*, recently described by Huxley from the Edinburgh Coal-field,—an animal which indeed appears in most respects to have a close affinity with *Dendrerpeton*. The microscopic structure of the scales is quite similar to that of the other bones, and different from that of the scales of ganoid fishes. In one of the specimens the scales of the throat remain in their natural position, and are seen to be of a narrow ovate form, and arranged in imbricated rows diverging from the mesial line.

This ancient inhabitant of the coal swamps of Nova Scotia was, in short, as we often find to be the case with the earliest forms of life, the possessor of powers and structures not usually, in the modern world, combined in a single species. It was certainly not a fish, yet its bony scales, and the form of its vertebrae and of its teeth might, in the absence of other evidence, cause it to be mistaken for one. We call it a batrachian, yet its dentition, the sculpturing of the bones of its skull, which were certainly no more external plates than the similar bones of a crocodile, its ribs, and the structure of its limbs, remind us of the higher reptiles; and we do not know that it ever possessed gills, or passed through a larval or fish-like condition. Still, in a great many important characters its structures are undoubtedly batrachian. It stands, in short, in the same position with the *Lepidodendra* and *Sigillaria* under whose shade it crept, which, though placed by palaeobotanists in alliance with certain modern groups of plants, manifestly differed from these in many of their characters, and occupied a different position in nature. In the Coal period, the distinctions of physical and vital conditions were not well defined—dry land and water, terrestrial and aquatic plants and animals, and lower and higher forms of animal and vegetable life, are consequently not easily separated from each other. This is no doubt a state of things characteristic of the earlier stages of the earth's history, yet not necessarily so; for there
are some reasons, derived from fossil plants, for believing that in the preceding Devonian period there was less of this, and consequently that there may then have been a higher and more varied animal life than in the Coal period.* Even in the modern world also, we still find local cases of this early union of dissimilar conditions. It is in the swamps of Africa, at one time dry, at another inundated, that such intermediate forms as Lepidosiren occur, to baffle the classificatory powers of naturalists; and it is in the stagnant unaerated waters, half swamp, half lake or river, and unfit for ordinary fishes, that the semi-reptilian Amia and Lepidosteus still keep up the characters of their paleozoic predecessors.

The dentition of Dendrerpeton shows it to have been carnivorous in a high degree. It may have captured fishes and smaller reptiles, either on land or in water, and very probably fed on dead carcasses as well. If, as seems likely, the footprints referred to in a previous section belong to Dendrerpeton, it must have frequented the shores, either in search of garbage, or on its way to and from the waters. The occurrence of its remains in the stumps of Sigillaria, with land-snails and millipedes, shows also that it crept in the shade of the woods in search of food; and under the head of coprolitic matter, in a subsequent section, I shall show that remains of excrementitious substances, probably of this species, contain fragments attributable to smaller reptiles, and other animals of the land.

Several of the bones of the limbs remain in sufficiently good preservation to allow of measurement of their size. I am thus enabled to give the following dimensions of parts of the animal:—

<table>
<thead>
<tr>
<th>Part of Animal</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total length of skull</td>
<td>2.75 inches</td>
</tr>
<tr>
<td>" breadth of skull at the orbits</td>
<td>2 "</td>
</tr>
<tr>
<td>Length of humerus</td>
<td>1.33 inch</td>
</tr>
<tr>
<td>" ulna</td>
<td>1 "</td>
</tr>
<tr>
<td>" femur</td>
<td>1 "</td>
</tr>
<tr>
<td>" rib</td>
<td>0.75 "</td>
</tr>
<tr>
<td>" eleven vertebrae in series</td>
<td>2.25 "</td>
</tr>
</tbody>
</table>

It would seem from these dimensions that the head was broad and the trunk slender; the anterior limb, including the foot, half as long again as the head, and the posterior limb rather smaller or shorter than the anterior. It would thus appear that while the general form of the body was not unlike that of Menobranchus, the limbs were much larger, and must have carried the trunk without allowing any part of

it to touch the ground, as would also seem to have been the case from
the footprints found in the Coal formation beds, and the size and form
of the toes of which make it likely that they belonged to this animal.

From the relative dimensions of the bones, as compared with those
of other specimens in my possession, I presume that this individual
was three-fourths grown, and I doubt if its total length much ex-
ceeded one foot.

The limb-bones, though thin-walled and often crushed, evidently
had broad articulating surfaces; and in the case of the fore-limbs par-
ticularly, were large and strong in proportion to the dimensions of the
head and vertebral column.

The large size of the fore limb I suppose to have been related to a
habit of walking or standing in shallow water, with the snout in the
air, in the manner of newts, and the more rapid movements of the
creature were probably performed by the tail. It is interesting to
observe that in *Ilylonomus* the proportions of the limbs were reversed
—the hind limbs being much larger than the fore limbs.

Dendrerpeton Oweni, Dawson.

Among the reptilian remains found in erect trees at the South Jogg-
gins, there have occurred several portions of skeletons, which, from
their sculptured cranial bones, plicated teeth, and the forms of their
scales and limb-bones, I have referred to the genus *Dendrerpeton*, but
to individuals of much smaller size than the full-grown specimens of
D. Acadianum (Fig. 143).

On carefully examining these specimens, the result has been to
establish a strong probability that there is a second species of *Dendrer-
peton*, smaller than *D. Acadianum*, and differing from it in several
points. This species I propose to name *D. Oweni*. It differs from
D. Acadianum in the following particulars:—(1.) Its much smaller
size; (2.) Its long and hooked teeth (it will be seen that these teeth
derive very markedly in their proportions and form from those of the
larger species represented in Fig. 142); (3.) The greater plication of the
ivory in the internaxillary teeth (in *D. Acadianum* these teeth are, on
the outside, simple almost to the base, and plicated on the inner
side, while in this species they are plicated all around like the inner
maxillary teeth); (4.) The form of the skull, which has the orbit
larger in proportion, and is also shorter and broader. On the other
hand, when we have described the species of *Ilylonomus*, it will be
seen that this animal, except in size, differs from them quite as widely
as does *D. Acadianum*.

The distinctness of *D. Oweni* is further confirmed by the fact that
I possess small jaw-bones of *Dendrerpeton*, about the size of those of this species, but having the teeth similar in form to those of the larger species; these I suppose to have belonged to young individuals.

The forms of the jaw-bones and of the vertebrae, ribs, scapular bone, bones of the limbs, and bony scales, indicate, that in general form this creature was not far removed from its larger relative. The bones of the foot, represented in Fig. 143, especially deserve attention. This is the most perfect foot of *Dendrerpeton* hitherto found; and I have enlarged it in the figure in order more distinctly to show its parts. It presents three long toes, with traces of a smaller one at each side, so that there were probably five in all. If these toes be compared with the footprints on the slab discovered by Dr. Harding, represented in Fig. 139, it will be seen that they very closely correspond, though
the toes of the present species are much smaller. The footprints are precisely those which we may suppose an animal of the size of Dendrerpeton Acadiannum would have made, if, as the bones found render in every way probable, this larger species had a foot similar to that of D. Oweni. I suppose, for this reason, that these footprints are really those of Dendrerpeton Acadiannum; and that this species continued to exist from the time of the Lower Coal measures to the period when those higher beds of the series in which its bones are found at the Joggins were deposited.

The present species must have lived in the same places with its larger relative; but may have differed somewhat in its habits. Its longer and sharper teeth may have been better suited for devouring worms, larvae, or soft-skinned fishes, while those of the larger Dendrerpeton were better adapted to deal with the mailed ganoids of the period, or with those smaller reptiles which were more or less protected with bony or horny scales.

In one of my earliest explorations of the reptile-bearing stumps of the Joggins, I observed on some of the surfaces patches of a shining black substance, which on minute examination proved to be the remains of cuticle, with horny scales and other appendages. The fragments were preserved; but I found it impossible to determine with certainty to which of the species whose bones occur with them they belonged, or even to ascertain the precise relations of the several fragments to each other. I therefore merely mentioned them in general terms, and stated my belief that they may have belonged to the species of Hylonomus. More recently other specimens have been obtained, which enable me to refer these specimens in part to the present species and in part to the next species, Hylonomus Lyelli. The specimen represented in Fig. 143, I believe, for reasons stated in my memoir already referred to, to be the skin of a portion of the hinder part of an individual of the present species.

Hylonomus Lyelli, Dawson.

In the original reptiliferous tree discovered by Sir C. Lyell and the writer at the Joggins in 1851, there were, beside the bones of Dendrerpeton Acadiannum, some small elongated vertebrae, evidently of a different species. These were first detected by Prof. Wyman in his examination of these specimens, and were figured, but not named, in the notice of the specimens in the Journal of the Geological Society, vol. ix. In a subsequent visit to the Joggins, I obtained from another erect stump many additional remains of these smaller reptiles, and, on careful comparison of the specimens, was induced to refer

...
them to three species, all apparently generically allied. I proposed for them the generic name Hylonomus, "forest-dweller." They were described in the Proceedings of the Geological Society for 1859, with illustrations of the teeth and other characteristic parts.* The smaller species first described I named H. Wymani; the next in size, that to which this article refers, and which was represented by a larger number of specimens, I adopted as the type of the genus, and dedicated to Sir Charles Lyell. The third and largest, represented only by a few fragments of a single skeleton, was named H. aciedentatus.

Hylonomus lyelli was an animal of small size. Its skull is about an inch in length, and its whole body, even if, as was likely, furnished with a tail, could not have been more than six or seven inches long. No complete example of its skull has been found. The bones appear to have been thin and easily separable; and even when they remain together, are so much crushed as to render the shape of the skull not easily discernible. They are smooth on the outer surface to the naked eye, and under a lens show only delicate uneven stria and minute dots. They are more dense and hard than those of Dendrerpeton, and the bone-cells are more elongated in form. The bones of the snout would seem to have been somewhat elongated and narrow. A specimen in my possession shows the parietal and occipital bones, or the greater part of them, united, and retaining their form. We learn from them that the brain-case was rounded, and that there was a parietal foramen. There would seem also to have been two occipital condyles. Several well-preserved specimens of the maxillary and mandibular bones have been obtained. They are smooth, or nearly so, like those of the skull, and are furnished with numerous sharp conical teeth, anchylosed to the jaw, in a partial groove formed by the outer ridge of the bone. In the anterior part of the lower jaw there is a group of teeth larger than the others. The internaxillary bone has not been observed. The total number of teeth in each ramus of the lower jaw was about forty, and the number in each maxillary bone about thirty. The teeth are perfectly simple, hollow within, and with very fine radiating tubes of ivory. The vertebrae have the body: cylindrical or hour-glass shaped, covered with a thin, hard, bony plate, and having within a cavity of the form of two cones, attached by the spines. The ribs are long, curved, and at the proximal end have a shoulder and neck. They are hollow, with thin hard bony walls. The anterior limb, judging from the fragments procured, seems to have been slender, with long toes, four or possibly five in number. The posterior limb was longer and stronger, and attached to a pelvis

so large and broad as to give the impression that the creature enlarged considerably in size toward the posterior extremity of the body, and that it may have been in the habit of sitting erect. The thigh bone is well formed, with a distinct head and trochanter, and the lower extremity flattened and moulded into two articulating surfaces for the tibia and fibula, the fragments of which show that they were much shorter. The toes of the hind feet have been seen only in detached joints. They seem to have been thicker than those of the fore foot. Detached vertebrae, which seem to be caudal, have been found, but the length of the tail is unknown. The limb bones are usually somewhat crushed and flattened, especially at their articular extremities, and this seems to have led to the error of supposing that this flattened form was their normal condition; there can be no doubt, however, that it is merely an effect of pressure. The limb bones present in cross section a wall of dense bone with elongated bone-cells, surrounding a cavity now filled with brown calc-spar, and originally occupied with cartilage or marrow. Nothing is more remarkable in the skeleton of this creature than the contrast between the perfect and beautiful forms of its bones, and their imperfectly ossified condition,—a circumstance which raises the question whether these specimens may not represent the young of some reptile of larger size.

The dermal covering of this animal is represented in part by oval bony scales, which are so constantly associated with its bones that I can have no doubt that they belonged to it, being, perhaps, the clothing of its lower or abdominal parts; while above, it was probably clad in the beautiful scaly covering represented in Fig. 144,* and which shows that the creature, while probably clad with bony scales below, had on its back an array of scaly and spiny ornaments comparable with those of any modern reptile. The bony scales differ in form from those of *Dendrerpeton; they are also much thicker. On the inner side they are concave, with a curved ledge or thickened border at one edge. On the outer side they present concentric lines of growth.

The only specimens which afford much information as to the general form of *Hylonomus Lyelli are those represented in Fig. 144. The first is the original specimen from which I described the species in the

* Description of Fig. 144.

(a) Skeleton in matrix, showing jaws, ribs, vertebrae, pelvis, and bones of limbs.
(b) Portion of skeleton in matrix, showing vertebrae and limb bones.
(c) Portion of maxilla with teeth; enlarged.
(d) Cross sections of teeth; enlarged.
(e) Anterior end of mandible with teeth; enlarged.
(f) Bones of foot; enlarged.
(g) Parietal bone, showing foramen; enlarged.
(h) Vertebra; enlarged.
(i) Rib; enlarged.
(j) Bone scale; enlarged.
(k) Portion of scaly cuticle.
(m to s) Horn scales, bristles, tubercles, and other appendages of the same; mag.
LAND ANIMALS OF THE COAL PERIOD.

Fig. 144.—Hymenotoma Jelli, Dawson.
paper already referred to. The bones being small and of dark colour, are not very conspicuous, and many of them are broken, but many are beautifully perfect; and even those which are removed have left very distinct moulds of their form in the fine-grained matrix. In the figure I have carefully traced their outlines in their natural position, with the exception of the maxillary bone and mandible, which are removed from their place in the matrix, to bring the whole into a more compact form. The specimen also shows, in addition to the bones delineated, many fragments of the skull and scapular bones, crushed in such a manner that their forms cannot be distinguished. The specimen shows remains of thirty vertebrae, of which four appear to belong to the neck, and the rest are probably nearly all dorsal and lumbar. Of about twenty ribs more or less complete fragments remain. The fore limb is represented only by the impression of a humerus, but other bones which may have belonged to it are scattered elsewhere on the stone. The pelvis is nearly entire, though crushed and flattened. One thigh bone remains tolerably perfect, and beside it lie the tibia and a part of the fibula, with several bones of the foot. The dimensions of these parts are as follow:

<table>
<thead>
<tr>
<th>Length of maxillary</th>
<th>0.7 inch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>mandible</td>
<td>0.7</td>
</tr>
<tr>
<td>longest rib (chord)</td>
<td>0.6</td>
</tr>
<tr>
<td>humerus</td>
<td>0.5</td>
</tr>
<tr>
<td>femur</td>
<td>0.7</td>
</tr>
<tr>
<td>tibia</td>
<td>0.45</td>
</tr>
<tr>
<td>principal bone of pelvis</td>
<td>0.7</td>
</tr>
</tbody>
</table>

The other specimen above referred to shows the bones of the trunk, and part of those of the hind and fore limb, of a small individual, nearly in their natural position, and is remarkably instructive, as giving some idea of the general form of the trunk. It shows the humerus and radius and ulna in a tolerable state of preservation, with a fragment of the scapula. About thirteen dorsal and lumbar vertebrae can be made out, nearly in their natural position; and there are remains of five of the ribs. The hind limb is represented by fragments of the femur, tibia, and fibula.

It is evident, from the remains thus described, that we have in *Hylonomus Lyelli* an animal of lacertian form, with large and stout hind limbs, and somewhat smaller fore limbs, capable of walking and running on land; and though its vertebrae were imperfectly ossified externally, yet the outer walls were sufficiently strong, and their articulation sufficiently firm, to have enabled the creature to erect
itself on its hind limbs, or to leap. They were certainly proportionally larger and much more firmly knit than those of *Dendrerpeton*. Further, the ribs were long and much curved, and imply a respiration of a higher character than that of modern batrachians, and consequently a more highly vitalized muscular system. If to these structural points we add the somewhat rounded skull, indicating a large brain, we have before us a creature which, however puzzling in its affinities when anatomically considered, is clearly not to be ranked as low in the scale of creation as modern tailed batrachians, or even as the frogs and toads. We must add to these also, as important points of difference, the bony scales with which it was armed below, and the ornate apparatus of horny appendages with which it was clad above. These last, as described above, and illustrated in Fig. 144, show that this little animal was not a squalid, slimy dweller in mud, like *Menobranchus* and its allies, but rather a beautiful and sprightly tenant of the Coal formation thickets, vying in brilliancy, and perhaps in colouring, with the insects which it pursued and devoured. Remains of as many as eight or ten individuals have been obtained from three erect *Sigillaria*, indicating that these creatures were quite abundant, as well as active and terrestrial in their mode of life.

With respect to the affinities of this species, I think it is abundantly manifest that it presents no close relationship with any reptile hitherto discovered in the Carboniferous system, and that it presents characters partly alluding it to the newts and other batrachians, and partly to the true reptiles. The structures of the skull, and of some points in the vertebra, certainly resemble those of batrachians; but, on the other hand, the well-developed ribs, evidently adapted to enlarge the chest in respiration, the broad pelvis, and the cutaneous covering, are unexampled in modern batrachians, and assimilate the creature to the true lizards. I have already, in my original description above quoted, expressed my belief that *Hylonomus* may have had lacertian affinities, but I do not desire to speak positively in this matter; and shall content myself with stating the following alternatives as to the probable relations of these animals:—(1.) They may have been true reptiles of low type, and with batrachian tendencies. (2.) They may have been representatives of a new family of batrachians, exhibiting in some points lacertian affinities. (3.) They may have been the young of some larger reptile, too large and vigorous to be entrapped in the pitfalls presented by the hollow *Sigillaria* stumps, and in its adult state losing the batrachian peculiarities apparent in the young. Whichever of these views we may adopt, the fact remains, that in the structure of this curious little creature we have peculiarities both batrachian
and lacertian, in so far as our experience of modern animals is concerned. It would, however, accord with observed facts in relation to other groups of extinct animals, that the primitive batrachians of the Coal period should embrace in their structures points in after times restricted to the true reptiles. On the other hand, it would equally accord with such facts that the first-born of lacertians should lean toward a lower type, by which they may have been preceded. My present impression is, that they may constitute a separate family or order, to which I would give the name of Microsauria, and which may be regarded as allied, on the one hand, to certain of the humbler lizards, as the Gecko or Agama, and, on the other, to the tailed batrachians.

It is likely that Hylonomus Lyelli was less aquatic in its habits than Dendrerpeton. Its food consisted, apparently, of insects and similar creatures. The teeth would indicate this, and near its bones there are portions of coprolite containing remains of insects and myriapods. It probably occasionally fell a prey to Dendrerpeton, as bones, which may have belonged either to young individuals of this species or to its smaller congener H. Wymani, are found in larger coprolites, which may be referred with probability to Dendrerpeton Acadianum.

Hylonomus Aciedentatus, Dawson.

This species is founded on a single imperfect specimen obtained by me at the Joggins in 1859, and described in the Journal of the Geological Society, vol. xvi. In size, H. aciedentatus was about twice as large as the species last described. Its teeth are very different in form. Those on the maxillary and lower jaw are stout and short, placed in a close and even series on the inner side of a ridge or plate of bone. Viewed from the side they are of a spatulate form, and present a somewhat broad edge at top, as in Fig. 145. Viewed in the opposite direction, they are seen to be very thick in a direction transverse to that of the jaw, and are wedge-shaped. There are about forty on each side of the mandible, and about thirty on each maxillary.

Since the publication of my previous paper, I have ascertained that the intermaxillary bones bore teeth of a peculiar form. They are larger than the others, thick and coming to a blunt point, which is seamed with longitudinal and slightly spiral ridges. This singular tooth must have been a most efficient instrument for crushing and penetrating the coats of crustaceans and insects, or the bony armour of the smaller ganoid fishes. Remains exist at the extremity of the
lower jaw, which show that a few teeth there also were larger than the others, but whether they differed in form cannot be determined. The pulp cavity of the teeth is less extensive in proportion than in \textit{H. Lyelli}, and the structure in the cross section is simple, showing merely radiating ivory tubes.

\textbf{Fig. 145.} \textit{Hylonomus aciedentatus}, Dawson.

\textbf{The remains of} \textit{H. aciedentatus} are too scanty to warrant much certain inference as to its form. Its vertebrae would seem to have resembled those of \textit{H. Lyelli}, but to have been elongated and more thoroughly ossified. Its ribs are similar in form and proportion to those of the last-named species. A pelvic bone and some detached phalangial bones, as well as very fragmentary limb bones, would indicate that its limbs were well developed. Its external scales are similar to those of the last species, but larger, and a few fragments of skin show scales and appendages similar to those of \textit{H. Lyelli}, but of greater dimensions. The microscopic structure of its bone is also
similar to that in the last species. No doubt a more perfect specimen would show many points of difference between these species, not now appreciable; but in the meantime the very different form of the teeth is a sufficient distinction. In *H. Lyelli* these are conical and pointed. In the present species they are of a peculiar wedge shape—their diameter transversely to the jaw being the greatest at the base, while at the top they are sharpened to an edge. The peculiar form of the intermaxillary teeth may also serve as a distinctive character, though those of *H. Lyelli* are not yet known. The form of the vertebrae would further seem to indicate different proportions of body. On the whole, while this species is in all probability generically related to the last, it is certainly specifically distinct. Its habits and food may have been similar, but its dental apparatus was stronger and more formidable.

Hylonomus Wymani, Dawson.

This is the species of *Hylonomus* originally detected by Professor Wyman in the specimens brought from the Joggins by Sir C. Lyell and myself. Remains of several additional individuals have since been found, but no skeleton approaching to completeness. I shall describe this, the most diminutive of the reptiles of the Nova Scotia coal, with the aid of the fragments represented in Fig. 146, most of which are almost microscopic in size.

![Fig. 146.—*Hylonomus Wymani*, Dawson.](image)

(a) Mandible and maxilla; nat. size.
(b, c, d) Portions of the same; magnified.
(e) Rib; nat. size and magnified.
(f) Bones of limb and pelvis; nat. size and mag.
(g) Bones of foot; enlarged.
(h) Scales; enlarged.
(i) Vertebrae; nat. size and magnified.

The skull seems to have been much of the same form as in *Hylonomus Lyelli*, but very thin and delicate, so that all the specimens hitherto found are crushed and fragmentary. The maxillary and mandibular bones are furnished with teeth which are bluntly conical in form, and in the latter bone seem to be confined to its front part, or to be very small posteriorly. They are thus much fewer in number than in the species last named. I have been able to make out only twenty-two
in the lower jaw, and they are alternately large and small, as if replaced in this manner as worn out. Their structure is of the same simple character as in the other species of Hylonomus, and they have large pulp cavities.

The vertebrae of this species are singular and characteristic. The bodies are elongated and hour-glass shaped, with an internal cavity of the same form filled with calc-spar, and probably once occupied by cartilage. They have, in the dorsal region at least, strong articulating and lateral processes, and were furnished with numerous delicate ribs.

In one of my specimens as many as thirty-eight of these little vertebrae may be seen lying together, and many of them attached to each other. This would indicate that the body was long and slender. It was furnished with limbs similar to those of H. Lyelli, but of course smaller. The pelvis is of the same expanded form with that of the last species, and a pair of fore-feet lying together on one slab show the remains of four slender toes. The bones of the limbs are very delicate and thin-walled. The bony scales are oval, and similar to those of the other species of the genus, but very small.

In length, Hylonomus Wymani could not have exceeded four or five inches, including the tail. It may indeed be questioned whether this little creature was not the young of one of the other species. The form of the vertebrae and teeth would, however, prevent us from supposing that it stood in this relation to H. Lyelli. To H. acidentatus it bears a stronger resemblance in these respects, though not sufficient to render specific identity probable; and the occurrence of so many specimens of the smaller species, without any of intermediate size, renders it likely that it did not attain to any greater dimensions.

Hylonomus Wymani probably fed on insects and larvae, and searched for these among the vegetable debris of the coal swamps, which would afford to a little creature like this abundant shelter. It occasionally fell a prey to its larger reptilian contemporaries; for quantities of its tiny bones occur in coprolitic masses, probably attributable to Dendrerpeton. It is interesting to find reptilian life represented at this early period, not only by large and formidable species, but by diminutive forms, comparable with the smallest lizards and newts of the modern world. The fact is parallel with that of the occurrence of several small mammalian species in the mesozoic beds. It will be still more significant in this respect if the species of Hylonomus should be found to be truly lacertian rather than batrachian.
Hylerpeton Dawsoni, Owen.

In the more or less laminated material which fills the interior of the erect trees of the Joggins, it often happens that the more distinctly separable surfaces are stained with ferruginous or coaly matter, or with fine clay, so that the fossils which occur on these surfaces, and which would otherwise be more available than those in more compact material, are rendered so obscure as readily to escape observation. This was unfortunately the case with one of the most interesting specimens contained in the last of these trees which I had an opportunity to examine. It consisted of the detached bones of a reptile scattered over a surface so blurred and stained that they escaped my notice until most of them were lost; and I was able to secure only a jaw bone and fragments of the skull, with a few of the other bones. On these fragments Professor Owen founded the genus Hylerpeton and the species named at the head of this article. His description is as follows (Fig. 147):—

Fig. 147. Hylerpeton Dawsoni, Owen.

(a) Mandible and portion of cranial bone; nat. size.
(b) Fragment of maxilla, showing larger and smaller teeth.
(c) Tooth enlarged, showing pulp cavity.
(d) Section of tooth; magnified.

"This specimen consists of the left ramus of a lower jaw, which has been dislocated from the crushed head, of which the fore end of the left premaxillary is preserved, terminating near the middle of the series of the teeth of the more advanced mandible. A fragment of the left maxillary, which has been separated from the premaxillary, overlaps the hinder mandibular teeth. The fore part of the mandible is wanting. The teeth in the remaining part are larger and fewer, in proportion to the jawbone, than in Hylonomus or Dendrerpeton."
They have thicker and more obtusely terminated crowns; they are close-set where the series is complete at the fore part of the jaw, and their base appears to have been ankylosed to shallow depressions on the alveolar surface. The shape of what is preserved of the upper jaw affords the only evidence, and not very decisively, that the present fossil is not part of a fish. It inclines the balance, however, to the reptilian side; and, accepting such indication of the class-relations of the fossil, it must be referred to a genus of Reptilia distinct from those it is associated with in the Nova Scotian coal, and for which genus I would suggest the term Hylerpeton.

"A small part of the external surface of the dentary bone shows a longitudinally wrinkled and striate or fibrous character. The outer bony wall, broken away from the hinder half of the dentary, shows a large cavity, now occupied by a fine greyish matrix, with a smooth surface, the bony wall of which cavity has been thin and compact. We have here the mark of incomplete ossification, like that in the skeleton of Archegosaurus. The crushed fore part of the right dentary bone, with remains of a few teeth, is below the left dentary, and exemplifies a similar structure. The teeth slightly diminish, though more in breadth than length, towards the fore part of the series: here there are nine teeth in an alveolar extent of ten millimetres, or nearly five lines. The base of the teeth is longitudinally fissured, but the fissures do not extend upon the exserted crown. In their general characters, the teeth manifest at least as close a resemblance to those of Cannocephala as of Lacertia or any higher group of Reptilia; whilst their mode of implantation, with the structure and sculpturing of the bone, weigh in favour of its relations to the lower and earlier order of the cold-blooded Vertebrates."

I can add to the above description only a few facts obtained from careful examination of other fragments imbedded in the matrix. One of these is a portion of a maxillary bone. It has teeth similar to those of the lower jaw in form, but the last but one is twice the size of the others, and seems to have been implanted in a deep socket. All of the teeth have large pulp cavities, and the inner surface of the ivory is marked with slight furrows which are represented by ridges on the outer surface of the stony matter filling the pulp cavities. The ivory of the teeth, however, which is very much coarser than that of the species of Hylonomus, presents in the cross section a simple structure of radiating tubes. The surface of the cranial bones, of which some fragments remain, is marked in the same striate manner alluded to above by Professor Owen. The microscopic structure of the bone is much coarser than that of Hylonomus or Dendrerpeton, the cells being
larger and in some portions less elongated. That the creature had stout ribs is shown by some fragments of these bones, but the vertebrae are represented only by a few bodies of small relative size and perhaps caudal. On the same surface were found the bones of a foot. It is of small size relatively to the head, and was probably for swimming rather than walking. A few ovate bony scales were found with the bones, and probably belonged to this species.

On the whole, it seems certain that Hylerpeton must have been generically distinct from the other reptiles found with it, and it is probable that it was of more aquatic habits, swimming rather than walking, and feeding principally on fish. More perfect specimens would, however, be required in order to warrant any decided statement on these subjects. It is possible, as suggested by Prof. Owen, that the affinities of the animal may be with Archegosaurus rather than with any of the other coal reptiles; but I confess that my present impression is, that it tends rather toward the genus Hylonomus. It may possibly be a link of connexion between the Microsauria and the Archegosauria.

Eosaurus Acadianus, Marsh.

Fig. 148.—Eosaurus Acadianus, Marsh. Two vertebrae.—Natural size.

Beside the species above described, Mr O. C. Marsh, in 1861,* added a new animal to the Joggins reptilian fauna—the Eosaurus Acadianus. The species is founded on two large biconcave vertebrae, in many respects resembling those of Ichthyosaurus, and indicating

* The remains were discovered in 1855, though not published till 1861.
a reptile of greater size than any hitherto discovered in the coal, probably of aquatic habits, and possibly allied to the great *Enaliosaurus* or sea-lizards of the mesozoic rocks. The specimen was found in a bed of shale belonging to Group XXVI. of my Joggins section, in the upper part of the Middle Coal measures, and about 800 feet above the bed which has afforded the remains described in previous sections. The beds belong to one of those intervals of shallow water deposition of sediment which separate the groups of coal beds; and on one of them I found some years ago the footprints of *Dendrerpeton*.

The vertebrae of *Eosaurus* have been fully and ably described by Mr Marsh in Silliman's Journal. Agassiz and Wyman regard their affinities as enalosaurian. Huxley suggests the possibility, founded on his recent discovery of *Anthracosaurus Russellii*, that there may have been *Labyrinthodont* Batrachians in the Coal period with such vertebrae. However this may be, if the vertebrae were caudal, as supposed by Mr Marsh, since they are about 2½ inches in diameter, they would indicate a gigantic aquatic reptile, furnished with a powerful swimming tail, and no doubt with apparatus for the capture and destruction of its prey, comparable with that of *Ichthyosaurus*.

Pupa Vetusta, Dawson.

This, the first known representative of palæozoic land snails, so closely resembles the modern "ehrysalis shells" of the genus *Pupa*, that I have not thought it desirable to refer it to a different genus, though the name *Dendropupa* has been proposed by Prof. Owen. Mr J. S. Jeffreys, and other eminent conchologists who have seen the shell, concur in the opinion that it is a true *Pupa*; so that this genus, and that mentioned in the next section, like *Lingula* and *Nautilus*, extend from the palæozoic period to modern times.

It may be described as a cylindrical shell, tapering to the apex, with a shining surface, marked with longitudinal rounded ridges. The whorls are eight or nine, rounded, and the width of each whorl is about half the diameter of the shell. The aperture is rather longer than broad; but is usually somewhat distorted by pressure. The margin of the lip is somewhat regularly rounded, and is reflected outward. There are no teeth, but a slight indication of a ridge or ridges on the pillar lip, which may, however, be accidental. Length 3-10ths of an inch, or a little more. It was first recognised by Dr Gould of Boston, in specimens obtained by Sir C. Lyell and the writer in 1851, in an erect Sigillaria, containing bones of reptiles, at the Joggins.

This little shell is remarkable, not merely for its great antiquity, but also because it is separated by so wide an interval of time from
other known species of its race, there being, with the exception of the next species, no other Pulmonate known until we reach the Purbeck beds, and no other true land snail until we reach the Tertiary.

Fig. 149.—_Pupa Vetusta_, Dawson.

(a) Natural size. (b) Enlarged. (c) Apex enlarged. (d) Sculpture; magnified.

In the section of the South Joggins I have noticed the occurrence of _Pupa Vetusta_ in another bed 1217 feet below that above mentioned. It belongs to group 8 of the section, and is between coals 37 and 38 of Logan's sectional list. It is a layer of gray indurated clay, with a slightly nodular structure, and in some places becoming black and carbonaceous, and containing leaflets of ferns, _Trigonocarpa_, etc. The shells occur very abundantly in a thickness of about two inches. They have been imbedded entire; but most of them have been crushed and flattened by pressure. They occur in all stages of growth; the young being, as is always the case in such shells, very different in general form from the adults. This bed is evidently a layer of mud deposited in a pond or creek, or at the mouth of a small stream in shallow water. In modern swamps multitudes of shells occur in such places; and it is remarkable that in this case land shells should alone be found, without any trace of aquatic molluses. The shells which occur in this bed are filled with the surrounding sediment. Those which occur in the erect _Sigillaria_, on the other hand, except when they are crushed and flattened, are filled with a deposit of brown calc-spar. I infer from this that the latter, when buried, contained the animals, and consequently that these lived or Sheltered themselves in the hollow trees, as is the habit of many modern land snails.
Zonites (Conulus) priscus, Carpenter.

In the summer of 1866 I made some excavations in the bed above mentioned, and disinterred great numbers of the shells of the Pupa. My object was to find other remains if possible; and I was rewarded with the discovery of another little land shell, which my friend Dr P. P. Carpenter has described under the above name (Fig. 150).* It

Fig. 150.—Conulus priscus, Carpenter.

(a) Specimen; enlarged 12 diameters. (b) Sculpture; magnified.

is quite different from the Pupa, being snail-like in form, with a wide aperture and a very thin shell, sculptured on the surface in a different way. The sub-genus Conulus is a subdivision of the old genus Helix, and is a group of modern snails, sometimes included in the genus Zonites. I may add that in the collections made in 1866 there are fragments which may indicate the existence of at least one other land snail, but not sufficient for description.

Xylobius Sigillatorus, Dawson.

Fig. 151.—Xylobius Sigillatorus, Dawson.

(a) Natural size. (b) Anterior portion; enlarged. (c) Posterior portion; enlarged.

I proposed, in 1859, the above name for an articulated worm-like animal, of which numerous flattened specimens were found associated

with the _Pupa vetusta_. I was at first disposed to regard it as the larva of a coleopterous insect; but a careful microscopic examination of the specimens convinced me that it is a chilognathous Myriapod, allied to _Iulus_. It was described as follows (Fig. 151):

> Body crustaceous, elongate, articulate; when recent, cylindrical, or nearly so, rolling spirally. Feet small, numerous; segments 30 or more; anterior segments smooth, posterior with transverse wrinkles, giving a furrowed appearance. In some specimens traces of a series of lateral pores or stigmata. Labrum (?) quadrilateral, divided by notches or joints into three portions. Mandibles two-jointed, last joint ovate and pointed. Eyes, ten or more on each side.

This animal, the oldest gally-worm known at the time of its discovery, must, like its modern congener, have haunted the decaying trunks of swamps, and thus became entombed in the hollow _Sigillaria_ in which it was found. Since its discovery, animals of similar type have been recognised in the Coal formations both of Great Britain and of the United States.

Haploplebium Barnesii, Scudder.

The existence of insects in the Carboniferous period has long been known. The Coal formations of England and of Westphalia afforded the earliest specimens; and, more recently, some interesting species have been found in the Western States.* They belong to the order of the _Neuroptera_ (shad-flies, etc.), the _Orthoptera_ (grasshoppers, crickets, etc.), and _Coleoptera_ (beetles, etc.)

In the Coal-field of Nova Scotia, notwithstanding its great richness in fossil remains of plants, insects had not occurred up to last year, except in a single instance—the head and some other fragments of a large insect, probably neuropterous, found by me in the coprolite or fossil excrement of a reptile enclosed in the trunk of an erect _Sigillaria_ at the Joggins, along with other animal remains. This specimen was interesting chiefly as proving that the small reptiles of the Coal period were insectivorous, and it was noticed in this connexion in my "_Air-breathers of the Coal period._" Last year, however, Mr James Barnes, of Halifax, was so fortunate as to find the beautiful wing represented in Fig 152, in a bed of shale at Little Glace Bay, Cape Breton. The engraving is taken from a photograph kindly sent to me by Rev. D. Honeyman, F.G.S. It will be observed that, in consequence probably of the mutual attraction of loose insects floating about in water, a fragment of a frond of a fern, _Aletia_ _ris lonchitica_, lies partly over the wing, obscuring its outline, but bearing testimony to its carbon-

* See Lyell's "Elements," and Dana's "Manual" for references.
Land animals of the coal period.

The wing has been examined by Mr. S. H. Scudder, of Boston, who has made such specimens his special study, and who refers it to the group of Ephemerina (day-flies, shad-flies) among the Neuroptera, and has named it *Haplophlebium Barnesii*. It must have been a very large insect—seven inches in expanse of wing—and therefore much exceeding any living species of its group. When we consider that the larvae of such creatures inhabit the water, and delight in muddy bottoms rich in vegetable matter, we can easily understand that the swamps and creeks of carboniferous Acadia, with its probably mild and equable climate, must have been especially favourable to such creatures, and we can imagine the larvae of these gigantic ephemeras swarming in the deep black mud of the ponds in these swamps, and furnishing a great part of the food of the fishes inhabiting them, while the perfect insects emerging from the waters to enjoy their brief span of aërial life, would flit in millions over the quiet waters and through the dense thickets of the coal swamps.

Fig. 152.—*Haplophlebium Barnesii*, Scudder.

Mr. Scudder describes the species as follows:—

"This is probably one of the Ephemerina, though it differs very much from any with which I am acquainted. The neuration is exceedingly simple, and the intercostal spaces appear to be completely filled with minute reticulations without any cross-veins. The narrowness of the wing is very peculiar for an Ephemeran. The form of the wing and its reticulation remind me of the Odonata, but the mode of venation is very different; yet there is apparently a cross-vein between the first and second veins in the photograph (not rendered in the cut) which,
extending down to the third vein, occurs just where the "nodus" is found in *Odonata*, and if present would unquestionably remove this insect to a new synthetic family between *Odonata* and *Ephemera*. I cannot judge satisfactorily whether it is an upper or an under wing. The insect measured fully seven inches in expanse of wings—much larger than any living species of *Ephemera*.

Archimulacris Acadianus.

The new genus and species above named (Fig. 153), have been founded by Mr. Scudder on a beautiful little wing discovered by Mr. Barnes at the East River of Pictou, in shale overlying the main seam of coal. The specimen is imperfect, being cut off by a leaf of Cordaites lying across it; but the venation of the part remaining is in very good preservation. Mr. Scudder remarks upon it as follows:

"The only fossil cockroach yet described from America is that found by Lesquereux in the Carboniferous beds of Arkansas, and called *Blattina venusta*. The wing discovered by Mr. Barnes at Pictou differs from it in the curve of the costal border (affecting the direction of nearly every vein in the wing), as well as in the extent and direction of the branches of the mediastinal vein, and in the distribution of the veinlets in the anal area. Nor does this wing agree in character with those of other fossil cockroaches; it is allied to some which Dr. Giebel, in his generic division of the fossil *Blattaria*, referred to the genus *Blattina*. With two exceptions, he had placed all the Carboniferous cockroaches in the same group. This species, forming the type of a new genus, may be called *Archimulacris Acadianus*. The generic term is derived from the Greek name of a cockroach."

In the Journal of the Geological Society, 1861, I described as follows some very remarkable impressions found on the surface of a rain-marked sandstone at the Joggins, containing also reptilian footprints:—"They consist of rows of transverse depressions, about an inch in length and one-fourth of an inch in breadth. Each trail consists of two of these rows running parallel to each other, and about
six inches apart. Their direction curves abruptly, and they sometimes cross each other. From their position they were probably produced by a land or fresh-water animal—possibly a large Crustacean or or gigantic Annelide or Myriapod. In size and general appearance they slightly resemble the curious Climactichnites of Sir W. E. Logan, from the Potsdam sandstone of Canada. To this I may add that the space between the rows of marks is slightly depressed and smoothed, as if with a heavy body like that of a serpent trailed along. The recent remarkable discovery in the Coal-field of Kilkenny, Ireland, of the large serpentine Batrachian, described by Huxley under the name *Ophiderpeton*, leads to the supposition that these trails may indicate the existence of a similar creature in Nova Scotia.

The contents of this chapter may be summed up in the statement, that the Coal formation of Nova Scotia has afforded of terrestrial Vertebrates no less than eight species of reptiles, some of them probably of higher type than the Batrachians; of land Mollusks the only two species known in the Palaeozoic rocks; of land Articulates one millipede and two insects. While the reptiles differ much from existing types, and belong to families which have long ago passed away, the mollusks and articulates are remarkably like the creatures of their rank found in similar places at the present time, belonging in two instances even to the same generic groups.

Note.—While this chapter is passing through the press, I am informed by Mr Scudder, to whom I have submitted the numerous fragments of *Myriapods* in my collection from the Joggins, that he thinks he can recognise three additional species of *Xylobius* and a new generic form (*Archiulus*). I hope to give descriptions of these in the Appendix.
CHAPTER XIX.

THE CARBONIFEROUS SYSTEM—Continued.

CARBONIFEROUS DISTRICT OF RICHMOND AND SOUTHERN INVERNESS—
USEFUL MINERALS—DISTRICT OF NORTHERN INVERNESS AND VICTORIA—
USEFUL MINERALS—DISTRICT OF CAPE BRETON COUNTY—USEFUL MINERALS.

Carboniferous District of Richmond and Southern Inverness.

This district is separated from those of Sydney and Guysboro' only by the Strait of Canseau, a narrow transverse valley excavated by the currents of the drift period. The Lower Carboniferous conglomerates and limestones are seen on both sides of the strait, and the lowest members of the system are seen at Plaister Cove and its vicinity, and are succeeded to the southward and eastward by the Coal formation. As this district presents some curious and interesting features, I shall notice some parts of it in detail.

The coast section in the vicinity of Plaister Cove is remarkable for the highly perfect manner in which it displays the gypsiferous rocks, and the information which it consequently affords as to their structure and origin.

The following summary of the beds seen in this section is from a paper contributed by the writer to the Geological Society in 1849 (see Fig. 154):

"(1.) At M'Millan's Point, about three-quarters of a mile north of the Cove, are thick beds of gray conglomerate, in a vertical position. These beds form the base of the Carboniferous system in this district; and, at a short distance inland, they have been invaded by trap and other igneous rocks, belonging to a great line of igneous disturbance extending to the north-eastward. The conglomerates near M'Millan's Point have been thrown up along an anticlinal line connecting the igneous range last mentioned with that of Cape Porcupine, on whose flanks the same conglomerates appear. The valley now occupied by the strait is in great part due to the want of continuity of the igneous masses at this point, though the distribution of the surface detritus..."
shows that it has been subsequently deepened by diluvial waves or currents from the northward.

"(2.) Between McMillan's Point and Plaister Cove the shore is occupied by black and gray shales and very hard sandstones in frequent alternations. The sandstones have been much altered by heat, and are traversed by veins of white carbonate of lime, sometimes mixed with sulphate of barytes. At the point immediately north of Plaister Cove these beds dip at a high angle to the south-eastward.

"(3.) Overlying these beds is a bed of limestone about thirty feet in thickness; it is of a dark colour, laminated and subcrystalline; its laminae are in some parts corrugated and slightly attached to each other, and in other places flat and firmly coherent; it is traversed by numerous strings of white calcareous spar, containing a little carbonate of iron and small crystals of blue fluor-spar, a mineral rare in Nova Scotia, and which I have found only in the Lower Carboniferous limestones. The limestone supports a few layers of greenish marl
and gypsum, which appear in a small depression on the north side of the Cove; but beyond this depression the limestone reappears with a northerly dip. It is then bent into several small folds, and ultimately resumes its high dip to the south-east. I found no fossils in this limestone, except at its junction with the overlying marl, where there is a thin bed of black compact limestone containing a few indistinct specimens of a small species of Terebratula. In appearance and structure this limestone is very similar to the laminated limestones which underlie the gypsiferous deposits of Antigonish and the Shubenacadie.

"(4.) This bed is succeeded by greenish marl, traversed by veins of red foliated and white fibrous gypsum, and containing a few layers of the same mineral in a granular form; it also contains a few veins of crystalline carbonate of lime. In its lower part it has a brecciated structure, as if the layers had been partially consolidated and afterwards broken up. Near its junction with the limestone it contains rounded masses of a peculiar cellular limestone, coloured black by coaly matter; and higher in the bed there are nodules of yellow ferruginous limestone, with a few fragments of shells. The greenish colour of the marl seems to be caused by the presence of a minute quantity of sulphuret of iron. When a portion of the marl is heated the sulphuret is decomposed, and the colour is changed to a bright red.

"(5.) On this marl rests a bed of gypsum, whose thickness I estimated at fifty yards. Where the marl succeeds to the limestone, the shore at once recedes, and the gypsum occurs at the head of the Cove. The gypsum is well exposed in a cliff about eighty feet in height; but, like most other large masses of this rock, it is broken by weathering into forms so irregular that its true dip and direction are not at first sight very obvious. On tracing its layers, however, it is found to have the same dip with the subjacent limestone and marl. About two-thirds of the thickness of the bed consist of crystalline anhydrite, and the remaining third of very fine-grained common gypsum. The anhydrite prevails in the lower part of the bed, and common gypsum in the upper; but the greater part of the bed consists of an intimate mixture of both substances, the common gypsum forming a base in which minute crystals of anhydrite are scattered; and bands in which anhydrite prevails, alternating with others in which common gypsum predominates. It is traversed by veins of compact gypsum, but I saw no red or fibrous veins like those of the marl. In some parts of the bed small rounded fragments of gray limestone are sparingly scattered along layers of the gypsum.

"The exposed part of the mass is riddled by those singular funnel-
shaped holes named "plaster pits," sections of which are exposed in the cliff; they penetrate both the anhydrite and common gypsum, though they are contracted where they pass through harder portions of the rock, and especially the veins of compact gypsum, some of which are only slightly inclined, and look at first sight like layers of deposition. The pits of which I saw sections have evidently resulted from the percolation of water through the more open parts of vertical joints, and they were cut off where they were intersected by another slightly inclined set of open fissures, which afforded a passage to the water. The accompanying sketch (Fig. 155) shows one of these pits and its relations to the joints and stratification of the gypsum.

(6.) Above the gypsum are a few layers of limestone, portions of which appear near the base of the cliff; one of them is studded with tarnished crystals of iron pyrites; another is a singular mixture of gray limestone and reddish granular gypsum. The portions of limestone contained in this rock do not appear to be fragments or pebbles, and they are penetrated by plates of selenitic gypsum. They may be parts of a bed of limestone broken up and mixed with gypsum when in a soft state, or the limestone and gypsum may have been deposited simultaneously and separated by molecular attraction. A rock of this kind is not rare as an accompaniment of gypsum, and it may be merely a result of the mixture of the soft surface of the gypsum with the mechanical detritus first deposited on it.

(7.) On the opposite side of the creek, which makes a small break in the section, is a thick bed of marl, whose dip appears to be the same with that of the gypsum. In general character it resembles the
marl underlying the gypsum. In some parts it is greenish and homogeneous in texture; in other parts it is brecciated, and some layers have a brownish colour and shaly texture. In some parts it is highly gypseous and contains layers of granular gypsum, one of which is black, its colour being due to a small proportion of coaly or bituminous matter.

"(8.) Beyond the marl the shore is occupied for a short space by boulder clay. Beyond this it shows a great thickness of dark shales with calcareous bands, containing a few small shells belonging to the curious little crustacean, _Leaia Leydii_, represented in Fig. 78 & above. They dip to the E.S.E. at a high angle, and overlie the gypsum. They are succeeded by a thick band of very hard gray and brownish sandstones and shales, containing a few fragments of plants stained with carbonate of copper. These are again overlaid by dark shales, and these by an enormous thickness of gray and brown sandstone and shale. Some of the shales in this part of the section have assumed a kind of slaty or rather prismatic structure."

I beg the reader to observe, in the above section, the contrast between the hardened sandstones and shales and the soft marls and gypsum, a contrast equally marked in other parts of the Carboniferous districts, and often producing, by the removal of the softer beds, that isolated position of the gypsum masses which is frequently so perplexing. It is also important to observe, that this great mass of gypsum is a regular bed, interstratified with the others, and belonging to the series of processes by which the whole were formed. I have already, in noticing the gypsum of Windsor, referred to its probable origin, and may now apply the same method of explanation to that of Plaister Cove. On this view, then, the history of this deposit will be as follows:

First, The accumulation of a vast number of very thin layers of limestone, either so rapidly or at so great a depth that organic remains were not included in any except the latest layers. Secondly, The introduction of sulphuric acid, either in aqueous solution or in the form of vapour; the acid being a product of the volcanic action whose evidences remain in the neighbouring hills. At first the quantity of acid was too small, or the breadth of sea through which it was diffused too great, to prevent the deposition of much carbonate of lime along with the gypsum produced; and its introduction was accompanied by the accumulation on the sea-bottom of a greater quantity of mechanical detritus than formerly: hence the first consequence of the change was the deposition of gypseous marl. At this stage organic matter was present, either in the sea or the detritus deposited, in
District of Richmond.

395

Of the gypsum veins found in the marls, those which are white and fibrous may have been nearly contemporaneous in their origin with the marl itself; those which are red and lamellar have been subsequently introduced. The granular gypsum is in all cases a part of the original deposit. The comparatively small quantity of red oxide of iron in these marls and other associated beds is the most important feature of difference between the deposit of Plaister Cove and those of most other parts of this province. There is, however, a large quantity of reddish and brown sandstone in the beds overlying the gypsum, though on the whole these colours are less prevalent than in the Carboniferous system of Nova Scotia proper.

The rocks seen at Plaister Cove and its vicinity appear to be overlaid in ascending order by a great thickness of black shales, which, near Ship Harbour, contain shells of Naiadites. These shales are succeeded by true Coal measures, which, at Little River and at Caribou Cove, contain seams of coal and a variety of characteristic fossil plants. One remarkable peculiarity of these Coal measures is, that they have been folded up by lateral pressure, so that they are often vertical, and that the limestones with marine shells and the gypsum, are often brought into immediate contact with masses of these disturbed Coal measures. Coal measure beds in a less disturbed condition extend up the River Inhabitants nearly to its sources, and occupy the country between that river and the southern part of the Bras d'Or Lake. The Lower Carboniferous limestone appears on the north-west arm of River Inhabitants, at West Bay, at Lennox Passage, on Isle Madame, and at St Peter's. At Lennox Passage it is associated with a great bed of excellent gypsum, and contains an abundance of fossil shells. At St Peter's it is non-fossiliferous, and rests against syenite and metamorphic slates, forming the western margin of a large tract.
of metamorphic country, along the edge of which it extends, with
some conglomerate and sandstone, in a very narrow belt, skirting the
whole eastern side of the Bras d'Or Lake, and connecting this district
with that of the county of Cape Breton.

Useful Minerals of the District of Richmond, etc.

Coal appears at various places in this district, and at the time when
my first edition was printed, it was the only place in which any explora-
tion had been made by the Government. In consequence of a petition
from the inhabitants, the Legislature voted a small sum for a recon-
naissance of this district. I had the honour to be employed in this
work, and this was the only geological work for which I ever received
any payment from the Government of Nova Scotia. I mention this
circumstance, because it accounts for the fact that so much space is
given to this coal-field in my first edition, while the far more important
mines of Cape Breton County, which I had not the same opportunity
to examine, are treated of more slightly.

Coal.—The bed at Caribou Cove, or Sea Coal Bay, has attracted
some attention, owing to its appearance in the coast section in a very
accessible situation. It is a seam of mixed coal and bituminous shale
eleven feet eight inches in thickness, in a vertical position, or rather
thrown over on its face; its dip being W. 57° S., at an angle of 80°,
and the bed which was originally its underclay being its roof. The
coal from the outcrop of this bed is of a soft and crumbling quality,
and filled with layers of shale.

A specimen of the best coal, selected from different parts of the
bed, gave, on analysis,—

\[
\begin{align*}
\text{Volatile matter} & : 25.2 \\
\text{Fixed carbon} & : 44.7 \\
\text{Ash} & : 30.1 \\
\end{align*}
\]

100

The shale associated with the coal contains a sufficient quantity of
bituminous and coaly matter to render it combustible, but it differs
from coal in leaving a stony residue instead of a pulverulent ash.

It appears from the above analysis that the best coal of this bed is
very impure, its percentage of ash being double that of Pictou coal;
and when this is taken in connexion with its intimate intermixture
with shale, it must be evident that the produce of this seam could
scarcely be exported with profit. It might possibly be worked to
supply fuel of an inferior description for use in the neighbouring country. In the deeper parts of the bed, the coal is probably harder and of much better appearance than at the outcrop, but in its mixture with shale and high percentage of ash no material improvement can be expected. It will also be found to contain a large proportion of the bi-sulphuret of iron, much of which has been removed from the outcrop by weathering.

The other strata seen in the vicinity of the coal are gray shales and hard sandstones, with a small seam of bituminous shale. No other bed of coal appears in the vicinity, though, as the coast section for about half a mile on either side shows little except boulder-clay, it cannot be affirmed that others are not present. If other beds occur, they can be found only by expensive works of discovery, unless accidentally uncovered by excavations made for other purposes. Since the above description was written, these beds have been further explored, and a bed of coal four feet thick is stated to have been found, but the working of this bed has not been prosecuted.*

Coal also appears at Little River, a small stream emptying a little to the eastward of Carribou Cove. At the mouth of this stream there is a bed of gypsum. The coal occurs two and a half miles inland. Here, as at Carribou Cove, the measures are vertical, the strike or direction of the beds being N. 40° W. Two beds are seen at this place, one four feet in thickness, the other ten inches thick. They are separated by five feet of shale. Above the place where they cross the river I observed in the bed of the stream fragments of coal and bituminous shale, which have probably been washed from the outcrop of a third bed.

The coal of the principal bed is hard, and very little injured by exposure. Its fracture is uneven and crystalline, with glistening surfaces; and its texture is very uniform, the lamination or "reed" being rather indistinct, and almost free from dull coal or mineral charcoal. Its specific gravity is 1.38. When burned in a stove or grate, it ignites readily, fuses, swells, and cakes, giving a strong flame and a lasting fire. It leaves a rather large quantity of brownish ash. In a smith's forge it works well, its behaviour being similar to that of Picton coal. On analysis, it is found to contain,—

\[
\begin{align*}
\text{Volatile matter} & \quad 30.25 \\
\text{Fixed carbon} & \quad 56.40 \\
\text{Ash} & \quad 13.35 \\
\end{align*}
\]

* Rutherford's Report.
Compared with the coals of Pictou and Sydney, the Little River coal is more bituminous than either, or contains more volatile matter and less fixed carbon. It contains about the same quantity of earthy matter with Pictou coal; but in quality and colour the ash resembles that of Sydney. Practically it will be found to be a serviceable coal for domestic fires, well adapted for smiths' use, and, from the large quantity and high illuminating power of its gaseous matter, probably a good gas-coal. There should be little waste in its extraction, and it will suffer little by being “banked” or kept in the open air. It contains more sulphur than the Pictou coal.

The coal of the small bed (No. 2) is somewhat similar to that of No. 1; but it is more impure, and contains much bi-sulphuret of iron. The fragments found in the river, and supposed to be derived from a third bed, are very similar to the coal of No. 2.

The point at which the coal appears on Little River is distant in a direct line from the main road to Ship Harbour about one mile and a half, and from Ship Harbour four miles; from the shore at Carribou Cove two miles and a half; and from the navigable part of River Inhabitants two miles and a quarter. In the direction of the Strait of Canso, the Coal measures appear to be cut off at the distance of about half a mile from the river, by one of the fractures which abound in the district. In the opposite direction, it is possible that they may extend to the estuary of the River Inhabitants.

In the direction of the beds of coal, the ground in the vicinity of the river is low, rising to about thirty feet only above the stream. Only a very small depth of coal could therefore be drained by a level from the river-bed, or without the aid of machinery. The vertical position of the beds will also require a method of mining different from that employed in the other coal-fields of the province, where the seams are only slightly inclined. These circumstances, in addition to the comparatively small dimensions of the beds, as they tend to increase the expense of extracting coal, must operate as objections to the opening of this deposit. On the other hand, the seam No. 1 is sufficiently large to be conveniently worked, its coal would command a fair price in the market, and it is near harbours from which its produce could be shipped at any season. There is also a probability that the beds might be traced to localities more favourable for the extraction of the coal; and that, by works of discovery carried on in the adjacent measures, other workable seams might be found. I am glad to learn that, since the above remarks were written in my first edition, this mine has been opened, and is known as the "Richmond Mine." A second bed of coal, 154 feet distant from the first, has been
District of Inverness and Victoria.

399

The mine is worked on the long-wall system, somewhat in the manner of a mineral vein. A railway has been formed to the shore; and in 1866, 1016 tons of coal were extracted.

Coal also appears at the basin of Inhabitants, and in two places on the river of the same name; but I am not aware whether it is of any practical importance. I would suggest, however, to explore the valley of the River Inhabitants as a promising field of investigation.

The only other useful minerals found in the district are limestone and gypsum. The most accessible deposit of the former is that of Plaister Cove, which is large and of fair quality. Large beds of good limestone also occur at Little River and the north-west arm of River Inhabitants. The bed of gypsum from which Plaister Cove derives its name is of enormous thickness, and contains some good gypsum, though about two-thirds of its thickness consist of anhydrous gypsum or "hard plaster." The bed which occurs near Carribou Cove is of good quality; but where it appears on the shore it is deeply covered with boulder-clay. A little farther inland, however, it is nearer the surface. The marls associated with these beds, as they contain large quantities of carbonate and sulphate of lime in a finely divided state, might be usefully applied as a dressing to land.

Gypsum has been exported from the bed already mentioned at Little River, and to a considerable extent from Lennox Passage, where, as well as at Arichat and St Peter's, there is good limestone.

Carboniferous District of Northern Inverness and Victoria.

In following the coast sections to the northward and westward of Plaister Cove, we find the Carboniferous rocks reduced to a narrow belt, by the projection of a mass of igneous and altered rocks toward the coast. The conglomerate appears in several places, and also the Lower Carboniferous limestone, which has been altered into a variegated marble, capable of being applied to ornamental purposes. At Long Point the metamorphic hills begin to recede from the coast, and from Port Hood the Carboniferous rocks extend quite across the island to St Ann's Harbour, and northward to Margaree, beyond which place a narrow belt continues to line the coast as far as Cheticamp.

At Port Hood, the Coal measures appear with characters very similar to those of the Joggins section. Their dip is W. 20°, in some places varying to W. by N. 25°; so that their strike nearly coincides with that of the shore, and only a small thickness of beds can be seen in the coast section. The beds seen consist of gray sandstones and gray and brown shales, with black and calcareous shales, and thin seams of coal. Calamites, Sternbergia, Stigmaria, and coniferous wood abound.
and, in a bed of sandstone a little to the northward of the village, magnificent examples of Sigillaria stumps, with their roots and rootlets attached, are seen in situ. The beds dipping seaward at a small angle, and undergoing rapid waste, expose these stumps on a horizontal surface, and not in a vertical cliff as at the Joggins; and this affords great facilities for studying the arrangement of their singular roots. Some of the stumps are two feet and a half in diameter, and may be seen to give off their pitted Stigmaria roots in four main divisions, exactly at right angles to each other, each main root subdividing regularly into two, four, and so on. They are in the state of casts in hard calcareous sandstone, and they have grown on a soil consisting of loose sand, now sandstone, and stiff clay, now represented by beds of shale. Some of the layers of sandstone immediately under the roots are distinctly ripple-marked, and must, when the trees grew on them, have been either very recently elevated from the sea-bed, or must have been layers of blown sand. If it were not for the general uniform bedding of the Coal formation sandstones embedding these plants, an observer would be strongly inclined to refer them to the latter cause; and I think it by no means impossible that some of them may have had such an origin, and may have been afterwards smoothed and levelled by water, before the overlying beds were deposited on them.

More than one generation of these trees have grown on this spot, for I observed one of the stony trees to be penetrated by a cast of a Stigmaria with rootlets attached, which passed quite through it. This had manifestly belonged to a new generation of trees, growing above the remains of others already in the state of casts in sand, but not consolidated into stone.

One of the beds of shale in the vicinity of a small coal seam at this place, contains abundance of Naiadites, Cythere, fish-scales and teeth, and Coprolites, or the fossil excrement of fishes. A fragment of a large Eurypterus, previously figured (Fig. 50) was also found here.

Four miles to the north-east of Port Hood, the Lower Carboniferous limestone and gypsum appear; and this part of the system continues to Mabou River, where it is very extensively developed. The limestone near this river has shells of Productus semireticulatus and abundance of fragments of Encrinites; and one of the beds has an Oolitic structure,—that is, it is made up of small round grains, precisely like small shot cemented together, or the roe of a fish. This peculiar structure is supposed to have been produced by the calcareous matter collecting itself around minute grains of sand or other bodies, and thus taking the form of little concretionary balls, which were finally cemented into rock. It was at one time supposed to be confined to a
DISTRICT OF INVERNESS AND VICTORIA.

401

particular part of the geological series, still named in England the Oolitic formation, but it has been found in rocks of very different ages. Examples of it occur in the limestones of Windsor and Picton; but this of Mabou is much more perfect. Its little rounded grains are nearly quite uniform in size, smooth and black, and cemented together by gray calcareous matter.

Near the mouth of Mabou River there is an enormous bed of gypsum, which was being quarried when I last visited it for the purpose of making road-embankments, this rock being the only available material at hand. Enormous plaster-pits have been excavated in the outcrop of this great gypseous mass. One of them forms a circular grassy amphitheatre, capable of containing hundreds of persons, and I was informed that there is a spring of water in its centre.

Immediately to the northward of Mabou River the lower conglomerates crop out from under the limestones and gypsum, and rise on the flanks of Cape Mabou, a lofty headland, the nucleus of which is syenite, of greater antiquity than the Carboniferous system, and which is connected with an isolated chain of igneous and metamorphic hills extending for some distance to the northward.

At Margarie, the Coal formation again appears, with its characteristic fossil plants; but it occupies only a very limited area, and the whole of the remainder of this district seems to consist of beds of the Lower Carboniferous series. Mr Poole, of Glace Bay, informs me that he has received from Margarie specimens of coal somewhat resembling cannel, and affording 41·10 per cent. of volatile combustible matter; but I have no information as to its quantity, or whether it was obtained from the Coal formation or the Lower Carboniferous series. The Coal formation rocks of Port Hood and Margarie are evidently only the margin of a coal-field extending under the sea, and perhaps as far as its appearance above the sea-level is concerned, in great part swept away by the waves. This coast is now rapidly wasting, in consequence of its exposure to the prevailing westerly winds blowing across the whole width of the Gulf of St Lawrence; and its rivers and harbours are from this cause choked with shifting sands. Owing to this waste of the coast, a sand-beach which connected Port Hood Island with the mainland has been swept away, and a safe harbour has thus been converted into an open roadstead, exposed to the northerly winds and encumbered with shoals. This will prove a serious drawback to any attempt to work the coal-beds of this locality.

The Lower Carboniferous limestone and gypsum appear at Cheticamp, in a number of places on Margarie River, and at Ainslie Lake, which is a fine sheet of water, more than ten miles in length, and the
largest lake, properly so called, in Cape Breton. To the eastward of this lake, a spur from the metamorphic country to the northward separates this part of the district from the Lower Carboniferous country of the county of Victoria. At the extremity of this spur, on the border of Whykokomagh Basin, the Lower Carboniferous conglomerate with syenitic pebbles forms a hill named the Salt Mountain. On this conglomerate rest thick beds of laminated limestone, from which rise unusually copious springs, some of them of pure water, others said to be salt or brackish. At Middle River, we again find the Lower Carboniferous limestone with several of its characteristic fossil shells; and from this place, as far as St Ann's Harbour and the Big Bras d'Or, the whole of the low country consists of sandstone, shale, and conglomerate, with limestone and gypsum appearing in several places. A lofty ridge of syenitic rocks separates St Ann's from the Bras d'Or, and at its extremity, Cape Dauphin, there is a patch of Carboniferous rocks which have been described in detail by Mr Brown in the Proceedings of the Geological Society. Mr Brown gives the following section, which is interesting as illustrating the arrangement of the several members of the series in this part of Cape Breton. The order is descending, and the beds dip S. 80° E. at an angle of 58°.

Lower Coal measures, seen about half a mile from Cape Dauphin—a few fossil plants—thickness not stated.

Fine grained and pebbly sandstones (millstone-grit)—fossil plants
Finely laminated gray shales with thin bands of limestone 200 ft.
Slaty sandstones with traces of plants 110
Blue and gray shales with thin beds of nodular limestone 10
Strong sparry limestone 120
Soft crumbling marls 6
Strong limestone 90
Strong limestone—lower beds laminated—fossil shells
Productus cora, Encrinus 18
Mottled red and green marls 7
Intermingled sandstones and limestone 22
Strong and crumpling marls 24
Strong limestone 17
Blue shale 6
Red shale 8

Carry forward 684 ft.
In this section the Lower Carboniferous rocks are of much less aggregate thickness than usual; yet they display the several dissimilar members of the series pretty fully. The "millstone-grit" corresponds with the deposit of the same name overlying the Carboniferous limestone of England. It also corresponds with the thick succession of sandstones between Plaister Cove and Ship Harbour, with those overlying the gysiferous rocks in Pictou county, with the sandstones of the Eagle's Nest, on the Shubenacadie, and with the lower groups of Mr. Logan's Joggins section. The limestone, marls, and gypsum are well developed, except that the latter is of smaller thickness than is usual. The lower conglomerate is wanting; but this is always an irregular deposit, and it appears in its proper place in most other sections in this part of Cape Breton, as, for instance, at St. Ann's Harbour, where the gypsum also is very largely developed. This section, as described by Mr. Brown, did good service in confirming the new and more accurate views of the structure of the Carboniferous rocks in this province promulgated by Sir C. Lyell in 1842.

Useful Minerals of N. Inverness and Victoria.

Gypsum and *limestone* are very abundant in this district. The former may be obtained in any quantity at Mabou, Margarie River,
St Ann's, Big Harbour on the Great Bras d'Or, etc. The latter abounds in the same localities, as well as in several others where the gypsum is absent. The altered limestone at Craignish and Long Point would afford several pretty and unusual varieties of coloured marble.

Coal occurs at Port Hood, and since the publication of the first edition of this work, in which I directed attention to this coal-field as one of promise, it has been reported upon by Professor C. H. Hitchcock, and opened on a small scale. The principal bed is stated by Rutherford to be about 6 feet in thickness, with 4 feet 2 inches to 4 feet 4½ inches of good coal. Other valuable beds are said to have been found at Mabou, Broad Cove, and Chimney Corner; but they have not yet been opened.

In Victoria county the only mine now worked is that of New Campbelltown, on the Great Bras d'Or. At this place the Coal measures are stated to rest against the mass of syenitic or gneissose rock of Cape Dauphin, and to be in part in a nearly vertical position. In the principal workings of the mine two beds of coal have been opened up. They are separated from each other by a thickness of 36 yards. The upper is 4 feet thick, the lower 6 feet. In another part of the area, a bed 4 feet 5 inches thick has been found. Its identity with either of the above mentioned has not yet been ascertained.*

The yield of the Port Hood Mine for 1866 is stated to be 3824 tons, that of the New Campbelltown Mine 3142 tons.

Freestone for building is obtained, of good quality, at Port Hood Island and Margarie, and also at Whykokomagh; but it is not yet worked on a large scale.

The soils of this district being based principally on the calcareous rocks of the Lower Carboniferous series, are in general of excellent quality.

Carboniferous District of Cape Breton County.

This, though the last, is one of the principal Carboniferous districts of the province, as it includes the important and productive Coal-fields of Sydney, Lingan, Glace Bay, Cow Bay, and Miré, and exceeds all the others in its export of coal, while it scarcely yields to the Joggins in its excellent exposures of the Coal formation rocks and fossils. As we owe most that is known of this district to the labours of R. Brown, Esq. of Sydney, I shall avail myself, in the first instance, in describing it, of the information contained in his papers;† adding such other items of information as I have collected in short visits to this interesting

* Rutherford.
† See List in Chapter I.
district, and the results of the important explorations for coal recently carried on, more especially in its eastern part.

The island of Boulardarie, the whole of which I include in this district, though politically a part of it belongs to Victoria county, consists in its western part of the Lower Carboniferous limestone, and overlying hard sandstones, having apparently an undulating arrangement, as represented by Mr Brown in his section of the island. The limestone, as I have observed it on the north side of Boulardarie, is hard and compact, and contains the *Productus semireticulatus*. At the eastern end of the island, the limestone and millstone-grit dip to the N.E. and underlie the Coal measures which appear near Point Aconi. The Coal measures, extending from Point Aconi to the outer edge of the millstone-grit, are stated by Mr Brown at 5400 feet in vertical thickness.

Crossing the Little Bras d'Or, the Coal measures continue with north-easterly dip across the peninsula separating this strait from Sydney Harbour, and thence with various faults and disturbances to Miré Bay. As the general dip is seaward, Mr Brown remarks, "this great area of Coal measures is probably the segment only of an immense basin, extending toward the coast of Newfoundland; a supposition which is confirmed by the existence of Coal measures at Neil's Harbour, 30 miles north of Cape Dauphin." Inland of this broad band of Coal measures, the whole country northward of a line drawn west from Miré Bay to the east arm of the Bras d'Or Lake, is occupied by the older members of the series, with the exception of a tract of syenite, porphyritic, and altered rocks, which appears at and near George's River on the south-east side of Little Bras d'Or. These igneous rocks have altered the Lower Carboniferous limestone, as well as perhaps some underlying beds of the same system, showing that igneous action had not terminated in these ancient metamorphic districts at the commencement of the Carboniferous period; and this appears to have been the case along the boundary of the metamorphic and igneous rocks in many parts of Cape Breton.

This extensive Carboniferous district is connected with that of Richmond county on the south, by a very narrow strip of limestone, red conglomerate, and sandstone, skirting the base of the hills of porphyry, syenite, and slate, rising steeply from the side of the Bras d'Or Lake, which here is a broad and beautiful inland sea, presenting fine scenery in almost every direction. The limestone and conglomerate may be seen in several places to rest on the edges of the older slates, and in some places, especially at Irish Cove, the former rock is filled with well-preserved fossil shells, including immense quantities of the *Conularia*, which in most other localities is rather rare; as well as *Produc-
The Coal measures are by far the most interesting part of this area, and are well exposed on the north side of Sydney Harbour, and on the south end of Boullardarie. Mr Brown has published an elaborate section and description of them as they occur at the former place, from which the following facts are gleaned:

"The productive Coal measures cover an area of 250 square miles; but, owing to several extensive dislocations, it is impossible to ascertain their total thickness with any degree of accuracy; from the best information in my possession, I conclude that it exceeds 10,000 feet. We have one continuous section on the north shore of Boullardarie Island, 5400 feet in thickness, and in the middle portion of the field several detached sections, varying from 1000 to 2000 feet in thickness, whose exact relative positions have not yet been determined; although it is quite clear that they are higher up in the formation than the highest beds of the Boullardarie section."

Mr Brown then proceeds to describe the section on the north-west side of Sydney Harbour, from Stubbard's Point to Cranberry Head, a distance of 5000 yards, and exhibiting a vertical thickness of 1860 feet of beds. The dip is N. 60° E. 7°. Of these beds he gives a detailed section, including 34 seams of coal, and 41 underclays with Stigmaria or fossil soils. The whole of the beds composing the section are summed up as follows:

<table>
<thead>
<tr>
<th>Layer</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arenaceous and argillaceous shales</td>
<td>1127 ft. 3 in.</td>
</tr>
<tr>
<td>Underclays</td>
<td>99 ft. 6 in.</td>
</tr>
<tr>
<td>Sandstones</td>
<td>562 ft. 0 in.</td>
</tr>
<tr>
<td>Coal</td>
<td>37 ft. 0 in.</td>
</tr>
<tr>
<td>Bituminous shales</td>
<td>26 ft. 5 in.</td>
</tr>
<tr>
<td>Carbonaceous shales</td>
<td>3 ft. 3 in.</td>
</tr>
<tr>
<td>Limestones</td>
<td>3 ft. 11 in.</td>
</tr>
<tr>
<td>Conglomerate</td>
<td>0 ft. 8 in.</td>
</tr>
<tr>
<td>Total</td>
<td>1860 ft. 0 in.</td>
</tr>
</tbody>
</table>

Erect trees and calamites occur at eighteen distinct levels. The greater number are Sigillariae, many of them with distinct Stigmaria roots, and a few are Lepidodendra. They occur in circumstances very similar to those of the erect trees at the Joggins already described. Mr Brown's various papers on these fossils gave to the geological
ERECT SIGILLARİÆ AND STIGMARIAN ROOTS.

1. Sigillaria in situ, with Stigmaria Roots and Rootlets—Sydney.
2. Roots of the same, as seen in a horizontal Section—Sydney.
3. Stump of Sigillaria Sydneiensis, showing the stem compressed into a dome—1 1/2th nat. size—Sydney.
4. Stump of Sigillaria, with very regular Stigmarian Roots spreading in Sandstone—Port Hood.

Fig. 1, 2, 3, are from papers by Mr. Brown, quoted in the text. See also pp. 180, 182.
world the first really satisfactory information respecting the true nature and mode of growth of Stigmaria; and to these I may refer the reader, more especially to that in volume fifth of the "Geological Journal," page 355, from which I quote the following account of a fine specimen of Sigillaria alternans with Stigmaria roots, regularly ramifying, and having attached to them conical tap roots, which penetrated directly downwards into a thin bed of shale overlying the main coal. This seam, like the main seam at the Joggins, has, when it was a bed of soft peat, supported a forest of Sigillariae and Lepidodendra, many of which still remain erect in the overlying shale, with all their roots and long spreading rootlets attached.

"Immediately over the coal there is a bed of hard shale, six inches in depth, in which no fossils are found; this is overlaid by a softer shale abounding in coal-plants; all the upright trees that I have examined are rooted in the six-inch shale; the crown of the base of that which I am now describing is just four inches above the coal; its roots dip gradually downwards until they come in contact with the coal, at about eighteen inches from the centre of the tree, and then spread out over its surface. When this fossil was brought out of the mine the under side was covered up with hard shale, to which about one inch of coal adhered; in cutting away this layer of coal, I met with the termination of a perpendicular root immediately in contact with the coal, which I carefully developed; proceeding in this manner, my patience was amply rewarded by the discovery of a complete set of conical tap roots. The horizontal roots branch off in a remarkably regular manner, the base being first divided into four equal parts by deep channels running from near the centre; an inch or two farther on, each of these quarters is divided into two roots, which, as they recede from the centre, bifurcate twice within a distance of eighteen inches from the centre of the stump.

"There are four large tap roots in each quarter of the stump, and, about five inches beyond these, a set of smaller tap roots, striking perpendicularly downwards from the horizontal roots, making forty-eight in all: namely, sixteen in the inner, and thirty-two in the outer set; and what is a still more remarkable feature in this singular fossil, there are exactly thirty-two double rows of leaf-scars on the circumference of the trunk. This curious correspondence in the numbers of the roots and vertical rows of leaf-scars, surely cannot be accidental. I am not aware that any similar correspondence has

* Mr Binney can claim priority in date of publication; but his specimens were much less perfect in details of structure, and therefore less satisfactory than those described by Mr Brown.
over been observed either in recent or fossil plants. The inner set of tap roots vary from two to two and a half inches in length; the diameter at their junction with the base of the trunk being about two inches. The outer set are much smaller, being about one inch in diameter at their junction with the horizontal roots, and from one to one and a half inch in length. Very few of either set are strictly conical, although they probably were originally of that shape; some are squeezed into an elliptical, others into a triangular form; all have been wrinkled horizontally by the shrinkage due to vertical compression. A thick tuft of broad flattened rootlets radiates from the terminations of the tap roots, and a few indistinct areoles are visible on their sides; the length of these rootlets does not appear to exceed three or four inches, their width being one-fourth of an inch; a raised black line runs down the middle of each, similar to that observed in the rootlets of Stigmaria. These short thick tap roots were evidently adapted only to a soft wet soil, such as we may easily conceive was the nature of the first layer of mud deposited upon a bed of peat, which had settled down slightly below the level of the water.

"We may infer also, from the existence of a layer of shale without fossil plants, immediately over the coal, that the prostrate stems and leaves which occur in such large quantities in the next superincumbent bed, fell from trees growing upon the spot, and were entombed in layers of mud held in suspension in water, which at short intervals inundated the low marshy ground on which they grew; for had the plants been drifted from a distance, we should find them in the first layer of shale as well as in those higher up.

"Although the main coal is generally overlaid by shale, yet occasionally the shale thins out, and the thick sandstone, which is the next stratum in the ascending order, forms the roof of the coal. In such cases the surface of the peat-bog could not have been level when the shale was deposited upon it, some small patches having been still above water; and as no upright trees are found in the sandstone roof, it may reasonably be inferred that plants would not vegetate upon the bog itself, a layer of soft mud being necessary in the first instance for germinating the seeds; but when a plant had once taken root in this mud, its rootlets penetrated downwards into the peat, and furnished an abundant supply of nutriment for the rapid growth of the tree, from the rich mass of decaying vegetable matter beneath."

The Sydney Coal measures contain not only erect trees, but also numerous beds with Naiadites, Cythere, Spiroborus, Fish-scales, etc.; though these do not so frequently overlie coal-seams as at the Joggins. The shales at Sydney are also much more rich than those at the Joggins in
DISTRICT OF CAPE BRETON COUNTY.

the leaves and other more delicate parts of plants; and on this account I give here sketches of a few examples of the foliage of the Coal formation period, as displayed in the rocks of Nova Scotia and Cape Breton (Fig. 156). On the mode of occurrence of such leaves, Mr Brown remarks:

"The shales are the most prolific in plants, especially those which form the roofs of the coal-seams. It is singular that not even a trace

Fig. 156.—Foliage from the Coal formation.

† This does not apply to the Coal formation of Picton, where ferns, Cordaites, and Sphenophyllum are found in red shales, though rarely.
doubled up. Some beds also seem to contain one species of plant only, all others being excluded; of this we have a striking example in the argillaceous shale (No. 60): in the top of this bed, through a thickness of three inches, we find Asterophyllites foliosa, piled up layer above layer, from the base of the cliff to the crop of the bed—a distance of 200 feet—clearly proving that these plants grew on the spot. This description may give the reader some idea of the abundance and perfection of the fossil vegetation preserved in the Sydney Coal measures. As already stated also, a bed of shale in the Sydney section has afforded the finest example yet known of carboniferous rain-marks. These occur in a bed at the top of one of those bands in which the sandstones are rippled and fossils rare. At some distance below it there are mussel shales, and ten feet above a stigmaria underclay and coal. These marks then were preserved in beds formed during the transition from aquatic to terrestrial conditions, by the silting up of a lagoon or creek, and most probably on a bed daily left dry at low tide.

In a previous chapter mention was made of the curious footprints called *Rasulchnites*, as occurring in the Lower Carboniferous. In the Cape Breton Coal-field an interesting species occurs in the Coal measures (Fig. 157). The specimen from which the figure was taken was kindly presented to me by R. Brown, Esq.

Fig. 157.—*Rasulchnites Aculeus*—Dawson

Each impression consists of the casts of contiguous rounded furrows, each about one-eighth of an inch in breadth, and crossed by curved
undulations and striae, in such a manner as to give the appearance of a pinnate leaf carved in high relief. At each side of these impressions, and about a tenth of an inch distant from them, are interrupted lines, in relief in the casts, and running parallel with the casts of the furrows. The whole has exactly the appearance of the track of the swimming feet and edges of the carapace of a small Limulus, or King-crab. The tracks have also the same tortuous character with those of the modern Limulus. Limulæ have not yet occurred in the Coal formation of Nova Scotia, though they occur in rocks of this age elsewhere; but from these tracks I infer that animals of this kind lived in the Sydney Coal-field, where their remains will probably hereafter be found. I have proposed for these impressions the name R. Acadicus, in a paper on footprints of this class in the "Canadian Naturalist."

Useful Minerals of the Carboniferous District of Cape Breton County.

Coal ranks at the head of these, about 421,000 tons being raised annually from the coal beds of this district. The oldest colliery in the district is that of North Sydney, which is worked by the General Mining Association, on the north side of Sydney Harbour. The coal is shipped at the bar at North Sydney, to which place a railway has been laid. The coal from this mine is used principally for domestic fires, and for the production of steam, for which it is admirably suited.

Of the thirty-four seams included in Mr Brown's Sydney section, only four are of workable thickness; they are,—

- The Indian Cove seam, about 450 feet of vertical thickness below the main seam 4 ft. 8 in.
- The main seam 6 9
- The Lloyd's Cove seam, about 730 feet of vertical thickness above the main seam 5 0
- The Cranberry Head top seam, about 280 feet above Lloyd's Cove seam 3 8

Of these only the main seam is worked at present, at the North Sydney mines. It yields a bright, free-burning coal, giving out its heat very rapidly, and leaving a very small quantity of heavy reddish ashes. According to Professor Johnston, it yields,—

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Volatile matter</td>
<td>26-93</td>
</tr>
<tr>
<td>Fixed carbon</td>
<td>67-57</td>
</tr>
<tr>
<td>Ashes</td>
<td>5-50</td>
</tr>
</tbody>
</table>

100-000
Its steam-producing power is rather less than that of Pictou coal, being, according to the same authority, 7·01 to 1 lb., or from the temperature of 212°, 7·99 to 1 lb. It also yields less illuminating gas; and, from the presence of a little bisulphuret of iron, is more destructive to furnace bars than Pictou coal. For domestic use, however, its comparative freedom from dusty ashes more than compensates for these defects.

North-westward of Sydney, the Coal measures extend to the Little Bras d'Or, and across the east end of Boulardarie Island; but this part of the district does not appear to be productive at present, though without doubt rich in coal. To the south-east of Sydney the Coal measures extend in a series of anticlinal and synclinal bends to Miré Bay and Catalogue, and are extensively worked, though, from facts to be noted in the sequel, it will appear that their maximum productiveness is still very far from being reached. The sketch map (Fig. 158) will show the general arrangement of the measures, as far as ascertained, and the localities of the principal mines.

When the first edition of this work was published, little was known of the extension of the Coal measures along the coast of Cape Breton from Sydney to Miré, except the mere fact of the extension of the Coal formation rocks, and the occurrence in them of some workable beds, to which, however, little attention had been given; partly in consequence of the monopoly of the General Mining Association, and partly in consequence of the absence of facilities for the shipment of coal. Within the last few years, however, the whole coast has been explored by mining surveyors, and fourteen important mines have been opened or are in progress.

As in many other parts of the Carboniferous area of Acadia, the Coal formation beds are undulated along a series of anticlinal and synclinal lines, the synclinals running out at the surface as they approach the older rocks, an arrangement which has been well worked out in detail by Professor Lesley, in his reports on the district. In this way the coal rocks of Eastern Cape Breton appear as the ends of three troughs. The most eastern and narrowest is that of Cow Bay. It is separated from the second, that of Glace Bay, by an east and west anticlinal running out to the shore at North Head or Cape Granby. The Glace Bay trough is wider and shallower, and is separated from the still broader trough of Sydney by a second anticlinal running out at Lingan. In consequence of this arrangement and the inequalities of the coast line, the beds are repeated a number of times, and only a limited portion of the whole thickness of the Carboniferous system is
The Coal of the Little Bras d'Or, as known from the outcrops in this part of the field, is in the Upper Coal beds, though it is probable that the Coal extends to Miré and other points. The map (Fig. 158) shows as far as possible the various levels of outcrop of the coal, and the production of the field (Fig. 159) gives the tonnage of coal mined in the district, as well as the production of each coal mine named in the text. The Coal of this district is of the Carboniferous system, though its outcrop is at a higher level than the Carboniferous deposits of the adjacent districts, as shown in the map. The Coal is of the Upper Carboniferous series, and is known as the Little Bras d'Or Coal. The deposits are not extensive, and are of moderate thickness, but of good quality. The mining is carried on by pit methods, and the coal is shipped to the coastal towns. The mines are in the immediate vicinity of the coast, and are worked by local labor. The coal is used for fuel and coke. The map shows the location of the mines, and the lines of outcrop of the coal beds. The production of the field is given in the table.
exposed in the coast sections, but great facilities are afforded for exploring and working the beds of coal.

Professor Lesley has published (Proc. Am. Acad., Phila. 1862), a detailed section of that part of the series exposed in the vicinity of Little Glace Bay, amounting to a thickness of 907 feet. Unfortunately he gives no information as to the fossils, and appears to have been under the impression that his section includes nearly the whole of the productive Coal measures of Cape Breton, so that it is not possible to form any definite idea of the place in the series to which these beds belong. From specimens and information obtained from Mr Poole, Mr Barnes, Mr Mosely, and others, I am inclined to regard them as being in the upper part of the Middle Coal formation, the Upper Coal formation being apparently wanting or concealed under the ocean, and the Millstone-grit series appearing farther inland.

Professor Lesley's section may be condensed as follows. It commences at the headland between Burnt Head and Little Glace Bay, where the newest rocks seen on this part of the coast appear.

Shales red and gray, the latter with nodules of iron

<table>
<thead>
<tr>
<th>Shale</th>
<th>ft.</th>
<th>in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sandstone and arenaceous shale</td>
<td>85</td>
<td>6</td>
</tr>
<tr>
<td>Coal, good</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>Underclay and sandstone</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Carbonaceous shale</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Underclay</td>
<td>8</td>
<td>0</td>
</tr>
</tbody>
</table>

Coal-group 1

<table>
<thead>
<tr>
<th>Shale</th>
<th>ft.</th>
<th>in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal, soft</td>
<td>41</td>
<td>6</td>
</tr>
<tr>
<td>Coal, solid—"Hub Vein"</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Coal, hard</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Coal-group 2

<table>
<thead>
<tr>
<th>Sandstone with fossil plants</th>
<th>ft.</th>
<th>in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cannel Coal</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>Underclay</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Cannel Coal</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Underclay</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>

Coal-group 3

<table>
<thead>
<tr>
<th>Sandstones and shales</th>
<th>ft.</th>
<th>in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cannel Coal</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>Underclay</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Underclay</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

Coal-group 4

<table>
<thead>
<tr>
<th>Shale, arenaceous shale and sandstone</th>
<th>ft.</th>
<th>in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal</td>
<td>133</td>
<td>11</td>
</tr>
<tr>
<td>Shale</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Coal and carbonaceous shale</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Underclay</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Coal and sandstone</td>
<td>69</td>
<td>6</td>
</tr>
<tr>
<td>Clay</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Cannel Coal</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Underclay</td>
<td>7</td>
<td>0</td>
</tr>
</tbody>
</table>
DISTRICT OF CAPE BRETON COUNTY.

Shales and arenaceous shales

<table>
<thead>
<tr>
<th>Coal-group</th>
<th>Shale and sandstone</th>
<th>Coal</th>
<th>Sandstones and shales</th>
<th>Coal</th>
<th>Black bituminous shale</th>
<th>Underclay</th>
<th>Shales foliated</th>
<th>Sandstone and fire-clay</th>
<th>Coal, "Harbour Vein"</th>
<th>Underclay</th>
<th>Shales, sandstones, and fire-clay</th>
<th>Coal, "Reder's Vein"</th>
<th>Sandstones, shales, and fire-clay with nodules of Ironstone</th>
<th>Coal, "Back Pit"</th>
<th>Sandstone and shale—Stigmia, Neuroptera, Cordaites</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>Sandstones and shales</td>
<td></td>
<td>Black bituminous shale</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>Black bituminous shale</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Iron ore</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Coal</td>
<td></td>
</tr>
</tbody>
</table>

The above section is thus continued in descending order by the following, kindly furnished by H. Poole, Esq., from the Engine Pit at the Caledonia Mine:

- Gray sandstone underlaid by seven inches of gray shale with fossils
- Coal
- Black shale with fossils
- Gray sandstones with Stigmia, underlaid by dark gray shale ten inches
- Coal with partings of shale and fire-clay "Back Pit" Seam
- Hard gray sandstone
- Gray sandstone with beds of fire-clay—Stigmia
- Coal two to nine inches
- Dark gray sandstone—Stigmia

* According to Mr. Poole, the perpendicular distance between Coal-groups 12 and 13 is 135 feet, and there are two coals, each one foot thick, in the interval.
THE CARBONIFEROUS SYSTEM.

Coal-black shale, fossils 0 2
Coal-black shale—\textit{Sigillaria} 0 9
Coal-black shale, fossils 0 1
Coal-black shale, fossils 0 1
Coal-black shale, fossils 0 4

Sandstone, shale and calcareo-bituminous shale, with \textit{Lepidodendra, Cordaites, Sigillaria,} and \textit{Stigmaria}—also shells of \textit{Nautilites, Spirorbis,} and \textit{Cypriods} 14 7

Coal-group 17...
Coal-group 18... Coal “Phelan Seam” 8 3
Coal-group 18... Dark gray sandstone—\textit{Stigmaria} 4 1

In all, 178 feet.

The Phelan bed is, on the best evidence, identified with the Bridgport or Liugan bed on the west, and the M’Aulay bed at Cow Bay on the east. Assuming this to be correct, the following table gives the continuation of the section, as shown in a MS. report of Mr Mosely of Halifax, kindly communicated to me by Mr Joseph B. Moore:

Coal-group 19	Sandstones and shales	100 0
Coal-group 20	Measures not described	42 0
Coal-group 21	Measures not described	63 0
Coal-group 22	Sandstones, shales, and ironstone	58 0
Coal-group 23	Coal “M’Phail or M’Rury Seam”	5 6
Coal-group 24	Sandstone and shale	100 0
Coal-group 25	Measurements	3 0
Coal-group 26	Measures not described	92 0
Coal-group 27	Measurements	50 0

* In Mr Lyman’s Report, the latter part of this section is given somewhat differently, as follows:

M’Rury coal	4 ft. 4 in. to 5 ft. 4 in.
Measures undescribed	150 0
Coal (two feet bed)	1 ft. 9 in. to 2 3
Measures undescribed, about	100 0
Coal (eighteen-inch bed)	1 6
Measures undescribed, about	100 0
Coal (“Long Beach Bed”)	2 10
Measures undescribed	2400 0
Coal (“Tracy Bed”)	4 12

The bed three feet thick about 100 feet below the M’Rury Seam appears to have been discovered after the publication of Lyman’s Report; and Mr Poole mentions a bed one foot thick as occurring between the former and the “M’Rury.”
Below this last bed, the Coal measures continue to occupy the country for some distance, and a bed 4 feet thick, the "Gardener Coal," occurs 330 feet lower. At a distance estimated by Mr. Lyman at 2400 feet below the Long Beach Seam, or about 2130 feet below coal No. 29, mentioned above, occurs a bed of good coal, three feet eight inches and a quarter in thickness, or, including a clay parting, which appears in some portions, but not in others, four feet one inch and a half. It is called the "Tracey Seam." Another seam is indicated in Mr. Poole's and Mr. Mosely's plans, between the "Tracey" and seam 29 above, and 435 to 460 feet above the former; but I have no information in respect to it. The Tracey bed is now worked on the peninsula between Cow and Miré Bays, and is the most eastern coal worked in this coal-field. To the southward of it, however, and at a distance representing at least a thousand feet of beds, there is said to be—till another coal known as the "Spencer Seam," before we reach the beginning of the Millstone-grit series, which would thus seem to be at least 4500 feet below the newest beds seen near Glace Bay.

An important question arises here as to the equivalency of any of these beds with the Coal measures of North Sydney. Mr. R. Brown, in the remarks prefixed to his section of the Sydney Coal-field in 1849, states his belief that the beds at Glace Bay are newer than those of North Sydney. Mr. Lesley, on the other hand, regards them as equivalent. After a careful comparison of the several sections, I confess that I think the view of Mr. Brown the more probable; more especially as it places these beds more intelligibly in relation with the members of the Lower Carboniferous seen farther inland, and with the other coal-fields of Nova Scotia. From Mr. Brown's section, it would appear that the Sydney main coal is only about 800 feet above the beginning of the Millstone-grit formation; and one considerable bed, the Indian Cove seam, of 4 feet 8 inches in thickness, occurs in this interval with a thickness of 350 feet between it and the Millstone-grit. Now, as the latter formation is not brought to the surface by either of the anticlinals between Sydney and Miré, and does not appear for some distance up Miré Bay, it seems plain that the only beds in our sections...
which can represent the Sydney main coal and the Indian Cove seam, must be the Tracey and Spence beds, or beds associated with them, and not yet well known.* In this case the whole of the upper beds at Cow Bay and Glace Bay beds must actually overlie the Cranberry Head seam at Sydney, which may be about the horizon of the Phelan bed. The only supposition which would enable us to arrive at any other conclusion is, that the 2000 feet of thickness between the six-feet bed and Tracey bed represent the Millstone-grit of Mr Brown; but as that careful observer mentions no beds of coal under the Millstone-grit, and states that a continuous section of 5400 feet of Coal measures exists on the north side of Boullardarie Island, this is scarcely possible.

In this view of the case, then, the total thickness of Coal measures from the Millstone-grit to the newest beds between Glace Bay and Lingan cannot be less than 4500 to 5000 feet, and may be more; and it is probable that several important coals not yet known exist in the lower part of these measures.

In comparison with the Joggins section, it would appear that we have in these Coal measures of Cape Breton a complete equivalent of Divisions 3 and 4 of the former section, with a greater aggregate thickness of coal; and if we make allowance for the probability that many of the smaller beds in Cape Breton have not been noticed by explorers, probably quite as many beds of coal.

It is a matter of some practical importance that the question raised by the discrepancy of the views of Mr Brown and Mr Lesley above stated should be definitely settled by the actual tracing of some of the beds above referred to into connexion with the Sydney area. If Mr Brown's view should prove correct, the available coal of the district will be double that represented by Lesley, and other and very valuable discoveries may be anticipated in the country between Miré Bay and Sydney Harbour.

From the Report of the Commissioner of Mines for 1866, it appears that there are fourteen distinct mining establishments now operating in the Coal-field of Eastern Cape Breton, and producing an aggregate of more than 400,000 tons of coal annually, or nearly two-thirds of the whole quantity raised in the province of Nova Scotia, so that this is now the most important coal-mining district in the Acadian provinces.

Some of the coals of this district are of remarkable purity, in so far

* Mr Mosely, in a letter to the author, mentions some strong reasons for believing that the Tracey bed is the equivalent of Mr Brown's third seam, or Indian Cove seam at Sydney, and that a bed seen at Black Brook, head of Cow Bay, is the Sydney main seam, being at the same vertical distance above the Tracey that the Sydney main is above the Indian Cove seam.
as freedom from ash is concerned; and that of Lingan is remarkable for its large yield of illuminating gas. I am indebted to Mr Poole for the following table of results of assays of the coal of the Caledonia Mine:

Wayland Seam, Caledonia Coal Mine, Glace Bay, Cape Breton, November 1866.

<table>
<thead>
<tr>
<th>Number of Sample</th>
<th>Depth in Seam Ft. in.</th>
<th>Specific Gravity</th>
<th>Vol. Matter</th>
<th>Coke</th>
<th>Carbon</th>
<th>Ash</th>
<th>Colour of Ash</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 6</td>
<td>1:365</td>
<td>33:412</td>
<td>66:588</td>
<td>69:880</td>
<td>5:708</td>
<td>Pale brown</td>
</tr>
<tr>
<td>2</td>
<td>1 6</td>
<td>1:433</td>
<td>30:408</td>
<td>69:992</td>
<td>51:771</td>
<td>17:821</td>
<td>Pale brown</td>
</tr>
<tr>
<td>¼ in. parting, 6</td>
<td>5 3</td>
<td>1:452</td>
<td>30:700</td>
<td>69:281</td>
<td>45:705</td>
<td>23:586</td>
<td>White</td>
</tr>
<tr>
<td>7</td>
<td>5 6</td>
<td>1:296</td>
<td>36:728</td>
<td>63:272</td>
<td>58:494</td>
<td>47:78</td>
<td>Light brown</td>
</tr>
<tr>
<td>9</td>
<td>7 6</td>
<td>1:311</td>
<td>34:225</td>
<td>65:775</td>
<td>57:772</td>
<td>8:908</td>
<td>Brown</td>
</tr>
<tr>
<td>Total...</td>
<td>8 0</td>
<td>12:087</td>
<td>29:4765</td>
<td>60:235</td>
<td>50:647</td>
<td>100:588</td>
<td></td>
</tr>
<tr>
<td>Average...</td>
<td>1:329</td>
<td>33:007</td>
<td>66:993</td>
<td>57:368</td>
<td>9:625</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Clay Ironstone, in nodules, occurs in several of the shales of the Sydney section, and is also present in large quantity in the Coal measures of Glace Bay, but I have no information respecting its probable industrial value.

Limestone and Gypsum, as already mentioned, abound in a number of places, but are not extensively worked. An altered limestone, which extends from the neighbourhood of Long Island, on the Little Bras d’Or, toward the East Arm, affords a gray and white **Marble. Freestone and Grindstone** are also quarried, though in small quantity.

Plants from Glace Bay.

Since writing the chapter on the Cape Breton Coal-field, I have received from Mr. Poole, Esq., a collection of plants from the Coal measures of Glace Bay; among which I recognise the following forms:—

- **Cyperites.**
- **Trigonoecarpum.**
- **Alethopteris Serlii.**
- **Alethopteris allied to Grandini.**
- **Alethopteris nervosa.**
- **Alethopteris lonchitica.**
Pecopteris oreopteroides (?) Neuropteris auriculata.
Pecopteris Dournaisii, or allied. Sphenopteris decipiens (?)
Neuropteris flexuosa. Cyclopterus simbriata.
Neuropteris rarinervis.

Asterophyllites equisetiformis.
Sphenophyllum—a species with seven or eight long narrow leaflets, each with about eight nerves. I have fragments of the same from Sydney. It is probably new, and is certainly different from the other species referred to in the text. It may be named S. Pooli.

Cordaites borassifolia. Lepidodendron like tetragonum.
Lepidodendron elegans. Lepidophyllum lanceolatum.

Associated with these plants are abundant valves of Naiadites elongatus, and also scales of small ganoid fishes and cyprids.

The flora represented by this collection is very like that of Sydney, more especially in the number of ferns and the species of those present; and it is probable that this resemblance will be found to extend throughout the Coal-field of Eastern Cape Breton. It is a strictly Middle Coal formation assemblage, though having the facies of the upper part of that series, to which the Glace Bay beds would, on stratigraphical grounds, be referred.
CHAPTER XX.

THE CARBONIFEROUS SYSTEM—Continued.

THE FLORA OF THE COAL FORMATION.

I have already endeavoured to introduce the reader into the jungles and forests of Carboniferous Acadia; but in order that he may fully appreciate the nature of the wondrous vegetation of that ancient time, the producer of all our stores of mineral fuel, it will be necessary that we shall pass in review the several genera of Coal formation plants, and endeavour so to restore them that, in imagination, we may see them growing before us, and fancy ourselves walking beneath their shade.

While thus endeavouring to introduce the ordinary reader and the student of Geology and Palaeontology to an acquaintance with the Coal Flora, I shall take advantage of the abundant material within my reach to restore some of the species more completely than has hitherto been possible, and thus to present to geologists what I trust may prove a more full and accurate synopsis of the leading features of the Carboniferous Flora than any at present accessible.

The modern flora of the earth admits of a grand twofold division into the Phanogamous, or flowering and seed-bearing plants, and the Cryptogamous, or flowerless and spore-bearing plants. In the former series, we have, first, those higher plants which start in life with two seed-leaves, and have stems with distinct bark, wood, and pith—the Exogens; secondly, those simpler plants which begin life with one seed-leaf only, and have no distinction of bark, wood, and pith, in the stem—the Endogens; and, thirdly, a peculiar group starting with two or several seed-leaves, and having a stem with bark, wood, and pith, but with very imperfect flowers, and wood of much simpler structure than either of the others—the Gymnosperms. To the first of these groups or classes belong most of the ordinary trees of temperate climates. To the second belong the Palms and other trees found in tropical climates. To the third belong the Pines and Cycads. In the second or Cryptogamous series we have also three classes,—(1.) The Aerogens, or ferns and club-mosses, with stems having true vessels marked on the sides.
with cross bars—the scalariform vessels. (2.) The Anophytes, or mosses and their allies, with stems and leaves, but no vessels. (3.) The Thallophytes, or lichens, fungi, sea-weeds, etc., without true stems and leaves.

In the existing climates of the earth we find these classes of plants variously distributed as to relative numbers. In some, pines predominate. In others, palms and tree-ferns form a considerable part of the forest vegetation. In others, the ordinary exogenous trees predominate, almost to the exclusion of others. In some Arctic and Alpine regions mosses and lichens prevail. In the Coal period we have found none of the higher Exogens, and only a few obscure indications of the presence of Endogens; but Gymnosperms abound, and are highly characteristic. On the other hand, we have no mosses or lichens, and very few algae, but a great number of ferns and Lycopodiaceae or club-mosses. Thus the Coal formation period is botanically a meeting place of the lower Phenogams and the higher Cryptogams, and presents many forms which, when imperfectly known, have puzzled botanists in regard to their position in one or other series. In the present world, the flora most akin to that of the Coal period is that of moist and warm islands in the southern hemisphere. It is not properly a tropical flora, nor is it the flora of a cold region, but rather indicative of a moist and equable climate. Still we must bear in mind that we may often be mistaken in reasoning as to the temperature required by extinct species of plants differing from those now in existence. Farther, we must not assume that the climatal conditions of the northern hemisphere were in the Coal period at all similar to those which now prevail. As Sir Charles Lyell has shown, a less amount of land in the higher latitudes would greatly modify climates, and there is every reason to believe that in the Coal period there was less land than now. Farther, it has been shown by Tyndall that a very small additional amount of carbonic acid in the atmosphere would, by obstructing the radiation of heat from the earth, produce almost the effect of a glass roof or conservatory, extending over the whole world. Again, there is much in the structure of the leaves of the Coal plants, as well as in the vast amount of carbon which they accumulated in the form of coal, and the characteristics of the animal life of the period, to indicate, on independent grounds, that the carboniferous atmosphere differed from that of the present world in this way, or in the presence of more carbonic acid,—a substance now existing in the very minute proportion of less than one-thousandth of the whole, a quantity adapted to the present requirements of vegetable and animal life, but probably not to those of the Coal period.
We shall commence our survey of the Coal flora with the higher forms of plant-life, which are also those most akin to the plants of the present world.

CLASS OF GYMNOSPERMS.

1. Conifera or Pines.

Four species of pines have been recognised in the Coal formation of Nova Scotia and New Brunswick. They are known principally as drift trunks imbedded in the sandstones, and these are so abundant as to indicate that extensive pine forests existed, perhaps principally in the uplands, higher than the Coal swamps. The trunks are also frequently so well preserved, owing to the infiltration of carbonate of lime or silica into their cells, that their most minute structures can be observed as readily as in the case of recent wood. They may all be included in the genus Dadoxylon, a name which means simply pine-wood. The wood of these trees, however, more resembles that of the Araucarian pines of the southern hemisphere than that of our ordinary pines.

One of the species, *D. antiquus*, is closely allied to *D. Withami* of Great Britain, and, like that species, belongs to the Lower Carboniferous Coal measures. Its structure is of that character for which Brongniart proposed the generic name "Paleoxylon." Another species, *D. Acadianum*, is found abundantly at the Joggins and elsewhere in the condition of drifted trunks imbedded in the sandstone of the lower part of the Coal formation and the upper part of the Millstone-grit series. The third species, *D. materialium*, is very near to *D. Brandlingii* of Great Britain, and may possibly be only a variety. It is especially abundant in the sandstone of the Upper Coal formation, in which vast numbers of drifted trunks of this species occur in some places. The fourth species, *D. annulatum*, presents a very peculiar structure, probably of generic value. It has alternate concentric rings of discigerous woody tissue, of the character of that of *Dadoxylon*, and of compact structureless coal, which either represents layers of very dense wood or, more likely, of coryc cellular tissue. In the latter case, the structure would have affinities with that of certain Gnetaceae or jointed pines, and of Cycads.

Though coniferous trees usually occur as decorticated and prostrate trunks, I have recorded the occurrence of one erect specimen, in a sandstone a little above the "Main Coal," at the Joggins. It probably belonged to the species last named. Tissues of coniferous trees are very rare in the coal itself. Most of the tissues marked with discs on the cells like those of pines, found in the coal, belong to Sigillaria and

* Ancient wood.
Calamodendron. From the abundance of coniferous trees in sandstones above and below the coal, and their comparative absence in the coal and coal-shales, it may be inferred that these trees belonged rather to the uplands than to the coal-swamps; and the great durability and small specific gravity of coniferous wood would allow it to be drifted, either by rivers or ocean-currents, to very great distances. I am not aware that the fruits of pine-trees occur, unless some of those called Trigonocarpa are of this character. Nor has any foliage of these trees been found, except at Tatamagouche, in the continuation of the Upper Coal formation, where I have found leafy branchlets which I have named Araucarites gracilis, and which may possibly have belonged to Dadoxylon materiarium.

The casts or pith-cylinders known as Sternbergia are abundant in some of the sandstones, especially in the Upper Coal formation. I have shown that in Nova Scotia, as in England, some of these singular casts belong to Dadoxylon;* but as the pith-cylinder of Sigillaria and of Lepidophloios was of a similar character, those which are destitute of woody investment cannot be determined with certainty, though in general the transverse markings are more distant in the Sternbergia of Sigillaria and Lepidophloios than in those of Dadoxylon.

In a paper communicated to the Geological Society of London in 1846, to which Professor Williamson, in his able Memoir in the Manchester Transactions (vol. ix., 1851), assigns the credit of first suggesting that connexion between these curious fossils and the conifers which he has so successfully worked out, I stated my belief that those specimens of Sternbergia which occur with only thin smooth coatings of coal might have belonged to rush-like endogens; while those to which fragments of fossil wood were attached presented structures resembling those of conifers. These last were not, however, so well preserved as to justify me in speaking very positively as to their coniferous affinities. They were also comparatively rare; and I was unable to understand how casts of the pith of conifers could assume the appearance of the naked or thinly coated Sternbergia. Additional specimens, affording well-preserved coniferous tissue, have removed these doubts, and, in connexion with others in a less perfect state of preservation, have enabled me more fully to comprehend the homologies of this curious structure, and the manner in which specimens of it have been preserved independently of the wood.

My most perfect specimen is one from the coal-field of Pictou.†

† Presented to me by Mr Hogg of Pictou Island.
Araucarites and Dadoxylon.

A, Araucarites gracilis; reduced.
B, Dadoxylon Acadanum (radial), 90 diams.
B', Do. do. (tangential), 90 diams.
B'', Do. do. cell showing areolation, 250 diams.
C, Dadoxylon materiarium (radial), 90 diams.
C', Do. do. (tangential), 90 diams.
C'', Do. do. cell showing areolation, 250 diams.
D, Dadoxylon antiquius (radial), 90 diams.
D', Do. do. (tangential), 90 diams.
D'', Do. do. cell showing areolation, 250 diams.
(Fig. 160). It is cylindrical, but somewhat flattened, being one inch and two-tenths in its least diameter, and one inch and seven-tenths in its greatest. The diaphragms, or transverse partitions, appear to have been continuous, though now somewhat broken. They are rather less than one-tenth of an inch apart, and are more regular than is usual in these fossils. The outer surface of the pith, except where covered by the remains of the wood, is marked by strong wrinkles, corresponding to the diaphragms. The little transverse ridges are in part coated with a smooth tissue similar to that of the diaphragms, and of nearly the same thickness.

Fig. 160.—Sternbergia Pith of Dadoxylon.

When traced around the circumference or toward the centre, the partitions sometimes coalesce and become double, and there is a tendency to the alternation of wider and narrower wrinkles on the surface. In these characters and in its general external aspect, the specimen perfectly resembles many of the ordinary naked Sternbergia.

On microscopic examination, the partitions are found to consist of condensed pith, which, from the compression of the cells, must have been of a firm bark-like texture in the recent plant (Fig. 160; F). The wood attached to the surface, which consists of merely a few small splinters, is distinctly coniferous, with two and three rows of discs on
the cell walls (C, c). It is not distinguishable from that of *Pinites* (Dadoxylon) *Brandingii* of Witham, or from that of the specimens figured by Professor Williamson. The wood and transverse partitions are perfectly silicified, and of a dark-brown colour. The partitions are coated with small colourless crystals of quartz and a little iron pyrites, and the remaining spaces are filled with crystalline laminae of sulphate of barytes.

Unfortunately this fine specimen does not possess enough of its woody tissue to show the dimensions or age of the trunk or branch which contained this enormous pith. It proves, however, that the pith itself has not been merely dried and cracked transversely by the elongation of the stem, as appears to be the case in the Butternut (*Juglans cinerea*), and some other modern trees, but that it has been condensed into a firm epidermis-like coating and partitions, apparently less destructible than the woody tissue which invested them. In this specimen the process of condensation has been carried much farther than in that described by Professor Williamson, in which a portion of the unaltered pith remained between the Sternbergia cast and the wood. It thus more fully explains the possibility of the preservation of such hollow-chambered piths after the disappearance of the wood. It also shows that the coaly coating investing such detached pith-casts is not the medullary sheath, properly so called, but the outer part of the condensed pith itself.

The examination of this specimen having convinced me that the structure of *Sternbergia* implies something more than the transverse cracking observed in *Juglandaceae*, I proceeded to compare it with other piths, and especially with that of *Cecropia peltata*, a West Indian tree, of the natural family *Artocarpaceae*, a specimen of which was kindly presented to me by Professor Balfour of Edinburgh, and which I believe has been noticed by Dr Fleming, in a paper to which I have not had access. This recent stem is two inches in diameter. Its medullary cylinder is three-quarters of an inch in diameter, and is lined throughout with a coating of dense whitish pith tissue, one-twentieth of an inch in thickness. This condensed pith is of a firm corky texture, and forms a sort of internal bark lining the medullary cavity. Within this the stem is hollow, but is crossed by arched partitions, convex upward, and distant from each other from three-quarters to one and a quarter inch. These partitions are of the same white corky tissue with the pith lining the cavity; and on their surfaces, as well as on that of the latter, are small patches of brownish large-celled pith, being the remains of that which has disappeared from the intervening spaces. Each partition corresponds with the upper margin of one of the large
triangular leaf-scars, arranged in quincunxial order on the surface of the stem.

Inferring from these appearances that this plant contains two distinct kinds of pith tissue, differing in duration and probably in function, I obtained, for comparison, specimens of living plants of this and allied families. In some of these, and especially in a species labelled "Ficus imperialis," from Jamaica, I found the same structure; and in the young branches, before the central part of the pith was broken up, it was evident that the tissue was of two distinct kinds: one forming the outer coating and transverse partitions opposite the insertions of the leaves, and retaining its vitality for several years at least; the other, occupying the intervening spaces or internodes, of looser texture, speedily drying up, and ultimately disappearing.

The trunks above noticed are of rapid growth, and have large leaves; and it is probable that the more permanent pith tissue of the medullary lining and partitions serves to equalize the distribution of the juices of the stem, which might otherwise be endangered by the tearing of the ordinary pith in the rapid elongation of the internodes. A similar structure has evidently existed in the Coal formation conifers of the genus Dadoxylon, and possibly they also were of rapid growth and furnished with very large or abundant leaves.

Applying the facts above stated to the different varieties or species of Sternbergia, we must, in the first place, connect with these fossils such plants as the Pinites medullaris of Witham. I have not seen a longitudinal section of this fossil, but should expect it to present a transverse structure of the Sternbergia type. The first specimen described by Professor Williamson represents a second variety, in which the transverse structure is developed in the central part of the pith, but not at the sides. In my Pictou specimen the pith has wholly disappeared, with the exception of the denser outer coating and transverse plates. All these are distinctly coniferous, and the differences that appear may be due merely to age, or more or less rapid growth.

Other specimens of Sternbergia want the internal partitions, which may, however, have been removed by decay; and these often retain very imperfect traces, or none, of the investing wood. In the case of those which retain any portion of the wood sufficient to render probable their coniferous character, the surface markings are similar in character to those of my Pictou specimen, but often vary greatly in their dimensions, some having fine transverse wrinkles, others having these wide and coarse. Of those specimens which retain no wood, but only a thin coaly investment representing the outer pith, many cannot be distinguished by their superficial markings from those that
are known to be coniferous, and they occasionally afford evidence that we must not attach too much importance to the character of their markings. A very instructive specimen of this kind from Ohio, with which I have been favoured by Professor Newberry, has in a portion of its thicker end very fine transverse wrinkles, and in the remainder of the specimen much coarser wrinkles. This difference marks, perhaps, the various rates of growth in successive seasons, or the change of the character of the pith in older portions of the stem.

The state of preservation of the Sternbergia casts, in reference to the woody matter which surrounded them, presents, in a geological point of view, many interesting features. Professor Williamson's specimen I suppose to be unique, in its showing all the tissues of the branch or trunk in a good state of preservation. More frequently, only fragments of the wood remain, in such a condition as to evidence an advanced state of decay, while the bark-like medullary lining remains. In other specimens, the coaly coating instead of the cast sends forth flat expansions on either side, as if the Sternbergia had been the midrib of a long thick leaf. This appearance, at one time very perplexing to me, I suppose to result from the entire removal of the wood by decay, and the flattening of the bark, so that a perfectly flattened specimen may be all that remains of a coniferous branch nearly two inches in diameter. A still greater amount of decay of woody tissue is evidenced by those Sternbergia casts which are thinly coated with structureless coal. These must, in many cases, represent trunks and branches which have lost their bark and wood by decay; while the tough cork-like chambered pith drifted away to be imbedded in a separate state. This might readily happen with the pith of Cecropia; and perhaps that of these coniferous trees may have been more durable; while the wood, like the sap-wood of many modern pines, may have been susceptible of rapid decay, and liable, when exposed to alternate moisture and dryness, to break up into those rectangular blocks which are seen in the decaying trunks of modern conifers, and are so abundantly scattered over the surfaces of coal and its associated beds in the form of mineral charcoal.

Some specimens of Sternbergia appear to show that they have existed in the interior of trunks of considerable size. I have observed one at the South Joggins, which appears to show the remains of a tree a foot in diameter, now flattened and converted into coal, but retaining a distinct cast of a wrinkled Sternbergia pith. (Fig. 160, E.)

Are we to infer from these facts that the wood of the trees of the genus Dadoxylon was necessarily of a lax and perishable texture? Its structure, and the occurrence of the heart-wood of huge trunks of
similar character in a perfectly mineralized condition, would lead to a different conclusion; and I suspect that we should rather regard the mode of occurrence of Sternbergia as a caution against the too general inference, from the state of preservation of trees of the Coal formation, that their tissues were very destructible, and that the beds of coal must consist of such perishable materials. The coniferous character of the Sternbergia, in connexion with their state of preservation, seems to strengthen a conclusion at which I have been arriving from microscopic and field examinations of the coal and carbonaceous shales, that the thickest beds of coal, at least in Eastern America, consist in great part of the flattened bark of coniferous, sigillarioid, and lepidodendroid trees, the wood of which has perished by slow decay, or appears only in the state of fragments and films of mineral charcoal. This subject, however, will be introduced in the next section of this chapter. In my researches in microscopic coal structures, I have also ascertained that some Sternbergia are pith cylinders of Sigillaria. (Fig. 161, M).

The most abundant locality of Sternbergia with which I am acquainted occurs in the neighbourhood of the town of Pictou, immediately below the bed of erect calamites described in the Journal of the Geological Society (vol. vii., p. 194). The fossils are found in interrupted beds of very coarse sandstone, with calcareous concretions, imbedded in a thick reddish brown sandstone. These gray patches are full of well-preserved Calamites, which have either grown upon them, or have been drifted in clumps with their roots entire. The appearances suggest the idea of patches of gray sand rising from a bottom of red mud, with clumps of growing Calamites which arrested quantities of drift plants, consisting principally of Sternbergia and fragments of much decayed wood and bark, now in the state of coaly matter, too much penetrated by iron pyrites to show its structure distinctly. We thus probably have the fresh growing Calamites entombed along with the debris of the old decaying conifers of some neighbouring shore; furnishing an illustration of the truth, that the most ephemeral and perishable forms may be fossilized and preserved contemporaneously with the decay of the most durable tissues. The rush of a single summer may be preserved with its minutest striæ unharmed, when the giant pine of centuries has crumbled into dust or disappeared.

2. Sigillariaceæ or Sigillarioid Trees.

1. Genus Sigillaria.—The Sigillaria, so named from the seal-like scars of fallen leaves stamped on their bark, were the most important of all the trees of the coal-swamps, and those which contributed most
largely to the production of coal. Let us take as an example of them a species very common at the Joggins, and which I have named *S. Brownii*, in honour of my friend, Mr R. Brown of Sydney. Imagine a tall cylindrical trunk spreading at the base, and marked by perpendicular rounded ribs giving it the appearance of a clustered or fluted column. These ribs are marked by rows of spots or pits left by fallen leaves, and toward the base they disappear, and the bark becomes rough and uneven, but still retains obscure indications of the leaf-scars, widened transversely by the expansion of the stem. At the base the trunk spreads into roots, but with a regular bifurcation quite unexamined in modern trees, and the thick cylindrical roots are marked with round sunken pits or areoles, from which spread long cylindrical rootlets. These roots are the so-called *Stigmaria*, at one time regarded as independent plants, and, as the reader may have already observed, remarkable for their constant presence in the underclays of the coal-beds. Casting our eyes upward, we find the pillar-like trunk, either quite simple or spreading by regular bifurcation into a few thick branches, covered with long narrow leaves looking like grass, or, more exactly, like pine leaves greatly increased in size, or, more exactly still, like single leaflets of the leaves of Cycads. Near the top, if the plant were in fruit, we might observe long catkins of obscure flowers or strings of large nut-like seeds, borne in rings or whorls encircling the stem. If we could apply the woodman's axe to a *Sigillaria*, we should find it very different in structure from that of our ordinary trees, but not unlike that of the Cycads, or false sago-plants of the tropics. A lumber-man would probably regard it as a tree nearly all bark, with only a slender core of wood in the middle; and, botanically, he would be very near the truth. The outer rind or bark of the tree was very hard. Within this was a very thick inner bark, partly composed of a soft corky cellular tissue, and partly of long tough fibrous cells like those of the bark of the cedar. This occupied the greater part of the stem even in old trees four or five feet in diameter. Within this we would find a comparatively small cylinder of wood, not unlike pine in appearance, and even in its microscopic structure; and in the centre a large pith, often divided, by the tension caused in the growth of the stem, into a series of horizontal tables or partitions. Such a stem would have been of little use for timber, and of comparatively small strength. Still the central axis of wood gave it rigidity, the surrounding fibres, like cordage, gave the axis support, and the outer shell of hard bark must have contributed very materially to the strength of the whole. Growing as these trees did in swampy flats close together, and the bark of which they were chiefly composed being less
THE CARBONIFEROUS SYSTEM.

Fig. 161.—Sigillaria.

A, Sigillaria Brownii, restored. For other illustrations of this species, see Fig. 30.
B, S. elegans, restored.
C, Portion of decorticated stem, showing one of the transverse bands of fruit-scars.
D, Portion of stem and branch reduced, and scars nat. size.
E, Cross section of Sigillaria Brownii, reduced, and portion at (M) natural size. (a) Strombergia pith, (b) Inner cylinder of scalariform vessels. (c) Outer cylinder of discigerous cells, with medullary rays and bundles of scalariform vessels going to the leaves at (d). (e) Inner bark. (f) Outer bark.
G, Scalariform vessel magnified.
H, S. eminos, reduced. (H') Areole, half nat. size.
I, S. catenoides, half nat. size.
J, S. scutellata, nat. size.
susceptible of rapid decay than most kinds of wood, and too impervious to fluids to be readily penetrated by mineral matter, they were admirably fitted for the production of the raw material of coal.

I have endeavoured to represent the structures above referred to in Fig. 161.

The species to which I have referred was only one of many more or less resembling it, but differing in details; and according to these special differences, they may be arranged in the following genera, which may, however, be much modified by the progress of discovery. Opposite each genus I have given the species representing it in Nova Scotia.

(1.) *Favularia, Sternberg* . . . Sigillaria elegans, Brongn.
 - tessellata, Brongn.
 - Bretonensis, Dawson.
(2.) *Rhytidolepis, Sternberg* . . . Sigillaria elegans, Brongn.
 - scutellata, Brongn.
 - Schlothoehimana, Brongn.
 - Soullii, Brongn.
 - Doumaisii, Brongn.
 - Knorrii, Brongn.
 - pachyderma, Brongn.
 - flexuosa, L. & H.?
 - elongata, Brongn.
(3.) *Sigillaria, Brongn.* . . . Sigillaria elegans, Brongn.
 - reniformis, Brongn.
 - Brownii, Dawson.
 - lavigata, Brongn.
 - planicosta, Dawson.
 - catenoides, Dawson.
 - striata, Dawson.
 - eminens, Dawson.
(4.) *Clathraria, Brongn.* . . . Sigillaria elegans, Brongn.
(5.) *Leioderma, Goldenb.* . . . Sigillaria elegans, Brongn.
 (Astanus, Wood).
(6.) *Syringodendron, Sternb.* . . . organum, L. & H.

Of these, seven are probably new species, and the remainder can be identified with reasonable certainty with European species. The differences in the markings in different parts of the same tree are, however, so great, that I regard the greater part of the recognised species of *Sigillaria* as merely provisional. Even the generic limits may be overpassed when species are determined from hand specimens. A fragment of the base of an old trunk of *Sigillaria* proper would necessarily be placed in the genus *Leioderma*, and a young branch of
The Carboniferous System.

Favularia has all the characters of the genus Clathraria. It is, however, absolutely necessary to make some attempt at generic distinction among the diverse forms included in the genus Sigillaria; otherwise it will be impossible to reconcile the conflicting statements of authors as to the dimensions, habit of growth, foliage, roots, and fructification of these singular plants; such statements usually applying to one or more of the subordinate generic types. I shall therefore notice separately, and with especial reference to their function in the production of coal, the several generic or subgeneric forms, beginning with that which I regard as the most important—namely, Sigillaria proper, of which, in Nova Scotia, I regard the species which I have named S. Brownii as the type. Other species are represented in Figs. 161, B to K.

In the restricted genus Sigillaria the ribs are strongly developed, except at the base of the stem; they are usually much broader than the oval or elliptical tripunctate areoles, and are striated longitudinally. The woody axis has both discigerous and scalariform tissues, arranged in wedges, with medullary rays as in exogens;* the pith is transversely partitioned in the manner of Sternbergia; and the inner bark contains great quantities of long and apparently very durable fibres, which I have, in my descriptions of the structures in the coal, named "bast tissue." The outer bark was usually thick, of dense and almost indestructible cellular tissue. The trunk when old lost its regular ribs and scars, owing to expansion, and became furrowed like that of an old exogenous tree. The roots were Stigmatites of the type of S. ficoides. (Fig. 30, d, p. 180.) I have not seen the leaves or fruits attached; but, from the association observed, I believe that the former were long, narrow, rigid, and two-or-three-nerved (Cyperites), and that the latter were Trigonocarpa, borne in racemes on the upper part of the stem. These trees attained to a great size. I have seen one trunk four feet in diameter, and specimens of two feet or more in diameter are common: some of these trunks have been traced for thirty or forty feet without branching. The greater number of the erect stumps preserved at the Joggins appear to belong to this genus, which also seems to have contributed very largely to the formation of coal. Judging from the paucity of their foliage, the density of their tissues, and the strong structural resemblance of their stems and roots to those of Cycads, I believe that their rate of growth must have been very slow.

The genus Rhytidolepis, in which the areoles are large, hexagonal, and tripunctate, and the ribs narrow and often transversely striate, ranks as a coal-producer next to Sigillaria proper, and is equally

THE FLORA OF THE COAL FORMATION.

abundant in the Coal measures. These trees seem to have been of smaller size and feebler structure than the last mentioned, and are less frequently found in the erect position; but they are very abundant on the roofs of the coal beds. Judging from such specimens as I have seen, their roots were less distinctly stigmarioid than in the last genus, though this appearance may arise from difference of preservation. Their leaves were of the same type as in the last genus; and their stems bear rings of irregular tears, which may mark stages of growth, or the production of slender racemes of fruit in a verticillate manner. The woody axis of the stems of this genus was composed of scalariform and coarsely porous tissues, much like those of modern Cycads. I figure, as an illustration of the genus, a fragment of S. Bretonensis (Fig. 161, F).

The genus Favularia is represented in Nova Scotia principally by the typical species S. elegans of Brongniart. The admirable investigations of the structure of the stem of this species by Brongniart, with the further illustrations given by Corda, Hooker, and Goldenberg, still afford the best general views of the structure of Sigillaria which we possess. It is to be observed, however, that Brongniart's specimen was a young stem or a branch, and that it affords a very imperfect idea of the development of discigerous and bast tissues in the full-grown stems of Sigillaria proper. The trees of this genus appear to have been of small growth; and they branched in the manner of Lepidodendron, the smaller branches being quite destitute of ribs, and with the areoles elliptical and spirally disposed. The stems show joints or rings of peculiar tears at intervals, as in the last genus. The leaves differ from those of the other genera, being broad and with numerous slender parallel veins, almost in the manner of Cordaites (Fig. 161, B).

The genus Clathraria is evidently closely allied to the above, and is possibly founded on branches of the genus Favularia. It is a rare form in Nova Scotia.

Of the genus Leioderma or Asolanus I know but one species, independently of those specimens of old trunks of the ordinary Sigillaria in which the ribs have disappeared. My species, S. Sydenensis, is founded on specimens collected by Mr Brown at Sydney, Cape Breton, which are especially remarkable for the curious modification which they present of the Stigmarioid root. The specimens described by Mr Brown under the name of S. alterans,* and which have been copied by Geinitz and Goldenberg, belong, I believe, to this species.

On the genus *Syringodendron* of Sternberg I have no observations to make. I have seen only fragments of stems; and these seem to be very rare.

I include under *Sigillaria* the remarkable fossils known as *Stigmaria*, being fully convinced that all the varieties of these plants known to me are merely roots of *Sigillaria*; I have verified this fact in a great many instances, in addition to those so well described by Mr Binney and Mr Brown. The different varieties or species of *Stigmaria* are no doubt characteristic of different species of *Sigillaria*, though in very few cases has it proved possible to ascertain the varieties proper to the particular species of stem. The old view, that the *Stigmaria* were independent aquatic plants, still apparently maintained by Golden and some other palaeobotanists, evidently proceeds from imperfect information. Independently of their ascertained connexion with *Sigillaria*, the organs attached to the branches are not leaves, but rootlets. This was made evident long ago by the microscopic sections published by Goeppert, and I have ascertained that the structure is quite similar to that of the thick fleshy rootlets of *Cycas*. The lumps or tubercles on these roots have been mistaken for fructification; and the rounded tops of stumps, truncated by the falling in of the bark or the compression of the empty shell left by the decay of the wood, have been mistaken for the natural termination of the stem. The only question remaining in regard to these organs is that of their precise morphological place. Their large pith and regular areoles render them unlike true roots; and hence Lesquereux has proposed to regard them as *rhizomes*. But they certainly radiate from a central stem, and are not known to produce any true buds or secondary stems. In short, while their function is that of roots, they may be regarded, in a morphological point of view, as a peculiar sort of underground branches. They all ramify very regularly in a dichotomous manner, and, as Mr Brown has shown, in some species at least, give off conical tap-roots from their underside.

In all the *Stigmaria* exhibiting a structure which I have examined, the axis shows only scalariform vessels. Corda, however, figures a species with wood-cells, or vessels with numerous pores, quite like those found in the stems of *Sigillaria* proper; and, as Hooker has pointed out, the arrangement of the tissues in *Stigmaria* is similar to that in *Sigillaria*. After making due allowance for differences of preservation, I have been able to recognise eleven species or forms

* For examples of the manner in which a natural termination may be simulated by the collapse of bark or by constriction owing to lateral pressure, see my papers, *Quart. Journ. Geol. Soc.*, vol. x. p. 35, and vol. vii. p. 194.
of Sigillaria in Nova Scotia, corresponding, as I believe, to as many species of Sigillaria. At the Joggins, Stigmariæ are more abundant than any other fossil plants. This arises from their preservation in the numerous fossil soils or Stigmaria underlaid. Their bark, and mineral charcoal derived from their axes, also abound throughout the thickness of the coal beds, indicating the continued growth of Sigillaria in the accumulation of the coal.

Our knowledge of the fructification of Sigillaria is as yet of a very uncertain character. I am aware that Goldenberg has assigned to these plants leafy strobiles containing spore-capsules: but I do not think the evidence which he adduces conclusive as to their connexion with Sigillaria; and the organs themselves are so precisely similar to the strobiles of Lepidophloios, that I suspect they must belong to that or some allied genus. The leaves, also, with which they are associated in one of Goldenberg's figures seem more like those of Lepidophloios than those of Sigillaria. If, however, these are really the organs of fructification of any species of Sigillaria, I think it will be found that we have included in this genus, as in the old genus Calamites, two distinct groups of plants, one cryptogamous, and the other phanogamous, or else that male strobiles bearing pollen have been mistaken for spore-bearing organs.

I cannot pretend that I have found the fruit of Sigillaria attached to the parent stem; but I think that a reasonable probability can be established that some at least of the fruits included, somewhat vaguely, by authors under the names of Trigonocarpum and Rhabdocarpus, were really fruits of Sigillaria. These fruits are excessively abundant and of many species, and they occur not only in the sandstones, but in the fine shales and coals and in the interior of erect trees, showing that they were produced in the coal-swamps. The structures of these fruits show that they are phanogamous and probably gymnospermous. Now the only plants known to us in the Coal formation, whose structures entitle them to this rank, are the Conifers, Sigillaria, and Calamodendron. All the others were in structure allied to cryptogams, and the fructification of most of them is known. But the Conifers were too infrequent in the Carboniferous swamps to have afforded numerous species of Carpolites; and, as I shall presently show, the Calamodendron were very closely allied to Sigillaria, if not members of that family. Unless, therefore, these fruits belonged to Sigillaria, they must have been produced by some other trees of the coal-swamps, which, though very abundant and of numerous species, are as yet quite unknown to us. Some of the Trigonocarpæ have been claimed

for Conifers, and their resemblance to the fruits of Salisbunya gives countenance to this claim; but the Conifers of the Coal period are much too few to afford more than a fraction of the species. One species of Rhabdocarpus has been attributed by Geinitz to the genus Naegelethia; but the leaves which he assigns to it are very like those of Sigillaria elegans, and may belong to some allied species. With regard to the mode of attachment of these fruits, I have shown that one species, Trigonocarpum racemosum of the Devonian strata,* was borne on a rachis in the manner of a loose spike, and I am convinced that some of the groups of inflorescence named Antholites are simply young Rhabdocarpi or Trigonocarpa borne on a pinnate manner on a broad rachis and subtended by a few scales. Such spikes may be regarded as corresponding to a leaf with fruits borne on the edges, in the manner of the female flower of Cycas; and I believe with Goldenberg that these were borne in verticils at intervals on the stem. In this case it is possible that the strobiles described by that author may be male organs of fructification containing, not spores, but pollen. In conclusion, I would observe that I would not doubt the possibility that some of the fruits known as Cardiocarpa may have belonged to sigillarioid trees. I am aware that some so-called Cardiocarpa are spore-cases of Lepidodendron; but there are others which are manifestly winged nutlets allied to Trigonocarpum, and which must have belonged to phenogams. It would perhaps be unwise to insist very strongly on deductions from what may be called circumstantial evidence as to the nature of the fruit of Sigillaria; but the indications pointing to the conclusions above stated are so numerous that I have much confidence that they will be vindicated by complete specimens, should these be obtained.

All of the Joggins coals, except a few shaly beds, afford unequivocal evidence of Stigmaria in their underclays; and it was obviously the normal mode of growth of a coal-bed, that, a more or less damp soil being provided, a forest of Sigillaria should overspread this, and that the Stigmarian roots, the trunks of fallen Sigillaria, their leaves and fruits, and the smaller plants which grew in their shade, should accumulate in a bed of vegetable matter to be subsequently converted into coal—the bark of Sigillaria and allied plants affording “bright coal,” the wood and bast tissues mineral charcoal, and the herbaceous matter and mould dull coal. The evidence of this afforded by microscopic structure I have endeavoured to illustrate in a former paper.+ The process did not commence, as some have supposed, by the

growth of Stigmaria in ponds or lakes. It was indeed precisely the reverse of this, the Sigillaria growing in a soil more or less swampy but not submerged, and the formation of coal being at last arrested by submergence. I infer this from the circumstance that remains of Cyprids, Fishes, and other aquatic animals, are rarely found in the underclays and lower parts of the coal-beds, but very frequently in the roofs, while it is not unusual to find mineral charcoal more abundant in the lower layers of the coal. For the formation of a bed of coal, the sinking and subsequent burial of an area previously dry seems to have been required. There are a few cases at the Joggins where Calamites and even Sigillaria seem to have grown on areas liable to frequent inundation; but in these cases coal did not accumulate. The non-laminated, slicken-sided and bleached condition of most of the underclays indicates soils of considerable permanence.

In regard to beds destitute of Stigmarian underclays, the very few cases of this kind apply only to shaly coals filled with drifted leaves, or to accumulations of vegetable mud capable of conversion into impure coal. The origin of these beds is the same with that of the carbonaceous shales and bituminous limestones already referred to. It will be observed in the section that in a few cases such beds have become sufficiently dry to constitute underclays, and that conditions of this kind have sometimes alternated with those favourable to the formation of true coal.

There are some beds at the Joggins, holding erect trees in situ, which show that Sigillaria sometimes grew singly or in scattered clumps, either alone or amidst brakes of Calamites. In other instances they must have grown close together, and with a dense undergrowth of ferns and Cordaites, forming an almost impenetrable mass of vegetation.

From the structure of Sigillaria I infer that, like Cycads, they accumulated large quantities of starch, to be expended at intervals in more rapid growth, or in the production of abundant fructification. I adhere to the belief expressed in previous papers that Brongniart is correct in regarding the Sigillaria as botanically allied to the Cycadaceae, and I have recently more fully satisfied myself on this point by comparisons of their tissues with those of Cycas revoluta. It is probable, however, that when better known they will be found to have a wider range of structure and affinities than we now suppose.

There are some reasons for believing that the trees described by Corda under the names of Diplozyon, Myelopithys, and Heterangium, and also the Anabathra of Witham, are Sigillaria. Much of the tissue
THE CARBONIFEROUS SYSTEM.

Described by Goeppert as *Araucarites carbonarius* is probably also Sigillarian.

2. *Calamodendron* or *Calamitea*—These plants are much less known than the proper Sigillarias, and it is perhaps doubtful if they should not form a separate family. In the meantime I place them here, simply because they seem to approach more nearly to *Sigillaria* than any other plants in their structure. They were of less massive growth than *Sigillaria*, being rarely more than a few inches in diameter; they had stems fluted lengthwise like *Sigillaria*, but more distinctly divided into nodes or joints by the scars of branches which were borne in whorls, and carried their narrow, slender leaves. In their habit of

Fig. 162.—*Calamodendron*.

(a, b) Casts of axis in sandstone, with woody envelope, reduced.
(c, d) Woody tissue, highly magnified.

growth they thus resembled the pine tribe, and they seem to have had a larger amount of true wood in their stems than was the case with *Sigillaria*. This cylinder of wood contained a thick pith, which was constricted at intervals into joints, and had also a longitudinal striation on the outside; and as this pith from its ready decay admitted sand into the interior of the stem, while the wood was entire or in process of conversion into coal, we often have a stem of *Calamodendron* represented merely by a cast of the pith in stone. In this case the pith cylinder may be easily mistaken for a plant of the genus *Calamites*, which, as we shall immediately find, was quite a different thing.
believe that the statements often found in geological books to the
effect that the Calamites were smooth externally, and that the sup-
posed jointed stems are only casts of the pith, are true of Calamodendron
only, and proceed from confounding that genus with Calamites.

A Calamodendron as usually seen is a striated cast with frequent
cross lines or joints; but when the whole stem is preserved, it is seen
that this cast represents merely an internal pith-cylinder, surrounded
by a woody cylinder composed in part of scalariform or reticulated
vessels, and in part of wood-cells with one row of large pores on each
side. External to the wood was a cellular bark, and the outer surface
seems to have been simply ribbed in the manner of Sigillaria. It so
happens that the internal cast of the pith of Calamodendron, which is
really of the nature of a Sternbergia, so closely resembles the external
appearance of the true Calamites as to be constantly mistaken for them.
Most of these pith-cylinders of Calamodendron have been grouped in
the species Calamites approximatus; but that species, as understood
by some authors, appears also to include true Calamites,* which, how-
ever, when well preserved, can always be distinguished by the scars
of the leaves or branchlets which were attached to the nodes.

Calamodendron would seem, from its structure, to have been closely
allied to Sigillaria, though, according to Unger, the tissues were
differently arranged, and the woody cylinder must have been much
thicker in proportion.

The tissues of Calamodendron are by no means infrequent in the
coil, and casts of the pith are common in the sandstones; but its
foliage and fruit are unknown. They probably resembled those of
Sigillaria.

CLASS OF CRYPTOGAMS.

1. Equisetaceæ.

1. Calamites.—These curious plants are by no means to be confounded
with those last noticed. Their stems were slender, ribbed and jointed
externally, and from the joints there proceeded, in some of the species,
long, narrow, simple branchlets; and, in others, branches bearing
whorls of small branchlets or rudimentary leaves. The stem was
hollow, with thin transverse floors or diaphragms at the joints, and
it had no true wood and bark, but only a thin external shell of fibres
and scalariform vessels. The Calamites grew in dense brackes on the
sandy and muddy flats, subject to inundation, or perhaps even in the
water, and they had the power of budding out from the base of the
stem, so as to form clumps of plants, and also of securing their foot-

* See Geinitz, “Steinkohlen formation in Sachsen.”
Fig. 163.—Calamites.

A. Calamites Suckovii, restored.
A¹, Foliage.
A², Ribs and scars.
A³, Roots.
A⁴, Base of stem.
B, Calamites Cistii, restored.

B¹, Leaves.
B², Leaf enlarged.
C, Leaves of C. nodosus.
C¹, Whorl enlarged.
D, Structure of stem.
E, Vessels magnified.
hold by numerous cord-like roots, proceeding from various heights on the lower part of the stem.* The fruit was a long cone or spike, bearing spore cases under scales. The Calamites were evidently close relations of the modern horse-tails or scouring-rushes, differing principally in their great size, the want of sheaths at the joints, and the details of the fructification (Fig. 163).

Most of the points above stated, as well as the conical form of the lower end of these Calamites, which budded out from others, were explained by me in the "Journal of the Geological Society" as far back as 1849, yet the most ridiculous errors are still current in elementary books.

Nine species of true Calamites have been recognised in Nova Scotia, of which seven occur at the Joggins, the most abundant being C. Suckovii and C. Cistii. As just observed, the Calamites grew in dense brakes on sandy and muddy flats, in the manner of modern Equisetaceae, and produced at their nodes either verticillate simple linear leaves, as in C. Cistii, or verticillate branchlets with pinnate or verticillate leaflets, as in C. Suckovii and C. nodosus. The Calamites do not seem to have contributed much to the growth of coal, though their remains are not infrequent in it. The soils in which they most frequently grew were apparently too wet and liable to inundation and silting up to be favourable to coal-accumulation.

2. Equisetites.—This genus includes a few plants which, like the modern horse-tails, had sheaths at the joints. One species only has been found in Nova Scotia, and little is known of this except the form of the lower part of the stem (Fig. 164).

3. Asterophyllites.—These beautiful plants do not appear to have been of large size, and, like the other members of this family, probably

grew in wet or inundated ground. They had ribbed and jointed stems like the Calamites, but with a stout internal woody cylinder, in which respect they resembled miniature Calamodendra. From the joints proceeded whorls of leaves, or of branchlets, bearing leaves which differed from those of Calamites in their having a distinct middle rib or vein. The fructification consisted of long slender cones or spikes, having whorls of scales among the spore cases. Some authors speak of Asterophyllites as only branches and leaves of Calamites; but though at first sight the resemblance is great, a close inspection shows that the leaves of Asterophyllites have a true midrib, which is wanting in Calamites. Five species of Asterophyllites have been found in Nova Scotia and New Brunswick (Fig. 165, A).

4. Annularia.—It is questionable whether these plants should be separated from Asterophyllites. The distinction is that they produce branches in pairs, and that their whorls of leaves are one-sided, and usually broader than those of Asterophyllites, and united into a ring at their insertion on the stem. One little species is very common in Nova Scotia, and a larger one hitherto included in Asterophyllites is also abundant (Fig. 165, B).

Fig. 165.—Asterophyllites, etc.

B, Annularia sphenophylloides. (B1) Leaf enlarged.
C, Sphenophyllum crosum. (C1) Leaflet enlarged. (C2) Scalariform vessel.
D, Pinnulata ramosissima.

5. Sphenophyllum.—This is one of the prettiest plants of the coal; its little whorls of wedge-shaped leaves, often scattered thickly over

The

Acadian forests, as in the case of

more mature

t know.

HE FLORA OF THE COAL FORMATION.

445

...the surfaces of the shales, resembling flowers. Its stems were very slender, but branching copiously, and bearing wedge-shaped leaves often toothed at the edges, and veined in the manner of fern leaves. The spores were borne on small spikes like those of Asterophyllites. Five species have been recognised in the Acadian Coal-fields. I am not aware that this and the two preceding genera contributed to any great extent to the accumulation of coal; but as their tissues were scalariform, similar to those of ferns, it would not be easy to recognise them. A beautiful specimen of Sphenophyllum emarginatum from New Brunswick, in the collection of Sir W. E. Logan, has enabled me to ascertain that its stem had a simple axis of one bundle of reticulato-scalariform vessels, like those of Tmesipteris as figured by Brongniart. These curious plants were no doubt cryptogamous, having a habit of growth like that of Equisetaceæ, leaves like those of ferns or Marsiltaceæ, and fructification and structure like those of Lycopodiaceæ (Fig. 165, C).

6. Pinnularia.—These are slender roots, or stems branching in a pinnate manner, and somewhat irregularly. They are very abundant in the coal shales, and were probably not independent plants, but aquatic roots belonging to some of the plants last mentioned. The probability of this is further increased by their resemblance in miniature to the roots of Calamites. They are always flattened, but seem originally to have been round, with a slender thread-like axis of scalariform vessels, enclosed in a soft smooth cellular bark (Fig. 165, D).

2. Filices or Ferns.

The ferns or brackens are still very abundant in the forests of Acadia, but do not constitute nearly so prominent a part of the flora as in the days of the Coal formation, when the species were vastly more numerous in proportion to other plants, and when there were tree ferns similar to those of the present tropics and southern hemisphere, as well as the smaller herbaceous species. The fronds of fossil ferns are often well preserved, but we usually obtain them only in fragments and destitute of the fructification, which is the most distinctive character in living ferns. Hence we are obliged to arrange the fossil ferns in an arbitrary manner; the stems, when found, by themselves and the fronds by themselves, and the latter in groups based on venation and other comparatively unimportant characters, rather than on fructification. The classification thus formed is altogether provisional, and when our knowledge of the subject shall become more complete, must give way to one of a more natural character. In the...
Fig 166.—Ferms of the Middle Coal Formation.

A, Odontopteris subcuneata (after Bunbury).
B, Neuropteris cordata
C, Alethopteris lonchites.
D, Dictyopteris obliqua (after Bunbury).
E, Phyllopteris antiqua, mag. (E') Nat. size.
F, Neuropteris cyclopteroide.

(For other species see Figs. 69 to 72.)
meantime the principal genera, of which representatives have been found in Acadia, are the following (Figs. 166, 167, and Figs. 69 to 72):

1. _Cyclopteris_, Brongn.—Leaflets more or less rounded, or wedge-shaped, without midrib, the nerves spreading from the point of attachment. This group includes a great variety of fronds evidently of different genera, were their fructification known; and some of them probably portions of fronds, the other parts of which may be in the next genus.

2. _Neuropteris_, Brongn.—Fronds pinnated, and with the leaflets narrowed at the base; midrib often not distinct, and disappearing toward the apex. Nervures equal, and rising at an acute angle. Ferns of this type are among the most abundant in the Coal formation.

3. _Odontopteris_, Brongn.—In these the frond is pinnate, and the leaflets are attached by their whole base, with the nerves either proceeding wholly from the base, or in part from an indistinct midrib, which soon divides into nervures.

4. _Dictyopteris_, Gutbier.—This is a beautiful style of fern, with leaflets resembling those of _Neuropteris_, but the veins arranged in a network of oval spaces. Only one species is known in our Coal formation.

5. _Lonchopteris_, Brongn.—Ferns with netted veins like the above, but with a distinct midrib, and the leaflets attached by the whole base. Of this also we can boast but a single species.

6. _Sphenopteris_, Brongn.—These are elegant ferns, very numerous in species, and most difficult to discriminate. Their most distinctive characters are leaflets narrowed at the base, often lobed, and with nervures dividing in a pinnate manner from the base.

7. _Phyllopteris_, Brongn.—These are pinnate, with long lanceolate pinnules, having a strong and well defined midrib, and nerves proceeding from it very obliquely, and dividing as they proceed toward the margin. The ferns of this genus are for the most part found in formations more recent than the Carboniferous; but I have referred to it, with some doubt, one of our species.

8. _Alethopteris_, Brongn.—This genus includes many of the most common Coal formation ferns, especially the ubiquitous _A. lonchitica_, which seems to have been the common brake of the Coal formation, corresponding to _Pteris aquilina_ in modern Europe and America. These are brake-like ferns, pinnate, with leaflets often long and narrow, decurrent on the petiole, adherent by their whole base, and united at base to each other. The midrib is continuous to the point, and the nervures run off from it nearly at right angles. In some of these ferns the fructification is known to have been marginal, as in _Pteris_.

THE FLORA OF THE COAL FORMATION.
Fig. 167.—*Tree Ferns.*

B, Leaf-scar of the same, § nat. size.
D, *Palaeopteris Acadica,* scars half nat. size.
9. Pecopteris, Brongn.—This genus is intermediate between the last and Neuropteris. The leaflets are attached by the whole base, but not usually attached to each other; the midrib, though slender, attains to the summit; the nerves are given off less obliquely than in Neuropteris. This genus includes a large number of our most common fossil ferns.

10. Beinertia, Goeppert.—A genus established by Goeppert for a curious Pecopteris-like fern, with flexuous branching oblique nerves becoming parallel to the edge of the frond. I have placed in it, with some uncertainty, one of our species.

11. Hymenophyllites, Goeppert.—These are ferns similar to Sphenopteris, but divided at the margin into one-nerved lobes, in the manner of the modern genus Hymenophyllum.

12. Palaopteris, Geinitz.—This is a genus formed to include certain trunks of tree ferns with oval transverse scars of leaves.

13. Caulopteris, Lindley and Hutton,—is another genus of fossil trunks of tree ferns, but with elongate scars of leaves.

14. Psaronius, Cotta.—Includes other trunks of tree ferns with alternate scars or thick scales, and ordinarily with many aerial roots grouped round them, as in some modern tree ferns.

15. Megaphyton, Artis.—Includes trunks of tree ferns which bore their fronds, which were of great size, in two rows, one on each side of the stem. These were very peculiar trees, less like modern ferns than any of the others (Fig. 167). My reasons for regarding them as ferns are stated in the following extract from a recent paper:

"Their thick stems, marked with linear scars and having two rows of large depressed areoles on the sides, suggest no affinities to any known plants. They are usually ranked with Lepidodendron and Ulodendron, but sometimes, and probably with greater reason, are regarded as allied to tree ferns. At the Joggins a very fine species (M. magnificum) has been found, and at Sydney a smaller species (M. humile); but both are rare and not well preserved. If the large scars bore cones and the smaller bore leaves, then, as Brongniart remarks, the plant would much resemble Lepidophloios, in which the cone-scar is thus sometimes distichous. But the scars are not round and marked with radiating scales as in Lepidophloios; they are reniform or oval, and resemble those of tree ferns, for which reason they may be regarded as more probably leaf-scar; and in that case the smaller linear scars would indicate ramenta, or small aerial roots. Further, the plant described by Corda as Zippea disticha is evidently a Megaphyton, and the structure of that species is plainly that of a tree fern of somewhat peculiar type. On these grounds I incline to the opinion of Geinitz,
that these curious trees were allied to ferns, and bore two rows of large fronds, the trunks being covered with coarse hairs or small aerial roots. At one time I was disposed to suspect that they may have crept along the ground; but a specimen from Sydney shows the leaf-stalks proceeding from the stem at an angle so acute that the stem must, I think, have been erect. From the appearance of the scars it is probable that only a pair of fronds were borne at one time at the top of the stem; and if these were broad and spreading, it would be a very graceful plant. To what extent plants of this type contributed to the accumulation of coal I have no means of ascertaining, their tissues in the state of coal not being distinguishable from those of ferns and Lycopodiaceae."

3. Lycopodiaceae.

1. Lepidodendron, Sternberg.—This genus is one of the most common in the Coal formation, and especially in its lower part. Any one who has seen the common Ground-pine or Club-moss of our woods, and who can imagine such a plant enlarged to the dimensions of a great forest tree, presenting a bark marked with rhombic or oval scars of fallen leaves, having its branches bifurcating regularly, and covered with slender pointed leaves, and the extremities of the branches laden with cones or spikes of fructification, has before him this characteristic tree of the coal forests,—a tree remarkable as presenting a gigantic form of a tribe of plants existing in the present world only in low and humble species. Had we seen it growing, we might have at first mistaken it for a pine, but the spores contained in its cones, instead of seeds, and its dichotomous ramification, would undeceive us; and if we cut into its trunk, we should find structures quite unlike those of pines. As in Sigillaria, we should perceive a large central pith, and surrounding this a ring of woody matter; but instead of finding this partly of disc-bearing wood cells, as in Sigillaria, and divided into regular wedges by medullary rays, we should find it a continuous cylinder of coarser and finer scalariform vessels. Outside of this, as in Sigillaria, we should have a thick bark, including many tough elongated bast fibres, and protected externally by a hard and durable outer rind. The Lepidodendra were large and graceful trees, and contributed not a little to the accumulation of coal. Several attempts have been made to divide this genus. My own views on the subject are given below.

Of this genus nineteen species have been recorded as occurring in the Carboniferous rocks of Nova Scotia. Of these, six occur at the Joggins, where specimens of this genus are very much less abundant than those of Sigillaria. In the newer Coal formation, Lepidodendra
large roots. In this case the root is long and prominent, and the stem is characteristic of the species and is not to be mistaken for any other. It is a tree with a tall trunk and a dense canopy, often growing in areas with rich soil and sufficient water. Lepidodendron is a genus of seed plants that lived during the Carboniferous period and is known for its large, spirally arranged leaves and the characteristic, scaly bark that makes it a significant fossiliferous form in coal deposits.

Fig. 168.—Lepidodendron corrugatum.

A. Restoration.
B. Leaf, nat. size.
C. Cone and branch.
D. Branch and leaves.
E. Various forms of leaf areoles.
F. Spermatophytes.
G. Sclerophyllous vessel, magnified.
H, I, K, L, M. Bark with leaf-scars.
N, O, P, Q, R, S. Dehorned stem (Knorr).

The diagram illustrates several parts of the Lepidodendron corrogatum, including the restoration, leaves, cones, branches, and various forms of leaf areoles. The diagram is a useful tool in understanding the structure and characteristics of this ancient plant, which played a significant role in the development of coal deposits.
are particularly rare, and *L. undulatum* is the most common species. In the Middle Coal formation, *L. rimosum*, *L. dichotomum*, *L. elegans*, and *L. Pictoense* are probably the most common species; and *L. corrugatum* is the characteristic *Lepidodendron* of the Lower Carboniferous, in which plants of this species seem to be more abundant than any other vegetable remains whatever.

To the natural history of this well-known genus I have little to add, except in relation to the changes which take place in its trunk in the process of growth, and the study of which is important in order to prevent the undue multiplication of species. These are of three kinds. In some species the areoles, at first close together, become, in the process of the expansion of the stem, separated by intervening spaces of bark in a perfectly regular manner; so that in old stems, while widely separated, they still retain their arrangement, while in young stems they are quite close to one another. This is the case in *L. corrugatum*. In other species the leaf-scars or areoles increase in size in the old stems, still retaining their forms and their contiguity to each other. This is the case in *L. undulatum*, and generally in those *Lepidodendra* which have very large areoles. In these species the continued vitality of the bark is shown by the occasional production of lateral strobiles on large branches, in the manner of the modern Red Pine of America. In other species the areoles neither increase in size nor become regularly separated by growth of the intervening bark; but in old stems the bark splits into deep furrows, between which may be seen portions of bark still retaining the areoles in their original dimensions and arrangement. This is the case with *L. Pictoense*. This cracking of the bark no doubt occurs in very old trunks of the first two types, but not at all to the same extent. I figure three examples of these peculiarities in mode of growth:

Lepidodendra corrugatum, Dawson.—I give below a description of this species, and may refer to the figures in Fig. 168 for further illustration. I do not know any other species in Nova Scotia which has precisely the same habit of growth; but *L. plicatum* and *L. rimosum* show a tendency to it. The present species is exclusively Lower Carboniferous, and occurs on that horizon in New Brunswick, in Pennsylvania, and, I believe, also in Ohio; though the beds holding it in the latter State have been by some regarded as Devonian.

L. undulatum, Sternberg.—I think it not improbable that several closely allied species are included under this name. On the other hand, all the large areoled *Lepidodendra* figured in the books must have branches with small scars, which in the present state of know-
THE FLORA OF THE COAL FORMATION.

Fig. 169.—Lepidodendra of Middle Coal Formation.

A, Branch and leaves of L. Pleoence, § nat. size. A', Leaf. A', Twig and leaves, §.
A', Portion of bark, §. A', Leaf-scar. A', Bark of old stem furrowed by growth, §.
A', Cone, §.
C, L. pleatam, bark of old stem.
D, L. rimosum, old stem with furrows, §.
E, L. Undulatum, showing furrows and scars of cones, §.

A, Branch and leaves of L. Pleoence, § nat. size. A', Leaf. A', Twig and leaves, §.
A', Portion of bark, §. A', Leaf-scar. A', Bark of old stem furrowed by growth, §.
A', Cone, §.
C, L. pleatam, bark of old stem.
D, L. rimosum, old stem with furrows, §.
E, L. Undulatum, showing furrows and scars of cones, §.
ledge, it is impossible to identify with this species. I suppose that L. elegans resembles the present species in its mode of growth, at least if the large-scarred specimens attributed to it are really of the same species. L. dichotomum (= L. Sternbergii) also resembles it to some extent (Fig. 169, E).

L. Pictoense, Davson.—This species I described as follows, from young stems, in my "Synopsis of the Coal-plants of Nova Scotia": — "Areoles contiguous, prominent, separated in young stems by a narrow line, long-oval, acuminate; breadth to length as 1 to 3, or less; lower half obliquely wrinkled, especially at one side. Middle line indistinct. Leaf-scar at upper end of areole, small, triangular, with traces of three vascular points, nearly confluent. Length of areole about 0·5 inch."

Additional specimens from Sydney show that in old trunks of this species the areoles do not enlarge, but the bark becomes split into strips. I have reason to think that a new species from Nova Scotia, which I shall describe in the sequel, L. personatum, agrees with it in this respect (Fig. 169, A, B).

The Lepidodendra resemble each other too closely to admit of good sub-generic distinction. The grounds on which the distinction of Sagenaria and Aspidiaria is founded are quite worthless, the apparent position of the vascular scars in the areoles depending on accidents of preservation much more than on original differences. The genus Knorria includes many peculiar conditions of decorticated Lepidodendra.

In regard to the accumulation of coal, Lepidodendra, when present, appear under the same conditions with Sigillaria, the outer bark being converted into shining coal, and the scalariform axis appearing as mineral charcoal of a more loose and powdery quality than that derived from Sigillaria. On the planes of lamination of the coal the furrowed bark of old trunks can scarcely be distinguished from that of old Sigillariae (Fig. 170, B, C).

2. Lepidophloios.—Under this generic name, established by Sternberg, I propose to include those Lycopodiaceous trees of the Coal measures which have thick branches, transversely elongated leaf-scars, each with three vascular points and placed on elevated or scale-like protuberances, long one-nerved leaves, and large lateral strobiles in vertical rows or spirally disposed. Their structure resembles that of Lepidodendron, consisting of a Sternbergia pith, a slender axis of large scalariform vessels, giving off from its surface bundles of smaller vessels to the leaves, a very thick cellular bark, and a thin dense outer bark, having some elongated cells or bast tissue on its inner side.
The Flora of the Coal Formation.

Fig. 170.—Lepidodendron and Lepidophloios.

A, Lepidodendron decuratum; A1, areole enlarged.
B, Lepidodendron, old bark.
C, Lepidodendron, old bark, of another species.
D, Lepidophloios tetragonus, §. D1, Areole.
E, Lepidophloios platystigma, §. E1, Areole.
F, Lepidophloios platystigma, § differently preserved. F1, Areole.
Regarding *L. laricina* of Sternberg as the type of the genus, and taking in connexion with this the species described by Goldenberg, and my own observations on numerous specimens found in Nova Scotia, I have no doubt that *Lomatophloios crassicaulis* of Corda, and other species of that genus described by Goldenberg, *Ulodendron* and *Bothrodendron* of Lindley, *Lepidodendron ornalissimum* of Brongniart, and *Halonia punctata* of Geinitz, all belong to this genus, and differ from each other only in conditions of growth and preservation. Several of the species of *Lepidostrobus* and *Lepidophyllum* also belong to *Lepidophloios*.

The species of *Lepidophloios* are readily distinguished from *Lepidodendron* by the form of the areoles, and by the round scars on the stem, which usually mark the insertion of the strobiles, though in barren stems they may also have produced branches; still the fact of my finding the strobiles *in situ* in one instance, the accurate resemblance which the scars bear to those left by the cones of the Red Pine when borne on thick branches, and the actual impressions of the radiating scales in some specimens, leave no doubt in my mind that they are usually the marks of cones; and the great size of the cones of *Lepidophloios* accords with this conclusion.

The species of *Lepidophloios* are numerous, and individuals are quite abundant in the Coal formation, especially toward its upper part. Their flattened bark is frequent in the coal-beds and their roofs, affording a thin layer of pure coal, which sometimes shows the peculiar laminated or scaly character of the bark when other characters are almost entirely obliterated. The leaves also are nearly as abundant as those of *Sigillaria* in the coal-shales. They can readily be distinguished by their strong angular midrib.

I figure, in illustration of the genus, all the parts known to me of *L. Acadianus*, and characteristic specimens of other species. One of these, *L. parvus*, is characteristic of the Upper Coal formation. (*Vide* Figs. 170, 171.)

3. *Cordaites* or *Pychnophyllum*.—This plant is represented in the Coal formation chiefly by its broad striated leaves, which are extremely abundant in the coal and its associated shales. Some thin coals are indeed almost entirely composed of them. The most common species is *C. borassifolia*, a plant which Corda has shown to have a simple stem with a slender axis of scalariform vessels resembling that of *Lepidophloios*; for this reason, notwithstanding the broad and parallel-veined leaves, I regard this genus as belonging to *Lycopodiaceae*, or some allied family. It must have been extremely abundant in the Carboniferous swamps; and, from the frequency of
THE FLORA OF THE COAL FORMATION.

Fig. 171.—Lepidophloios Acadianus.

A, Restoration.
B, Portion of bark, § natural size.
C, Ligneous surface of the same.
D, Lower side of a branch, with scars of cones.
E, Upper side of the same.
F, Cone, §.
G, Leaf, natural size.
H, Cross section of stem, reduced.
I, Portion of the same, nat. size, showing (a) pith, (b) cylinder of scalariform vessels, (c) inner bark.
J, Portion of woody cylinder, showing outer and inner series of vessels magnified.
K, Scalariform vessels, highly magnified.
L, Various forms of leaf scars, natural size.
Fig. 172.—Cordaites and Diplopterigium.

A. Cordaites borassifolia restored.
A', Portion of stem.
A", Portion of leaf, enlarged.
A", Base of leaf.
A", Point of leaf.
A", Transverse section of stem, showing axis.
B. Fragment of stem of Diplopterigium retusum.
B", Scler of 60., enlarged.

A. Cordaites borassifolia restored.
A', Portion of stem.
A", Portion of leaf, enlarged.
A", Base of leaf.
A", Point of leaf.
A", Transverse section of stem, showing axis.
B. Fragment of stem of Diplopterigium retusum.
B", Scler of 60., enlarged.
its being covered with Spirobus, I think it must either have been of more aquatic habit than most of the other plants of the Coal formation, or that its leaves must have been very durable. While the leaves are abundant, the stems are very rare. I infer that they were usually low and succulent. Much of the tissue found in the coal, which I have called "epidermal," probably belongs to leaves of Cordaites (Fig. 172).

In the Upper Coal formation there is a second species, distinguished by its simple and uniform venation. This I have named C. simplex.

4. Sporangites.—To avoid the confusion which envelopes the classification of Carpolites, I have used the above name for rounded spore-cases of Lepidodendron and allied plants, which are very frequent in the coal. A smooth round species like a mustard-seed is excessively abundant in the Lower Carboniferous at Horton, and probably belongs to Lepidodendron corrugatum, with which it is associated. A species covered with papille, S. papillata, constitutes nearly the whole of some layers in coal 12, group xix. of the Joggins section. I have no indication as to the plant to which it may belong, except that it is associated with Cordaites (Fig. 173, I).

FRUITS, FLOWERS, ETC.

1. Antholithes, Brongn.—Spikes of fruits protected by bracts, and which I believe to have been produced by Sigillarioid trees (Fig. 173, A, B, C).

2. Trigonocarpum, Brongn.—Nut-like fruits, often three or six angled; with a structure akin to those of Pines and Cycads. I believe most of them to have belonged to Sigillaria, some possibly to conifers (Fig. 173, D, E, F, and Fig. 174).

3. Rhabdocarpus, Goepert and Brongn.—Oval fruits with striated sides, often of large size, but of uncertain affinities (Fig. 173, G).

4. Cardiocarpum, Brongn.—Fringed or margined fruits resembling Samaras of elms. Their precise origin is unknown. They may have belonged to upland trees, of which we have no other evidence in the coal swamps. It is to be observed, however, that in books of fossil botany, many organisms, which are probably spore-cases of Lepidodendron or allied plants, are confounded with true Cardiocarpa (Fig. 173, I, K).

With the exception of a few other genera based on parts of plants, like Cyperites and Stigmario, and two specimens referred to Naeggerathia (Fig. 73), and Diplotegium (Fig. 172, B), genera of uncertain affinities, the above will include all the plants that have as yet been found in our Coal formation; and they are the characteristic genera of the Carboniferous period throughout the world.
A, Anthollithes squamosus, §.
B, A. rhabdocarpi, §. B', Carpel restored.
C, A. spinosus, natural size.
D, Trigonocarpum intermedium.
E, T. Neoggerathi.
F, T. avelitanum.
G, Rhabdocarpus insignis, reduced.
H, Anthollithes pygmæus.
I, Cardiocarpum fluitans.
K, Cardiocarpum bisectum.
L, Sporangites papillatus, nat. size and mag.
Fig. 174.—*Trigonocarpum Hookeri*, Dawson; from the Coal measures of Cape Breton.

A, Broken specimen magnified twice natural size.
B, Section magnified: a, the testa; b, the tegmen; c, the nucleus; and d, the embryo.
C, Portion of the surface of the inner coat more highly magnified.

Tissues of Plants preserved in the Coal.

This subject has occupied much of my leisure time for some years, and I have published the results of an extensive series of experiments and observations on the Coals of Pictou and Sydney, in a paper on the "Vegetable Structures in Coal," in the Journal of the Geological Society of London, February 1860; and a still more extended series on the numerous coals of the South Joggins, in my memoir on the "Conditions of Deposition of Coal," December 1865. I give here a summary of results of these inquiries.

The direct investigation of the tissues preserved in coal has been pursued to some extent by Witham, Hutton, Goeppert, Brongniart, Bailey, Hooker, Quckett, Harkness, and others. Two difficulties, however, have impeded this investigation, and have in some degree prevented the attainment of reliable results. One of these is the intractable character of the material as a microscopic object; the
other, the want of sufficient information in regard to the structures of the plants known by impressions of their external forms in the beds of the Coal formation. Perplexed by the uncertain and contradictory statements arising from these difficulties, and impressed with the conviction that the coal itself might be made more fully to reveal its own origin, I have for a long time been engaged in experiments and observations with this object, and believe that I can offer definite and certain results in so far as relates to the particular coals examined, and, I have no doubt, with some slight modifications, to all the ordinary coals of the true Coal measures.

In ordinary bituminous coal, we recognise by the unassisted eye laminae of a compact and more or less lustrous appearance, separated by uneven films and layers of fibrous anthracite or of mineral charcoal, and these two kinds of coal demand a separate consideration.

The substance known by the very appropriate name of "mineral charcoal," consists of fragments of prosenchymatous and vasiiform tissues in a carbonized state, somewhat flattened by pressure, and more or less impregnated with bituminous and mineral matters derived from the surrounding mass. We cannot suppose that this substance has escaped complete bituminization on account of its original constitution; for we have abundant evidence that this change has passed upon similar material in various geological periods. A substance so intimately intermixed with the ordinary coal cannot be accounted for by the supposition of forest conflagrations or the action of subterranean heat. The only satisfactory explanation of its occurrence is that afforded by the chemical changes experienced by woody matter decaying in the presence of air, in the manner so well illustrated by Liebig. In such circumstances, wood parts with its hydrogen and oxygen and a portion of its carbon, in the forms of water and carbonic acid; and, as the ultimate result, a skeleton of nearly pure charcoal, retaining the form and structure of the wood, remains. In the putrefaction of wood under water, or imbedded in aqueous deposits, a very different change occurs, in which the principal loss consists of carbon and oxygen; and the resulting coaly product contains proportionally more hydrogen than the original wood. This is the condition of the compact bituminous coal. This last may, by the action of heat, or by long exposure to air and water, lose its hydrogen in the form of hydro-carbons, and be converted into anthracite. In all the ordinary coals we have the products, more or less, of all these processes. The mineral charcoal results from subaerial decay, the compact coal from subaqueous putrefaction, more or less modified by heat and exposure to air. As Dr Newberry has very well shown, in
The Flora of the Coal Formation.

463

Coals like cannel-coals, which have been formed wholly under subaqueous conditions, the mineral charcoal is deficient.

A consideration of the decay of vegetable matter in modern swamps and forests shows that all kinds of tissues are not, under ordinary circumstances, susceptible of the sort of carbonization which we find in the mineral charcoal. Succulent and lax parenchymatous tissues decay too rapidly and completely. The bark of trees very long resists decay, and, where any deposition is proceeding, is likely to be imbedded unchanged. It is the woody structure, and especially the harder and more durable wood, that, becoming carbonized and splitting along the medullary rays and lines of growth, affords such fragments as those which we find scattered over the surfaces of the coal.

These facts would lead us to infer that mineral charcoal represents the woody debris of trees subjected to subaerial decay, and that the bark of these trees should appear as compact coal along with such woody or herbaceous matters as might be imbedded or submerged before decay had time to take place.

My method of preparing the mineral charcoal for examination was an improvement on the "nitric-acid" process of previous observers, and the results gave very perfect examples of the disc-bearing tissue restricted in the modern world to conifers and cycads, but which existed also in the Sigillaria of the Coal period. With this were scalariform vessels, like those of ferns and club mosses, and several other kinds of woody tissue. On careful comparison, it was found that all these tissues might be referred to the following genera of plants common in the Coal measures: Sigillaria, including Stigmaria, Calamites, Dadoxylon, and other conifers, Lepidodendron, Ulodendron, ferns, and possibly some other less known plants. Another form of tissue observed was a large spiral vessel, possibly belonging to some endogenous plant. The perfect state of preservation of these tissues may be inferred from the following figures, selected from those prepared for my paper (Fig. 175).

I shall first notice in detail the structures preserved in the layers of shining compact coal, and afterwards those found in the mineral charcoal.

I. The compact coal, constituting a far larger proportion of the mass than the "mineral charcoal," consists either of lustrous conchoidal cherry or pitch coal,—of less lustrous slate coal, with flat

† See paper of 1846, previously cited.
fracture,—or of coarse coal, containing much earthy matter. All of these are arranged in thin interrupted laminae. They consist of vegetable matter which has not been altered by subaerial decay, but which has undergone the bituminous putrefaction, and has thereby been resolved into a nearly homogeneous mass, which still, however, retains traces of structure and of the forms of the individual flattened plants composing it. As these last are sometimes more distinct than the minute structures, and are necessary for their comprehension, I shall, under the following heads, notice both as I have observed them in the coals in question:

1. The laminae of pitch or cherry coal, when carefully traced over the surfaces of accumulation, are found to present the outlines of flattened trunks. This is also true, to a certain extent, of the finer varieties of slate coal; but the coarse coal appears to consist of extensive laminae of disintegrated vegetable matter mixed with mud.

2. When the coal (especially the more shaly varieties) is held obliquely under a strong light, in the manner recommended by Goeppert, the surfaces of the laminae present the forms of many well-known coal-plants, as Sigillaria, Stigmaria, Cordaites, Lepidodendron, Lepidophloios, and rough bark, perhaps of conifers.

3. When the coal is traced upward into the roof-shales, we often find the laminae of compact coal represented by flattened coaly trunks and leaves, now rendered distinct by being separated by clay.

4. In these flattened trunks it is the outer cortical layer that alone constitutes the coal. This is very manifest when the upper and under...
bark are separated by a film of clay or of mineral charcoal, occupying the place of the wood. In this condition the bark of a large Sigillaria gives only one or two lines in thickness of coal; Stigmaria, Lepidodendron, and Ulodendron give still less. In the shales these flattened trunks are often so crushed together that it is difficult to separate them. In the coal they are, so to speak, fused into a homogeneous mass.

5. The phenomena of erect forests explain to some extent the manner in which layers of compact coal and mineral charcoal may result from the accumulation of trunks of trees in situ. In the sections at the South Joggins, the usual state of preservation of erect Sigillaria is that of casts in sandstone, enclosed by a thin layer of bark converted into compact, eaking, bituminous coal, while the remains of the woody matter may be found in the bottom of the cast in the state of mineral charcoal. In other cases the bark has fallen in, and all that remains to indicate the place of a tree is a little pile of mineral charcoal, with strips of bark converted into compact coal. Lastly, a series of such remains of stumps, with flattened bark of prostrate trunks, may constitute a rudimentary bed of coal, many of which exist in the Joggins section. In short, a single trunk of Sigillaria in an erect forest presents an epitome of a coal-seam. Its roots represent the Stigmia underclay; its bark the compact coal; its woody axis the mineral charcoal; its fallen leaves, with remains of herbaceous plants growing in its shade, mixed with a little earthy matter, the layers of coarse coal. The condition of the durable outer bark of erect trees concurs with the chemical theory of coal, in showing the especial suitableness of this kind of tissue for the production of the purer compact coals. It is also probable that the comparative impermeability of bark to mineral infiltration is of importance in this respect, enabling this material to remain unaffected by causes which have filled those layers consisting of herbaceous materials and decayed wood, with earthy matter, pyrites, etc.

6. The microscopic structure of the purer varieties of compact coal accords with that of the bark of Sigillaria. The compact coals are capable of affording very little true structure. Their cell-walls have been pressed close together; and pseudo-cellular structures have arisen from molecular action and the segregation of bituminous matter. Most of the structures which have been figured by microscopists are of this last character, or at the utmost are cell-structures masked by concretionary action, pressure, and decay. Hutton, however, appears to have ascertained a truly cellular tissue in this kind of coal. Goeppert also has figured parenchymatous and perhaps bast-tissues obtained from its incineration. By acting on it with nitric
acid, I have found that the structures remaining both in the lustrous compact coals and in the bark of *Sigillaria* are parenchymatous cells and fibrous cells, probably bast-fibres.

7. I by no means desire to maintain that all portions of the coal-seams not in the state of mineral charcoal consist of cortical tissues. Quantities of herbaceous plants, leaves, etc., are also present, especially in the coarser coals; and some small seams appear to consist entirely of such material,—for instance, of the leaves of *Cordaites* or *Poacites*. I would also observe that, though in the roof-shales and other associated beds it is usually only the cortical layer of trees that appears as compact bituminous coal, yet I have found specimens which show that in the coal-seams themselves true woody tissues have sometimes been imbedded unchanged, and converted into structureless coal, forming, like the coniferous trees converted into jet in more modern formations, thin bands of very pure bituminous material. The proportion of woody matter in this state differs in different coals, and is probably greatest in those which show the least mineral charcoal; but the alteration which it has undergone renders it almost impossible to distinguish it from the flattened bark, which in all ordinary cases is much more abundant.

II. In the mineral charcoal, which affords the greater part of the material showing distinct vegetable structures, the following kinds of tissue are those ordinarily observed:

a. *Bast tissue*, or elongated cells from the liber or inner bark of *Sigillaria* and *Lepidodendron*, but especially of the former.—This kind of tissue is abundant in a calcified state in the shales associated with the coals, and also as mineral charcoal in the coals themselves, and in the interior of erect *Sigillaria*. It is the kind of tissue figured by Brongniart as the inner layer of bark in *Sigillaria elegans*, and very well described by Binney (Quart. Journ. Geol. Soc. vol. xviii.) as "elongated tissue or utricles." Under the microscope many specimens of it closely resemble the imperfect bast tissue of the inner bark of *Pinus strobus* and *Thuja occidentalis*; and like this it seems to have been at once tough and durable, remaining in fibrous strips after the woody tissues had decayed. It is extremely abundant at the Joggins in the mineral charcoal of the smaller coal-seams. It is often associated with films of structureless coal, which represent the dense cellular outer bark which, in the trunk of *Sigillaria*, not only surrounded this tissue, but was intermixed with it.

b. *Vascular bundles of Ferns.*—These may be noticed by all close observers of the surfaces of coal, as slender hair-like fibres, sometimes
lies separately, in other cases grouped in bands half an inch or more in diameter, and embedded in a loose sort of mineral charcoal. When treated with nitric acid, each bundle resolves itself into a few scalariform vessels surrounded with a sheath of woody fibres, often minutely porous. This structure is precisely that of macerated fern-stipes; but, as already stated, there may have been some other coal-plants whose leaves presented similar bundles. As stated in my former paper “On the Vegetable Structures in Coal,” this kind of tissue is especially abundant in the coarse and laminated portions of the coal, which we know on other evidence to have been made up, not of trunks of trees, but of mixed herbaceous matters (Fig. 175, C).

c. Scalariform vessels.—These are very abundant in the mineral charcoal, though the coarser kinds have been crushed and broken in such a manner that they usually appear as mere disc. The scalariform vessels of Lepidodendron, Lepidophloios, and Sigillaria are very coarse, and much resemble each other. Those of ferns are finer, and sometimes have a reticulated structure. Those of Sigillaria are much finer, and often have the aspect of wood-cells with transversely elongated pores like those of Cycas. Good examples of these are figured in the paper already referred to (see also Fig. 175, A and D).

d. Discigerous wood-cells.—These are the true bordered pores characteristic of Sigillaria, Calamodendron, and Dadoxylon. In the two former genera the discs or pores are large and irregularly arranged, either in one row or several rows; but in the latter case they are sometimes regularly alternate and contiguous. In the genus Dadoxylon they are of smaller size, and always regularly contiguous in two or more rows, so as to present an hexagonal areolation. Discigerous structures of Sigillaria and Calamodendron are very abundant in the coal, and numerous examples were figured in my paper above cited. I have indicated by the name Reticulated Tissue certain cells or vessels which may either be reticulated scalariform vessels, or an imperfect form of discigerous tissue. I believe them to belong to Sigillaria or Calamodendron (Figs. 162 and 175, A.)

e. Epidermal tissue.—This is a dense cellular tissue representing the outer integuments of various leaves, herbaceous stems, and fruits. I have ascertained that the structures in question occur in the leaves and stipes of Cordaites and ferns, and in the outer coat of Carpoptes and Sporangites. With this I may include the obscure and thick-walled cellular tissue of the outer bark of Sigillaria and Lepidodendron and other trees, which, though usually consolidated into compact coal, sometimes exhibits its structure.
I would here emphatically state that all my observations at the Joggins confirm the conclusion, which I arrived at many years ago from the study of the coals of Picton and Sydney, that the layers of clear shining coal (pitch or cherry coal) are composed of flattened trunks of trees, and that of these usually the bark alone remains; further, that the lamination of the coal is due to the superposition of layers of such flattened trunks alternating with the accumulations of vegetable matter of successive years, and occasionally with fine vegetable muck or mud spread over the surface by rains or by inundations. In connexion with this, it is to be observed that the density and impermeability of cortical tissues not only enable them to endure after wood has perished or been resolved into bits of charcoal, but render them less liable than the wood to mineral infiltration.

Rate of Growth of Carboniferous Plants.—Very vague statements are often made as to the supposed rapid rate of growth of plants in the Carboniferous period. Perhaps the most trustworthy facts in relation to this subject are those which may be obtained from the coniferous trees. In some of these (for instance, Dadoxylon materiam, D. annulatum, and D. antiquius) the rings of growth, which were no doubt annual, are distinctly marked. On measuring these in a number of specimens, and comparing them with modern species, I find that they are about equal in dimensions to those of the Balsam Fir or the Yellow Pine of America. Assuming, therefore, similarity in habit of growth and extent of foliage to these species, we may infer that, in regard to coniferous trees, the ordinary conditions of growth were not dissimilar from those of Eastern America in its temperate regions at present. When, however, we compare the ferns and Lycopodiaceae of the Coal formation with those now growing in Eastern America, we see, in the much greater dimensions and luxuriance of the former, evidence of a much more moist and equable climate than that which now subsists; so that we may suppose the growth of such plants to have been more rapid than it is at present. These plants would thus lead us to infer a warm and insular climate, perhaps influenced by that supposed excess of carbonic acid in the atmosphere which, as Tyndall and Hunt inform us, would promote warmth and moisture by impeding terrestrial radiation. With this would also agree the fact that the conifers have woody tissues resembling those of the pine trees of the milder climates of the southern hemisphere at present.

If we apply these considerations to Sigillaria, we may infer that the conditions of moisture and uniformity of temperature favourable to ferns and Lycopodiaceae were also favourable to these curious
THE FLORA OF THE COAL FORMATION.

469

plants. They must have been perennial; and the resemblance of their trunks to those of Cycads, together with their hard and narrow leaves, would lead us to infer that their growth must have been very slow. A similar inference may be drawn from the evidences of very slow and regular expansion presented by the lower parts of their stems. On the other hand, the distance, of a foot or more, which often intervenes between the transverse rows of scars, marking possibly annual fructification, would indicate a more rapid rate of growth. Further, it may be inferred, from the structure of their roots and of their thick inner bark, that these, as in Cycads, were receptacles for great quantities of starch, and that the lives of these plants presented alternations of starch-accumulation and of expenditure of this in the production of leaves, wood, and abundant inflorescence. They would thus, perhaps for several years, grow very slowly, and then put forth a great mass of fructification, after which perhaps many of the individuals would die, or again remain for a long time in an inactive state. This view would, I think, very well harmonize with the structure of these plants, and also with the mode of their entombment in the coal.

From the manner of the association of Calamites with erect Sigillaria, I infer that the former were, of all the plants of the Coal formation, those of most rapid dissemination and growth. They appear to have first taken possession of emerging banks of sand and mud, to have promoted the accumulation of sediment on inundated areas, and to have protected the exposed margins of the forests of Sigillaria.

In applying any conclusions as to the rate of growth of Carboniferous plants to the accumulation of coal, we must take into account the probable rate of decay of vegetable matter. When we consider the probable wetness of the soils on which the plants which produced the coal grew, the density of the forests, and the possible excess of carbonic acid in the atmosphere of these swamps, we must be prepared to admit that, notwithstanding the warmth and humidity, the conditions must have been favourable to the preservation of vegetable matter. Still the hollow cylinders of bark, the little fragments of decayed wood in the form of mineral charcoal, and the detached vascular bundles of ferns, testify to an enormous amount of decay; and show that, however great the accumulation of coal, it represents only a fraction of the vegetable matter which was actually produced. It has been estimated that it would require eight feet of compact vegetable matter to produce one foot of coal; but if we reckon the whole vegetable matter actually produced in the process, I should suppose that five times that amount would be far below the truth,
even in the most favourable cases; while there is evidence that in the Carboniferous period many forests may have flourished for centuries without producing an inch of coaly matter.

Summary of Conclusions.—In illustration of the bearing of these facts on the questions relating to the materials of the coal, I give the following table, representing in a condensed form the results of my observations on the coals of the South Joggins:

Table showing the Relative Frequency of Occurrence of Genera of Plants and Animals in the Coals of the South Joggins.

<table>
<thead>
<tr>
<th>Name of Fossils</th>
<th>Division 3, 23 coals.</th>
<th>Division 4, 49 coals.</th>
<th>Division 6, 9 coals.</th>
<th>Total, 81 coals.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plants.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sigillaria</td>
<td>13</td>
<td></td>
<td>2</td>
<td>49</td>
</tr>
<tr>
<td>Cordaites</td>
<td></td>
<td>15</td>
<td></td>
<td>41</td>
</tr>
<tr>
<td>Filices (mostly Alethopteris lonchitica)</td>
<td>4</td>
<td>17</td>
<td>2</td>
<td>23</td>
</tr>
<tr>
<td>Lepidodendron and Lepido-phloios</td>
<td>1</td>
<td>15</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>Calamites</td>
<td>4</td>
<td>12</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Carpolites, etc</td>
<td>2</td>
<td>9</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Asterophyllites</td>
<td>1</td>
<td>2</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Calamodendron</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Structures.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vascular bundles of ferns</td>
<td>8</td>
<td></td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td>Bast tissue (Sigillaria)</td>
<td>2</td>
<td>16</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>Epidermal tissue (Cordaites, etc.)</td>
<td>6</td>
<td>6</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Scalariform (Sigill., Stig., Lepid., etc.)</td>
<td>1</td>
<td>9</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>Discigerous (Sigillaria and Dadoxylon, etc.)</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>Reticulated (Calamites, Ferns, etc.)</td>
<td>...</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Animals.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fishes (Paleoniscus, Rhi- zodus, etc.)</td>
<td>...</td>
<td>16</td>
<td>1</td>
<td>18</td>
</tr>
<tr>
<td>Naiadites (Anthracomya, etc.)</td>
<td>...</td>
<td>16</td>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td>Spirorbis carbonarius</td>
<td>...</td>
<td>16</td>
<td>...</td>
<td>16</td>
</tr>
<tr>
<td>Cythere</td>
<td>13</td>
<td>1</td>
<td>...</td>
<td>14</td>
</tr>
<tr>
<td>Insects (?)</td>
<td>...</td>
<td>3</td>
<td>...</td>
<td>3</td>
</tr>
<tr>
<td>Reptiles (Dendrerpeton, etc.)</td>
<td>...</td>
<td>1</td>
<td>...</td>
<td>1</td>
</tr>
<tr>
<td>Pupa velutata and Xylobius sigillaria</td>
<td>...</td>
<td>1</td>
<td>...</td>
<td>1</td>
</tr>
</tbody>
</table>
The number of coals reckoned in this coal-field may vary according to the manner in which the several layers are grouped; but as arranged in the sectional list given in a previous chapter it amounts to eighty-one in all. Of these, 23 are found in Division 3 of Logan's section, being the upper member of the Middle Coal formation; 49 are found in Division 4 of Logan's section, being the lower member of the Middle Coal formation; 9 occur in Division 6 of Logan's section, or in the equivalent of the Millstone-grit. In the latter group few of the coals were sufficiently well exposed to enable a satisfactory examination to be made. I have grouped the remains under three heads—External Forms of Plants, Microscopic Structure of Plants, and Animal Remains—and have arranged the forms under each in the order of their relative frequency of occurrence. No mention is made of Stigmaria, which occurs in nearly every coal or its underclay.

The following are the conclusions, based on the above table and on examinations of the Coal of Pictou and Sydney:

1. With respect to the plants which have contributed the vegetable matter of the coal, these are principally the Sigillariae, with Cordaites, Ferns and Calamites. With these, however, are intermixed remains of most of the other plants of the period, contributing, though in an inferior degree, to the accumulation of the mass. This conclusion is confirmed by facts derived from the associated beds—as, for instance, the prevalence of Stigmaria in the underclays, and of Sigillariae and Calamites in the roof-shales and erect forests.

2. The woody matter of the axes of Sigillariae and Calamites and of coniferous trunks, as well as the scalariform tissues of the axes of the Lepidodendrea and Ulodendrea, and the woody and vascular bundles of ferns, appear principally in the state of mineral charcoal. The outer cortical envelope of these plants, together with such portions of their wood and of herbaceous plants and foliage as were submerged without subaerial decay, occur as compact coal of various degrees of purity; the cortical matter, owing to its greater resistance to aqueous infiltration, affording the purest coal. The relative amounts of all these substances found in the states of mineral charcoal and compact coal depend principally upon the greater or less prevalence of subaerial decay, occasioned by greater or less dryness of the swampy flats on which the coal accumulated.

3. The structure of the coal accords with the view that its materials were accumulated by growth, without any driftage of materials. The Sigillariae and Calamites, tall and branchless, and clothed only with rigid linear leaves, formed dense groves and jungles, in which the stumps and fallen trunks of dead trees became resolved by decay.
into shells of bark and loose fragments of rotten wood, which currents would necessarily have swept away, but which the most gentle inundations or even heavy rains could scatter in layers over the surface, where they gradually became imbedded in a mass of roots, fallen leaves, and herbaceous plants.

"4. The rate of accumulation of coal was very slow. The climate of the period, in the northern temperate zone, was of such a character that the true conifers show rings of growth not larger or much less distinct than those of many of their modern congeneres.* The Sigillariae and Calamites were not, as often supposed, composed wholly, or even principally, of lax and soft tissues, or necessarily short-lived. The former had, it is true, a very thick inner bark; but their dense woody axes, their thick and nearly imperishable outer bark, and their scanty and rigid foliage, would indicate no very rapid growth or decay. In the case of Sigillariae, the variations in the leaf-scars in different parts of the trunk, the intercalation of new ridges at the surface representing that of new woody wedges in the axis, the transverse marks left by the stages of upward growth—all indicate that several years must have been required for the growth of stems of moderate size. The enormous roots of these trees, and the conditions of the coal-swamps, must have exempted them from the danger of being overthrown by violence. They probably fell, in successive generations, from natural decay; and, making every allowance for other materials, we may safely assert that every foot of thickness of pure bituminous coal implies the quiet growth and fall of at least fifty generations of Sigillaria, and therefore an undisturbed condition of forest-growth enduring through many centuries. Further, there is evidence that an immense amount of loose parenchymatous tissue, and even of wood, perished by decay; and we do not know to what extent even the most durable tissues may have disappeared in this way; so that in many coal-seams we may have only a very small part of the vegetable matter produced.

"Lastly, the results stated in this paper refer to coal-beds of the Middle Coal measures. A few facts which I have observed lead me to believe that, in the thin seams of the Lower Coal measures, remains of Cordaites and Lepidodendron are more abundant than in those of the Middle Coal measures. In the upper Coal measures similar modifications may be expected."

The Flora of the Coal Formation.

Descriptive List of Carboniferous Plants found in Nova Scotia and New Brunswick.

This list is, with a few additional species and localities, the same with that published in my "Synopsis of the Carboniferous Flora of Nova Scotia," Can. Nat., vol. viii. 1863. It is given here to aid those who may desire to make collections of these interesting fossils, and for comparison with the coal flora of other regions.

Dadoxylon, Unger.

1. Dadoxylon Acadiumum, spec. nov. (Fig. 159, B). Large trees, usually silicified or calcified, with very wide wood-cells, having three or more rows of small hexagonal areoles, each enclosing an oval pore; cells of medullary rays one-third of breadth of wood-cells, and consisting of twenty or more rows of cells superimposed in two series. Rings of growth indistinct. M. C.,* Joggins, Port Hood, Dorchester (J. W. D.).

2. D. materiam, spec. nov. (Fig. 159, C). Wood-cells less wide than those of the last; two to rarely four rows of hexagonal discs. Medullary rays very numerous, with twenty or more rows of cells superimposed in one series. Rings of growth slightly marked. Approaches in the character of its woody fibre to D. Brandlindii; but the medullary rays are much longer. Some specimens show a large Sternbergian pith, with transverse partitions.† Vast numbers of trunks of this species occur in some sandstones of the Upper Coal formation. M. and U. C., Joggins, Malagash, Pictou, etc. (J. W. D.); Glace Bay (H. Poole); Miramichi (G. F. Matthew).

3. D. antiquus, spec. nov. (Fig. 159, D). Wood-cells narrow, thick-walled, two to three rows of pores. Medullary rays of three or four series of cells with twenty or more superimposed, nearly as wide as the wood-cells. Rings of growth visible. This species would belong to the genus Paladoxylon of Brongniart, and is closely allied to D. Withamii, L. and H., which, like it, occurs in the Lower Coal measures. L. C., Horton (Dr Harding).

4. D. annulatum, spec. nov. Wood-cells with two or three rows of hexagonal discs. Medullary rays of twenty or more rows of cells superimposed, in two series. Wood divided into distinct concentric circles, alternating with layers of structureless coal representing cellular tissue or very dense wood. A stem six inches in diameter has fourteen to sixteen of these rings, and a pyritized pith about

* U. C., M. C., and L. C., indicate the Upper, Middle, and Lower Coal formations.
† Canadian Naturalist, 1867 (Fig. 160, supra).

2 II
one inch in diameter. This is probably generically distinct from the preceding species. M. C., Joggins (Sir W. E. Logan; J. W. D.).

Araucarites, Unger.

Araucarites gracilis, spec. nov. (Fig. 159, A). Branches slender, 0.2 inch in diameter, with scaly, broad leaf-bases. Branchlets pinnate, numerous, very slender, with small, acute, spirally disposed leaves. U. C., Tatamagouche (J. W. D.).

Sigilleria, Brongn.

1. _Sigilleria_ (Pavularia) _elegans_, Brongn. (Fig. 161, B). Abundant, especially in the roofs of coal seams. _S. hexagona_ includes old trunks of this species. Young branches have scars of an elliptical form like those of _S. seriata_. M. C., Joggins (J. W. D.); Sydney (R. Brown).

2. _S. (Pav.) tessellata_, Brongn. M. C., Joggins and Pictou (J. W. D.); Sydney (R. Brown).

3. _S. (Rhytidolcips) scutellata_, Brongn. (Fig. 161, L, leaf). M. and U. C., Joggins (Lyell; J. W. D.).

4. _S. (Rh.) Schlothotheimiana_, Brongn. M. C., Joggins (Lyell; J. W. D.).

5. _S. (Rh.) Saullii_, Brongn. M. C., Sydney (R. Brown); Joggins (Lyell; J. W. D.).

7. _S. reniformis_, Brongn. M. C., Joggins (Lyell; J. W. D.); Sydney (R. Brown).

8. _S. Lavigata_, Brongn. M. C., Sydney (R. Brown); Joggins (J. W. D.).

9. _S. planicosta_, spec. nov. (Fig. 161, K). Scars half hexagonal above, rounded below; lateral vascular impressions elongate; central small, punctiform. Ribs 1.1 inch broad, smooth externally, longitudinally striated on the ligneous surface. Slight transverse wrinkles between the scars, which are distant from each other about an inch. Allied to _S. lavigata_, but with very thin bark. M. C., Sydney (R. Brown).

10. _S. catenoides_, spec. nov. (Fig. 161, I). Cortical surface unknown; ligneous surface with puncto-striate ribs 1.1 inch in breadth, and with single oval scars half an inch long, and an inch distant from centre to centre. A very large tree. Perhaps, if its cortical surface were known, it might prove to be a large Syringodendron. M. C., Joggins (J. Smith); Sydney (R. Brown).

11. _S. striata_, spec. nov. (Fig. 161, G). Ribs prominent, coarsely
THE FLORA OF THE COAL FORMATION. 475

striate, 0·35 inch wide. Scars nearly as wide as the ribs, rounded, hexagonal, one inch distant; lateral vascular marks narrow, central large. On the ligneous surface scars single, round, oblong; bark very thin.

M. C., Joggins (J. W. D.).

12. S. — (?)
A small erect stem, somewhat like S. flexuosa.
M. C., Joggins (J. W. D.).

14. S. (Asolans) Sydnesis, spec. nov. Ribs obsolete; cortical and ligneous surfaces striate; vascular scars two, elongate longitudinally, and alike on cortical and ligneous surfaces; scars 1·1 inch distant, in rows 0·6 inch distant. Stigmarian roots, same with variety h of Stigmaria, as described below. M. C., Sydney (R. Brown).

15. S. organum, L. and H. M. C., Sydney (R. Brown).

17. S. flexuosa, L. and H. M. C., Sydney (R. Brown's list in "Acadian Geology").

18. S. pachyderma, L. and H. M. C., Sydney (R. Brown's list).

19. S. (Fav.) Bretonensis, spec. nov. (Fig. 161, F). Like S. tesselata, but areoles more hexagonal, bark thin and smooth on both sides, and furrow above the scars arcuate and with a central punctiform elevation. M. C., Sydney (R. Brown).

20. S. eminens, spec. nov. (Fig. 161, II). Like S. obovata, Lesq., but with narrower ribs, and larger and less distant areoles, each with a slight groove above. M. C., Sydney (R. Brown).

SYRINGODENDRON, Brongn.

Obscure specimens, referable to a narrow-ribbed species of this genus, occur in the Lower Carboniferous beds at Horton and Onslow.

STIGMARIA, Brongn.

Stigmaria ficidea, Brongn. (Fig. 30, d). Under this name I place all the roots of Sigillaria occurring in the Carboniferous rocks of Nova Scotia. They belong, without doubt, to the different species of Sigillarioid trees; but it is at present impossible to determine to which; and the specific characters of the Stigmariae themselves are, as might be anticipated, evanescent and unsatisfactory. The varieties which occur in Nova Scotia, discarding mere difference of preservation, may be arranged as follows:
Var. a. Areoles large, distant; bark more or less smooth. This is the most common variety, and extends throughout the Coal formation.

Var. b. Areoles large, separated by waving grooves of the bark.

Var. c. Similar, but ridges as well as furrows between the areoles; var. undulata of Goeppert.

Var. d. Areoles small, separated by waving grooves.

Var. e. Areoles moderate, in vertical or diagonal furrows separated by ridges; var. Sigillarioides of Goeppert.

Var. f. Areoles small; bark finely netted with wrinkles or striae.

Var. g. Areoles surrounded by radiating marks, giving a star-like form; var. Stellata of Goeppert. The only specimen I have seen was found by Dr Harding in the Lower Carboniferous Coal measures of Horton.

Var. h. Areoles small, or obscure and infrequent. Surface covered with fine uneven striae. My specimens were collected by Mr Brown in the Middle Coal measures at Sydney.

Var. i. Areoles narrow, elongate, bark smooth or striate.

Var. j. Alternans, with areoles in double rows on broad ribs separated by deep furrows. Probably old furrowed roots.

Var. k. Knorroides. Prominent bosses or ridges instead of areoles. These are imperfectly preserved specimens.

The varieties a, b, c, e, i, have been seen attached to trunks of Sigillaria of the group distinguished by broad and prominent ribs—Sigillaria proper of the above arrangement. Stigmariæ, like Sigillaria, are exceedingly abundant in the Middle Coal measures, and are comparatively rare in the Lower Carboniferous and newer Coal formations.

Calamodendron, Brongni.

1. *Calamodendron approximatum*, Brongni. (Fig. 162). This plant is evidently quite distinct from *Calamites* proper. The Calamite-like cast is a pith or internal cavity, surrounded by a thick cylinder of woody tissue consisting of scalariform vessels and woody fibres with one row of round pores; external to this is a bark of cellular and bast tissue. The structure appears to be allied to that of *Sigillaria* and is one of the most common in the beds of bituminous coal. M. C., Sydney (R. Brown); M. C., Joggins, Pictou (J. W. D.); Coal Creek (C. B. Matthew).

2. *C. obscurum*, spec. nov. This is a Calamite-like fragment found in a block of Sydney coal, in the state of mineral charcoal. The external markings are obscure, but the structure is well preserved. It differs from the last in having large ducts with many rows of pores,
or reticulated instead of scalariform vessels. This is perhaps a Calamite. M. C., Sydney (J. W. D.).

Cyperites, L. and H.

Cyperites — (?) These elongate linear leaves have two or three ribs, and the central band between the ribs raised above the margin; one species has been seen attached to Sigillaria scutellata (Fig. 161, L). The leaves of Sigillaria elegans are different, being as broad as the areoles of the stem, and with several parallel veins (Fig. 161, B'). Middle and Upper coals, everywhere.

Antholithes, Bronn.

1. Antholites Rhabdocarpi, spec. nov. (Fig. 173, B). Stem short, interruptedly striate, with two rows of crowded ovate fruits, and traces of floral leaves. Fruits half an inch long, striated longitudinally, attached by short peduncles. M. C., Grand Lake (C. F. Hartt).

2. A. pygmaeus, spec. nov. (Fig. 173, H). Rhabdocarpus one-tenth inch thick, rugose; two rows of opposite flowers, each showing four lanceolate striate leaves, two outer and two inner. M. C., Joggins (J. W. D.).

3. A. spinosus, spec. nov. (Fig. 173, C). Stem one-fourth inch wide, delicately striate, slightly wrinkled longitudinally, as if by pressure. Flowers opposite, of ovate striate leaves or scales, and at base of each a long pointed narrow striate bract or scale. Fruit apparently an ovate striate nut—(Rhabdocarpus). Of same type with A. rhabdocarpi, but with thicker stem, smaller flowers, and much longer bracts. M. C., Joggins (J. W. D.).

4. A. squamosus, spec. nov. (Fig. 173, A). Rhachis thick, coarsely rugose, with two rows of closely placed cones or scaly fruits. U. C., Pictou (J. W. D.).

5. A. (?) spec. nov. Indistinct, but apparently different from those above described. M. C., Joggins (J. W. D.); Sydney (R. Brown).

Trigonocarpum, Bronn.

1. Trigonocarpum Hookeri (Fig. 174), Dawson, Quart. Journ. Geol. Soc., vol. xvi. M. C., Mabou (J. W. D.).

2. T. Sigillaria, spec. nov. Ovate, one quarter inch long; testa smooth, or rugose longitudinally, acuminate, two edged. Found in erect trunks of Sigillaria in large numbers. M. C., Joggins (J. W. D.).
3. *T. intermedium*, spec. nov. (Fig. 173, D). Allied to *T. oliviformis*, but larger and more elongated. M. C., Joggins (J. W. D.).

4. *T. avellanum*, spec. nov. (Fig. 173, F). Allied to *T. ovatum*, L. and H.; three-ribbed, size and form of a filbert. M. C., Joggins (J. W. D.); Sydney (R. Brown).

5. *T. minus*, spec. nov. Half the size of *T. Hookeri* and similar in form. M. C., Joggins (J. W. D.).

7. *T. Naagerathii*, Brongn. (Fig. 173, E). Newer Coal formation, Pictou (J. W. D.).

Rhabdocarpus, Goepp. and Bergm.

1. *Rhabdocarpus* — (?), spec. nov. Ovate acumenate, less than half an inch long. M. C., Joggins (J. W. D.).

2. *R. i.effigies*, spec. nov. (Fig. 173, G). 1.5 inch long, ovate, smooth, with about seven ribs on one side, and the intervening surface obscurely striate. The nature of this fossil is perhaps doubtful; but if a fruit, it is the largest I have seen in the Coal formation. U. C., Pictou (J. W. D.).

Calamites, Suckow.

1. *Calamites Suckovii*, Brongn. (Figs. 39 and 163, A). This species is one of the most common in an erect position. It has verticillate branchlets, with pinnate linear leaflets. M. C., Sydney (R. Brown); Joggins (Lyell; J. W. D.); Grand Lake and Springhill (C. F. Hartt); U. C., Pictou (J. W. D.); Coal Creek (C. B. Matthew).

2. *C. Cistii*, Brongn. (Fig. 163, B). M. C., Joggins (J. W. D.); Sydney (R. Brown); Grand Lake (C. F. Hartt); Bay de Chaleur (Logan); Coal Creek (C. B. Matthew). Often found erect. Its leaves are verticillate, simple linear, striate, apparently one-nerved, and three inches long.

3. *C. canniformis*, Brongn. M. C., Joggins (Lyell; J. W. D.); Sydney (R. Brown).

5. *C. Voltzii*, Brongn. (Fig. 37). (*C. irregularis*, L. and H.); M. C., Joggins (J. W. D.). Often erect; has large irregular adventitious roots. This species is regarded by Bronguiart as *p. odoratum* belonging to *Calamodendron*.

8. *C. nodosus*, Schloth. (Fig. 163, C). This species has long slender branchlets, with close whorls of short rigid leaves. M. C., Sydney (R. Brown); Grand Lake (C. F. Hartt).

9. *C. arenaceus* (?), Jäger. This species is mentioned with doubt in Lyell's list.

Equisetites, Sternberg.

Equisetites curta, spec. nov. (Fig. 164). Short thick stems, enlarging upward, and truncate above; joints numerous; sheaths as long as the joints, with unequal acuminate keeled points. Lateral branches or fruit with longer leaf-like points. Has the characters of *Equisetites*; but its affinities are quite uncertain. M. C., Sydney (R. Brown).

Asterophyllites, Brongn.

2. *A. grandis*, Sternberg (?). The specimens resemble this species, but are not certainly the same. Logan's specimens have terminal spikes of fructification. M. C., Grand Lake (C. F. Hartt); Bay de Chaleur (Logan); Sydney (Bunbury). Springhill (C. F. Hartt).

3. *Asterophyllites*, sp. A species with tubercles (fruit) in the axils is mentioned in Lyell's list as from Sydney. I have not seen it, but have a specimen from Mr. Brown similar to *A. tuberculata*, Sternberg, which may be the same.

4. *A. trinervis*, spec. nov. (Fig. 165, A). Main stem smooth, delicately striate, with leaves at the nodes. Branches delicately striate, with numerous whorls of linear nearly straight leaves, 0·5 inch long, twenty or more in a whorl, and showing two lateral nerves in addition to the median nerve. M. C., Sydney (R. Brown).

5. *Asterophyllites* (*Bechera*) *curta*, spec. nov. Stems thin, coarsely ribbed. Internodes about a line long. Nodes with whorl of short linear leaves, nearly at right angles to the stem, which bifurcates at very obtuse angles. M. C., Pictou (J. Barnes, Esq.) This peculiar species is of the type of *A. grandis*, and belongs to the section *Bechera* of Sternberg; plants which, at least in habit of growth, are certainly different from ordinary *Asterophyllites*.

Annularia, Sternberg.

1. *Annularia sphenophyloides*. Zenker (Fig. 165, B). M. C.,
THE CARBONIFEROUS SYSTEM.

Grand Lake (C. F. Hartt); U. C., Pictou (J. W. D.); Bay de Chaleur (Logan); Sydney (R. Brown).

2. *A. equisetiformis*, L. and H. M. C., Sydney (R. Brown); Pictou (J. W. D.).

Sphenophyllum, Brongn.

1. *Sphenophyllum emarginatum*, Brongn. M. C., Sydney (R. Brown); Grand Lake (C. F. Hartt); Bay de Chaleur (Logan); Pictou (J. W. D.).

2. *S. longifolium*, Germar. U. C., Pictou (J. W. D.); M. C., Sydney (R. Brown).

4. *S. Schlotheimii*, Brongn. M. C., Sydney (Bunbury).

5. *S. erosum*, L. and H. M. C., Sydney (Bunbury) (Fig. 165, C). The last two species are regarded by Geinitz as varieties of *S. emarginatum*. A specimen of the last-named species in Sir William Logan's collection shows a woody jointed stem like that of *Asterophyllites*, giving off branches at the joints; these again branch and bear whorls of leaves. The stem shows under the microscope a single bundle of reticulated or scalariform vessels like those of some ferns, and also like those of *Tmesipteris*, as figured by Brongniart. This settles the affinities of these plants as being with ferns or with *Lycopodiacae*, rather than with *Equisetaceae*, as at p. 444 above.

Pinnularia, L. and H.

2. *P. Ramosissima*, spec. nov. (Fig. 165, D). More slender and ramose than the last. M. C., Joggins (J. W. D.).

3. *P. crassa*, spec. nov. Branching like *P. capillacea*, but much stronger and coarser. L. C., Horton (C. F. Hartt). All these are apparently branching fibrous roots, of soft cellular tissue with a thin epidermis and slender vascular axis. Perhaps they are roots of *Asterophyllites*.

Genus Naeggerathia, Sternberg.

1. *Naeggerathia dispar*, spec. nov. (Fig. 73). A remarkable fragment of a leaf, with a petiole nearly three inches long, and a fourth of an inch wide, spreading abruptly into a lamina, one side of which is much broader than the other, and with parallel veins running up directly from the margin as from a marginal rib. It appears to be
THE FLORA OF THE COAL FORMATION.

doubled in at both edges, and is abruptly broken off. It seems to be a new species; but of what affinities, it is impossible to decide. Bay de Chaleur (Sir W. E. Logan).

Cyclopteris, Brongn.

(including *Cyclopteris* proper, and subgenera *Aneimites*, Daws., and *Neuropteris*, Brongn. in part).

2. *C. (Aneimites) Acadica*, Dawson, Quart. Journ. Geol. Soc., vol. xvii. p. 5 (Fig. 75). Stipe large, striate, branching dichotomously several times. Pinnæ with several broadly obovate pinnules grouped at the end of a slender petiolule, and with dichotomous radiating veins. Fertile pinnæ with recurved petiolules, and borne on the divisions of the main petiole near their origin. This plant might be placed in the genus *Adiantites*, Brongn., but for the fructification, which allies it with such ferns as *Aneimia*. It has a very large frond, the main petiole being sometimes three inches in diameter, and two feet long before branching. Flattened petioles have sometimes been mistaken for *Cordaites* and *Schizopteris*. It is a characteristic plant of the Lower Coal measures. L. C., Horton (C. F. Hartt); Norton Creek, N.B. (G. F. Matthew).

5. *C. (? Neuropteris) ingens*, L. and H. M. C., Sydney (R. Brown); Grand Lake and Springhill (C. F. Hartt).

8. *C. hispida*, spec. nov. Pinnate; pinnules obovate, diminishing in size towards the point, decurrent on the petiole; veins slender, distant, forking several times; under surface covered with stiff hairs. M. C., Sydney (R. Brown).

9. *C. antiqua*, spec. nov. - L. C., (?) Herbert River (J. W. D). Tripinnate; petioles slender; pinnules oblong, obtuse, decurrent on the petiole, not contiguous. Terminal pinnules much elongated; venation simple, divergent. This plant approaches more nearly to the peculiar species of *Cyclopteris* found in the Devonian, than any of the others I have seen in the Carboniferous.
THE CARBONIFEROUS SYSTEM.

NEUROPTERIS, Brongn.

1. Neuropteris rarinervis, Bunbury (Fig. 156, f). M. C., Sydney (R. Brown); Grand Lake and Springhill (C. F. Hartt); Bay de Chaleur (Logan).

2. N. perelegans, spec. nov. M. C., Sydney (R. Brown). Resembles N. elegans, Brongn., but has narrower pinnules, and nerves less oblique to the midrib. The pinnules were thick and leathery, rough or cellular-netted above, and showing the venation only on the underside.

3. N. cordata, Brongn. (and var. angustifolia). (Fig. 166, B). The ferns referred to this species are identical with N. hirsuta of Lesquereux. They abound in the Middle and Upper Coal formations, and have larger pinnules than any of the other ferns. A single terminal pinnule in my collection is five inches long. The surface is always more or less hairy. M. C., Sydney (R. Brown); U. C., Pictou (J. W. D.).

4. N. Voltzii, Brongn. A single imperfect specimen like this species, but uncertain. M. C., Pictou (J. W. D.).

5. N. gigantea, Sternb. M. C., Sydney (R. Brown); Grand Lake (C. F. Hartt); U. C., Pictou (J. W. D.).

6. N. flexuosa, Sternb. M. C., Sydney (R. Brown); Joggins (J. W. D.).

7. N. heterophylla, Brongn. M. C., Sydney (R. Brown); U. C., Pictou (J. W. D.).

8. N. Leshii, Brongn. Bay de Chaleur (Logan).

9. N. acutifolia, Brongn. M. C., Sydney (Lyle's list).

10. N. conjugata, Goep. M. C., Sydney (Brown's list, "Acad. Geol.").

11. N. attenuata, L. and Hl. M. C., Sydney (l. c.).

13. N. Soretii (Brongn.). M. C., Sydney (R. Brown).

15. N. cyclopteroides, spec. nov. (Fig. 166, F). Pinnate; pinnules contiguous or overlapping, obliquely round-ovate, attached at the lower third of the base; nerves numerous, spreading from the point of attachment. Allied to N. Villiersi, Brongn. M. C., Sydney (R. Brown).

ODONTOPTERIS, Brongn.

1. Odontopteris Schlotheimii, Brongn. M. C., Sydney (R. Brown); Bay de Chaleur (Logan); U. C., Pictou (J. W. D.).
THE FLORA OF THE COAL FORMATION.

2. *O. subcuneata*, Bunbury (Fig. 165, A). M. C., Sydney (R. Brown).

Dictyopteris, Guth.

D. obliqua, Bunbury (Fig. 166, D). M. C., Sydney (R. Brown).

Lonchopteris, Brongn.

Lonchopteris tenuis, spec. nov. Pinnate or bipinnate; pinnules contiguous at the base, nearly at right angles to petiole, oblong elongate, obtuse. Network of veins very delicate. Allied to *L. Briti*, Brongn., but with smaller, more elongate pinnules and finer veins. I suspect this to be a thick-leaved *Pecopteris*, showing a coarse cellular reticulation on the upper surface. M. C., Sydney (R. Brown).

Sphenopteris, Brongn.

1. *S. mundus*, spec. nov. (Fig. 69). Like *S. Dubuissonii*, Brongn., or *S. irregularis*, Sternberg, in habit; but the pinnules are obovate, decurrent, and few-veined. M. C., Grand Lake and Springhill (C. F. Hartt).

2. *S. hymenophylloides*, Brongn. M. C., Sydney (R. Brown); U. C., Joggins (J. W. D.).

3. *S. latior*, spec. nov. (Fig. 70). Petiole forking at an obtuse angle, slender, tortuous; divisions bipinnate; pinnules with broad, rounded, confluent pinnules; veins twice forked, with sori in the forks of the veins. In habit like *S. latifolia*, Brongn., *S. Newberryi*, and *S. squamosa*, Lesq. M. C., Grand Lake and Springhill (C. F. Hartt); U. C., Pictou (J. W. D.).

5. *S. gracilis*, Brongn. M. C., Joggins (J. W. D.); Grand Lake (C. F. Hartt).

7. *S. Canadensis*, spec. nov. (Fig. 71). General aspect like *S. Haininghausi*, but secondary pinnules with a margined petiole, and oblong pinnules divided into three to five obtuse points. It is not unlike *S. marginata*, from the Devonian of St. John. Bay de Chaleur (Logan); Sydney? (R. Brown).

THE CARBONIFEROUS SYSTEM.

Phyllopteris, Brongn.

Phyllopteris antiqua, spec. nov. (Fig. 166, E). Pinnate; petiole thick, woody; pinnules oblong, pointed, attached by the middle of the base; midrib strong, extending to the point, giving off very oblique nerves, which have obliquely pinnate nervules not anastomosing. A remarkable frond, which, if not the type of a new genus, must belong to that above named. M. C., Sydney (R. Brown).

Alethopteris, Sternberg.

1. *Alethopteris longitica*, Sternberg. (Fig. 166, C). M. and U. C., Joggins (J. W. D.); M. C., Sydney (R. Brown); Grand Lake (C. F. Hartt). Very abundant throughout the Middle and Upper Coal formations, and so variable that several species might easily be founded on detached specimens.

2. *A. heterophylla*, L. and H. (Fig. 156, A). L. C., Parrsborough (A. Gesner).

4. *A. nervosa*, Brongn. M. C., Sydney (R. Brown); Bay de Chaleur (Logan); U. C., Pictou (J. W. D.).

5. *A. muricata*, Brongn. M. C., Joggins, Bathurst (Lyell); U. C., Pictou (J. W. D.).

7. *A. Serlii*, Brongn. M. C., Sydney (R. Brown); Bay de Chaleur (Logan); Springhill (C. F. Hartt).

8. *A. grandis*, spec. nov. (Fig. 72). Bipinnate; pinnae broad, contiguous, united at the base; veins numerous, once forked, not quite at right angles to the midrib. Upper pinnae having the pinnules confluent so as to give crenate edges. Still higher the apex of the frond shows distant decurrent long pinnules with waved margins. A very large and fine species of the type of *A. Serlii* and *A. Grandini*, but much larger and different in details. Its texture seems to have been membranaceous; and fragments from that part of the frond where the long simple pinnules are passing into the compound ones might be mistaken for an *Odontopteris*. Bay de Chaleur (Logan).

Pecopteris, Brongn.

1. *Pecopteris arborescens*, Schloth. Seems to have been an herbaceous species with a very strong petiole. It occurs in an erect position in a sandstone on Wallace River. M. C., Sydney (R. Brown); U. C., Pictou (J. W. D.); Wallace River (Dr Creed).
2. *P. abbreviata*, Bronn. M. C., Sydney (R. Brown); Salmon River, U. C., Pictou (J. W. D.). Very common both in the Upper and Middle Coal formations.

3. *P. rigida*, spec. nov. Similar to *P. arborescens*, but much smaller, and with finer nerves. U. C., Pictou (J. W. D.).

4. *P. unita*, Bronn. Certain pinnules of a frond are sometimes swollen as if covered with fructification below; and in this state they resemble *P. arguta*, Bronn. The sori are seen in other specimens, and are large, round, and covered with an indusium as in *Aspidium*. M. C., Sydney (R. Brown); U. C., Pictou (J. W. D.).

13. *P. villosa*, Brongn. M. C., Pictou (Lyell's list).

15. *P. oreopteroides*, Bronn. M. C., Sydney (Brown's list).

16. *P. Decurrences*, Lesq. Has pinnules more crowded, decreasing towards the apex, but may be a variety. M. C., Sydney (R. Brown).

Beinertia, Goepert.

Beinertia Goepertii, spec. nov. Bipinnate; pinnas broad, contiguous, obtuse, with thick pinnules. Pinnules rounded above, obovate below. Midsib thick, oblique, dividing above into a tuft of irregular hair-like veins. M. C., Grand Lake (C. F. Hartt); Bay de Chaleur (Logan); U. C., Joggins (J. W. D.).

Hymenophyllites, Goepert.

Hymenophyllites pentadaectyla, spec. nov. In general habit like *Sphenopteris microloba*, Goep., but with pinnules divided from four to seven obtuse cuneate lobes, each with one vein. M. C., Sydney (R. Brown).

Paleopteris, Geinitz.

1. *Paleopteris Harttii*, spec. nov. (Fig. 167, C). Stem or leaf-bases transversely wrinkled with delicate lines; scars transversely oval,
slightly appended below; vascular sears confluent. Breadth 1.4 in.; length 0.6 in. M.C., Grand Lake, Springhill (C. F. Hartt).

2. *P. Acadica*, spec. nov. (Fig. 167, D). Stem or leaf-bases longitudinally striated; sears transverse, flat above, rounded and bluntly appended below; vascular sears in a transverse row. Breadth of sears 0.7 inch; length 0.5 inch. U.C., Pictou (J. W. D.).

Caulopteris, L. and H.

Several small erect stems at the Joggins seem to be trunks of ferns, but are too obscure for description.

Psaronius, Cotta.

Trunks of this kind must be rare in the Nova Scotian Coal-fields. A few obscure stems surrounded by cord-like aerial roots have been found, and probably are remains of plants of this genus.

Megaphyton, Artis.

1. *Megaphyton magnificum*, spec. nov. (Fig. 167, A). Stems large, roughly striated longitudinally; sears contiguous, orbicular, deeply sunk, nearly 3 inches in diameter, and each with a bilobate vascular impression 2 inches broad and an inch high. M.C., Joggins (J. W. D.).

2. *M. humile*, spec. nov. Stem 2.5 inches in diameter; leaf-sears prominent, flattened, and broken at the ends, 1 inch wide. Surface of the stem marked with irregular furrows, and invested with a carbonaceous coating. An internal axis, nearly 2 inches in diameter, with a coaly coating, sends off obliquely thick branches to the leaf-sears. This is a very remarkable specimen, and throws much light on the structure of *Megaphyton*. Unfortunately the minute structures are not preserved. M.C., Sydney (R. Brown).

Genus Lepidodendron, Sternberg.

1. *Lepidodendron corrugatum*, Dawson, Quart. Journ. Geol. Soc., vol. xvi. (Fig. 168). Areoles elongate ovate, acute at both ends, with a ridge along the middle, terminating in a single elevated vascular scar at the upper end. In certain states the vascular mark appears in the middle of the areole. In young branches the areoles are contiguous and resemble those of *L. elegans*. In old stems they become separated by spaces of longitudinally wrinkled bark; in very old stems these spaces are much wider than the areoles. Leaves linear, 1 inch or more in length, usually reflected, one-nerved. Cones (*Lepidostrobi*) terminal, short, cylindric, with numerous short, acute-triangular scales. Structure of stem:—a central pith with a slender cylinder of scalariform...
THE FLORA OF THE COAL FORMATION.

487

vessels, exterior to which is a thick cylinder of cellular tissue and bast fibres, and a dense outer bark. Var. *verticillatum* has the areoles arranged in regular decussate whorls instead of spirally. This difference, which might at first sight seem to warrant even a generic distinction, is proved by specimens in my possession to be merely a variety of *phyllostachys*. This species is eminently characteristic of the Lower Carboniferous Coal measures, and has not yet been found in the Middle Coal formation. Fragments of bark, resembling that of this species, occur in the Coal formation of Bay de Chaleur, along with leafy branches of *Lepidodendron*, which resemble those of this species, though, I believe, distinct. L. C., Horton, etc. (C. F. Hartt; J. W. D.); Norton Creek, etc., New Brunswick (G. F. Matthew).

2. *L. Pictoense*, spec. nov. (Fig. 169, A). Areoles contiguous, prominent, long oval, acuminate, separated in young stems by a narrow line; breadth to length as 1 to 3, or less; lower half obliquely wrinkled, especially at one side. Middle line indistinct. Leaf-scar at upper end of areole, small, triangular, with traces of three vascular points, nearly confluent. Length of areole about 0.5 inch. Leaves contracted at the base, widening slightly, and gradually contracting to a point; ribs three, central distinct, lateral obscure; length 1 inch. Cones borne at the extremities of the smaller branches, oblong, obscurely scaly. In habit of growth this species resembles *L. elegans*, for which imperfect specimens might be mistaken. It is also near to *L. binerve* and *L. patulum*, Bunbury.* It abounds in the Middle Coal measures. M. C., Sydney (R. Brown); Pictou (H. Poole and J. W. D.); Grand Lake (C. F. Hartt).

3. *L. rimosum*, Sternberg (Fig. 169, D). M. C., Sydney (R. Brown); Joggins (J. W. D.).

5. *L. decurrentum*, spec. nov. (Fig. 170, A). Areoles approximate or separated by a shallow furrow, rhombic ovate, obliquely acuminate below, nearly as broad as long, wrinkled transversely, especially on the middle line, which appears tuberculatd; vascular scar rhombic, twice as broad as long, with three approximate vascular points. In some flattened specimens the line separating the areoles is indistinct, and the scars appear on a transversely wrinkled surface without distinct areoles. M. C., Pictou (J. W. D.).

6. *L. undulatum*, Sternberg. (Fig. 169, E). Possibly several species

* In certain states of preservation, the lateral ribs of the leaves become obsolete; and in others the central disappears, in which state the resemblance to *L. binerve* is very close.
are included under this name; but they cannot be separated at present.
M. C., Sydney (R. Brown); Joggins and Pictou (J. W. D.); U. C.,
Joggins (J. W. D.).

8. *L. sp. like* *tetragonum*, Goepp. Obscurely marked, but a dis-

tinct species, unless an imperfectly preserved variety of *L. tetragonum*.
The areoles are square, with a rhombic scar at the upper corner of each.
L. C., Horie (J. W. D.).

10. *L. tumidum*, Bunbury. I think it probable that this species

belongs to the genus *Lepidophloios*; but I have not seen a specimen.
M. C., Sydney (R. Brown).

Probably a variety of the next. M. C., Sydney (R. Brown).

Sydney (R. Brown).

16. *L. clavatatum* (?), Lesq. M. C., Sydney (R. Brown); U. C.,
Joggins (J. W. D.).

18. *L. plicatum*, spec. nov. (Fig. 169, C). Leaf-areoles much elongated;
breadth to length as 1 to 5 or 6, transversely rugose; central
line indistinct. Leaf-scar rhombic, with three vascular points; scars
in old stems separated by rugose bark, and somewhat elongate. M. C.,
Pictou (J. W. D.).

19. *L. personatum*, spec. nov. (Fig. 169, B). Areoles ovate acu-
nate; breadth to length as 1 to 3 or 4, contiguous in young stems;
central line distinct; lower part of areole with transverse lines. Leaf-
scares ovate, with two marks above and two below; leaves slender, 1
inch long, one-nerved. M. C., Sydney (R. Brown).

HALONIA, L. and H.

Halonia, sp. A specimen probably referable to this genus from
Grand Lake, in the collection of C. F. Hartt.

LEPIDOSTROBUS, Brongn.

1. *Lepidostrobus variabilis*, L. and H. The most common species.
M. C., Sydney (R. Brown); Pictou and Joggins (J. W. D.).
THE FLORA OF THE COAL FORMATION.

2. L. squamosus, spec. nov. (Fig. 171, E.) 2 to 3 inches long, 1 inch thick; scales large, broadly trigonal, acute. Allied to L. trigonoolepis, but larger. Probably a cone of Lepidophloios. M. C., Grand Lake (C. F. Hartt).

3. L. longifolius, spec. nov. Long-leaved, like Lepidodendron longifolium, L. and H. M. C., Joggins (J. W. D.).

LEPIDOPHYLLEM, Bronn.

1. Lepidophyllum lanceolatum, L. and H. M. C., Joggins; U. C., Pictou (J. W. D.).

2. L. Trinerve (?), L. and H. Two-nerved or three-nerved, like L. trinerve, L. and H., but narrower. Both the above are parts of Lepidostrobi. U. C., Joggins (J. W. D.).

4. Lepidophyllum, sp. Broad ovate, short, pointed, one-nerved, half an inch long. U. C., Pictou.

5. L. intermedium, L. and H. M. C., Sydney (R. Brown's list).

Halonia, Lepidostrobus and Lepidophyllum, including only parts of Lepidodendron and Lepidophloios, are to be regarded as merely provisional genera.

LEPIDOPHYLOIOS, Sternberg.

1. Lepidophloios Acadianus, spec. nov. (Fig. 171). Leaf-bases broadly rhombic, or in old stems regularly rhombic, prominent, ascending, terminated by very broad rhombic scars having a central point and two lateral obscure points. Outer bark laminated or scaly. Surface of inner bark with single points or depressions. Leaves long, linear, with a strong keel on one side, five inches or more in length. Cone-scarps sparsely scattered on thick branches, either in two rows or spirally, both modes being sometimes seen on the same branch. Scalariform axis scarcely an inch in diameter in a stem five inches thick. Fruit, an ovate strobile with numerous acute scales covering small globular spore-cases. This species is closely allied to Ulodendron majus and Lepidophloios laricinus, and presents numerous varieties of marking. M. C., Joggins, Salmon River, Pictou (J. W. D.); Sydney (R. Brown).

2. L. prominulus, spec. nov. Leaf-bases rhombic, pyramidal,
somewhat wrinkled at the sides, truncated by regularly rhombic scars, each with three approximate vascular points. M. C., Joggins (J. W. D.).

3. *L. parvus*, spec. nov. (Fig. 170, G). Leaf-bases rhombic, small, with rhombic scars broader than long; vascular points obscure; leaves linear, acute, three inches or more in length, with a keel and two faint lateral ribs. Cones large, sessile. U. C., Pictou; M. C., Joggins (J. W. D.); M. C., Sydney (R. Brown).

4. *L. platystigma*, spec. nov. (Fig. 170, E). Leaf-bases rhombic, broader than long, little prominent; scars rhombic, oval, acuminate, slightly emarginate above; vascular points two, approximate or confluent. M. C., Sydney (R. Brown); Joggins (J. W. D.).

5. *L. tetragonus*, spec. nov. (Fig. 170, D). Leaf-bases square, furrowed on the sides; leaf-scar central, with apparently a single central vascular point. M. C., Joggins (J. W. D.).

Diplotegium, Corda.

Diplotegium retusum, spec. nov. (Fig. 172, B). The fragments referable to plants of this genus are imperfect and obscure. The most distinct show leaf-bases ascending obliquely, and terminating by a retuse end with a papilla in the notch. Some less distinct fragments may possibly be imperfectly preserved specimens of *Lepidodendron* or *Lepidophloios*. M. C., Joggins (J. W. D.).

Knorria.

Nearly all the plants referred to this genus in the Carboniferous rocks are, as Goeppert has shown, imperfectly preserved stems of *Lepidodendron*. In the Lower Coal formation many such *Knorria* forms are afforded by *L. corrugatum.*

Knorria Sellonii, Sternberg. This appears different from the ordinary *Knorria*; its supposed leaves may be aerial roots. It has a large pith-cylinder with very distant tabular floors, like *Sternbergia*. M. C., Sydney (R. Brown).

Cordaites, Unger. (Pychnophyllum, Brongn.).

1. *Cordaites borassifolia*, Corda (Fig. 172, A). M. C., Pictou (H. Poole); Grand Lake and Springhill (C. F. Hartt); Sydney (R. Brown); Joggins, Onslow (J. W. D.); Bay de Chaleur (Logan). Very abundant in the Middle Coal formation.

2. *C. simplex*, spec. nov. Leaves similar to the last in size and form, but with simple, equal, parallel nerves. It may be a variety, but is characteristic of the Upper Coal formation. M. C., Grand River (C. F. Hartt); U. C., Pictou (J. W. D.).
THE FLORA OF THE COAL FORMATION.

Cardiocarpum, Brongn.

1. Cardiocarpum fluitans, spec. nov. (Fig. 173, I). Oval; apex entire or notched; surface slightly rugose; nucleus round ovate, acuminate, pitted on the surface, with a raised mesial line. M. C., Joggins (J. W. D.).

2. C. bisectum, spec. nov. (Fig. 173, K). Nucleus as in the last species, but striate; margin widely notched at apex, and more narrowly notched below. M. C., Grand Lake, Springhill (C. F. Hartt).

4. Cardiocarpum, sp. allied to C. latum, Newberry. M. C., Pictou (H. Poole). These Cardiocarpus are excessively abundant in the roofs of some coal seams; and the typical ones have been samaras or winged nutlets. They must have belonged to phanogamous plants, and certainly are not the fruits of Lepidodendron, though some of the spore-cases of this genus have been described as Cardiocarpus. These I propose to place under the provisional genus Sporangites.

Sporangites, Dawson.

1. Sporangites papillata, spec. nov. (Fig. 173, L). I propose the provisional generic name of Sporangites for spores or spore-cases of Lepidodendron, Calamites, and similar plants, not referred to the species to which they belong. The present species is round, about one inch in diameter, and covered with minute raised papillae or spines. It abounds in the roof of several of the shaly coals in the Joggins section, and especially in one in group 19 of that section. M. C., Joggins (J. W. D.).

2. S. glabra, spec. nov. (Fig. 168, F). About the size of a mustard-seed, round and smooth. Exceedingly abundant in the Lower Carboniferous Coal measures of Horton Bluff, with Lepidodendron corrugatum, to which it probably belongs. A similar spore-case, possibly of another species of Lepidodendron, occurs rarely in the Middle Coal formation at the Joggins.

Sternbergia, Artis.

This provisional genus includes the piths of Dadoxylon, Sigillaria, and other plants, usually preserved as casts in sandstone, retaining more or less perfectly the transverse partitions into which the pith-cylinders of many coal formation trees became divided in the process of growth. These fossils are most abundant in the Upper Coal formation, but occur also in the Middle Coal formation. The following varieties may be distinguished:

(a.) Var. approximata, with fine uniform transverse wrinkles. This is usually invested with a thin coating of structureless coal.
(b.) Var. angularis (Fig. 160), with coarser and more angular transverse wrinkles. This is the character of the pith of Dadoxylon.

(c.) Var. distans, usually of small size, and with distant and irregular wrinkles. This is sometimes invested with wood having the structure of Calamodendron, and perhaps is not generically distinct from C. approximatum.

(d.) Var. obscura, with distinct and distant transverse wrinkles, but not strongly marked on the surface. This is the character of the pith-cylinders of Sigillaria and Lepidophloios.

Endogenites, L. and II.

Many sandstone-casts, answering to the character of the plants described under this name by Lindley, occur in the Upper Coal formation. They are sometimes three inches in diameter, and several feet in length, irregularly striated longitudinally, and invested with coaly matter. Sometimes they show transverse striation in parts of their length. I believe they are casts of pith-cylinders of the nature of Sternbergia, and probably of Sigillarioid trees.

Solenites, L. and II.

Plants of this kind are found in the sandstones of the Upper Coal formation of the Joggins.

For all the specimens noticed in the above list as collected by Sir W. E. Logan, Richard Brown, Esq., of Sydney, Cape Breton, Henry Poole, Esq., of Glace Bay, C.B., and G. F. and C. B. Matthew and C. F. Hartt, Esq., St John, New Brunswick, I am indebted to the kindness of these gentlemen. To Mr Brown especially I am under great obligations for his liberality in placing at my disposal his large and valuable collection of the plants of the Cape Breton Coal-field.

Summary.

1. Of 196 nominal species in the list, probably 44 may be rejected as founded merely on parts of plants, leaving about 152 true species.

2. Of these, on comparison with the lists of Unger, Morris, and Lesquereux, 92 seem to be common to Nova Scotia and to Europe, and 59 to Nova Scotia and the United States. Most of these last are common to Europe and the United States. There are about 54 species peculiar, in so far as known, to Nova Scotia, though there can be little doubt that several of these will be found elsewhere. It would thus appear that the coal flora of Nova Scotia is more closely related to that of Europe than to that of the United States, a curious circumstance in connexion with the similar relationship of the marine fauna of the period; but additional information may modify this view.
3. The greater part of the species have their head-quarters in the Middle Coal formation, and scarcely any species appear in the Upper Coal formation that are not also found in the former. The Lower Coal formation, on the other hand, seems to have a few peculiar species not found at higher levels.

4. The characteristic species of the Lower Coal formation are *Lepidodendron corrugatum* and *Cyclopteris Acadica*, both of which seem to be widely distributed at or near this horizon in Eastern America, while neither has yet been recognised in the true or Middle Coal measures. In the Upper Coal formation *Calamites Succovii*, *Annularia sphenophylloides*, *Sphenophyllum emarginatum*, *Cordaites simplex*, *Alethopteris nervosa*, *muricata*, *Pecopteris arborescens*, *P. abbreviata*, *P. rigida*, *Neuropteris cordata*, *Dadoxylon materiarum*, *Lepidophloios parvus*, *Sigillaria scutellata*, are characteristic plants, though not confined to this group.

5. In the Middle Coal formation and in the central part of it, near the greater coal seams, occur the large majority of the species of *Sigillaria*, *Calamites*, *Lepidodendron*, and *Ferns*; some of the species ranging from the Millstone-grit into the Upper Coal formation, while others seem to be more narrowly limited. It is to be observed, however, that, as we leave the central part of the system, the total number of species diminishes both above and below, and that it is only in those beds which hold large numbers of plants *in situ* or nearly so, that we can expect to find a great variety of species, and especially the more delicate and perishable organisms.

It is also quite observable in the Joggins section, that while some beds, in the same part of the system, supported *Sigillaria*, others carried *Calamites*, others mixtures of these with other plants; so that differences of soil, moisture, etc., frequently cause neighbouring beds to be more dissimilar in their fossil contents than others much more widely separated. These local and temporary differences must always have occurred in the deposition of the coal measures, and should not be confounded with those general changes which are connected with lapse of time.

Additional Note on Vegetable Structures in Coal.

In the foregoing pages reference has frequently been made to the existence of distinct vegetable structures in coal; and any ordinary observer may satisfy himself of this by closely inspecting the surfaces of a lump of the mineral with the aid of a bright light and a magnifying glass. But the microscope reveals a world of wonderful tissues in coal, as perfect as if they had only yesterday formed parts of living plants; and as I have devoted many hours of patient labour to the
investigation of these structures, I may here notice very shortly the methods by which my results have been obtained, more particularly in the case of the mineral charcoal.

In examining the mineral charcoal, I have, after many trials, adopted the following process of preparation:—Specimens were selected containing the tissues of only a single plant. Fragments or portions of stems of this character can be obtained by careful manipulation from most coals. They were placed in marked test-tubes, and treated with strong nitric acid, in which they were heated to the boiling-point, and kept in that condition so long as dense fumes of nitrous acid were disengaged, or until, on looking through the tube, the material could be seen to have a brown colour and a certain degree of transparency. In many cases, boiling in this manner for a short time is sufficient to render the fibres flexible, and as transparent as slices of recent wood when slightly charred. When ready for examination, the charcoal was allowed to settle, and repeatedly washed with pure water before removing it from the tube. It was then examined in water, with powers of from 50 to 300 diameters, drawings of the structures observed being made with a camera; and when it appeared desirable, specimens were put up in balsam for further examination. Some refractory specimens were found to require alternate washing and boiling in hydrochloric and nitric acids before their structures could be made out; but in the preparation of more than four hundred specimens from various kinds of coal I have scarcely met with any that resisted all these processes.*

I may observe here that the object is not to decarbonize the coal and obtain what has been termed a siliceous skeleton. The change effected consists in the removal of bituminous matter, which is oxidized and dissolved by the acid, and of mineral matters, especially of the sulphuret of iron, which is one of the principal causes of the brittleness and opacity of the crude mineral charcoal. The prepared material is nearly pure carbon, burning without flame and leaving scarcely any ashes. It represents the cell-wall and its ligneous lining, or perhaps in some cases only the latter, in a state of perfect integrity, appearing under the highest powers quite smooth and continuous, and with all its minute markings in excellent preservation. The methods of incineration of the charcoal and of polishing its firmer portions I have found to be, in comparison with the nitric acid process, of little value. The first gives no adequate idea of the real character of the tissues. The second gives merely a rude outline of the more minute markings, and is chiefly valuable as affording cross-sections

* This nitric acid process is, I believe, nearly the same with that recommended by Goepert and Morris.
and a better view of the general arrangement of the tissues than can be obtained from the shreds of woody matter resulting from the process above described.

It is further necessary to state that, to compare specimens of coal with the structures of mineralized plants from the accompanying beds, it is not sufficient to have slices of the latter. It is necessary also to have specimens prepared by removing the mineral matter by an acid. Most of the coal fossils showing structure are mineralized by the carbonates of lime and iron; and on removing these, the cell-walls will be found intact and sometimes apparently not even carbonized. Diluted hydrochloric acid suffices for this; and structures by no means to be found in the comparatively rude slices prepared by the lapidary can be distinguished in these isolated cells. Pyritous fossils, so intractable as slices, can usually be resolved by the treatment with nitric acid, though in some cases they require a preliminary roasting, or, what is better, exposure to the weather until the pyrites begins to crumble.

The observer using the above method will find many vegetable fibres showing no markings. These are usually bast fibres. He will see others with one row of round pores (uniporous), or with distant round pores scattered irregularly (rariporous), or with several rows of alternate simple or bordered pores (multiporous). These are tissues of Sigillaria and Calamodendron, except some large vessels of the last mentioned type, which belong to Calamites. With the porous tissues he will often find slender scalariform vessels, or rather cells with transverse pores, which also belong to Sigillaria and Calamodendron, and are very different from the large coarse scalariform vessels of Lepidodendron and its allies, and of Sigillaria. The ducts of ferns have been already referred to. Some of these varieties of mineral charcoal afford very beautiful microscopic objects.

Note on the Myriapods of the Coal Formation.

The following has been communicated to me by Mr Scudder, since the printing of the notice of these creatures at page 385, supra:—

"The specimens of Myriapods discovered by Dr Dawson in the Sigillarian stumps of the Coal formation of Nova Scotia, belong to two genera; in one, Xylobius, Daw., cross sutures divide the segments into numerous fragments, in a manner wholly unknown among living Myriapoda; in the other, which we may call Archiulus, the segments are simple. Of the former genus, I have discovered no less than four species among the fragments which Dr Dawson has permitted me to examine. For one the name of X. sigillaria, Daw., may be retained; the illustrations (Fig. 151, a, c, p. 385) probably
belong to this species. It is distinguished from the others in having all the fragments of which each segment is composed more than twice as broad as long, and the upper edges of the fragments somewhat raised. The segments themselves are about 1-20th of an inch long, slightly convex, with the anterior and posterior edges slightly and equally raised at the suture. Another species, closely allied to this, may be called *X. similis*. On different parts of the body, and even in adjoining segments, the fragments composing the segments vary in form from an oblong half as long (i.e., down the segment) as broad to a square; some are even a little longer than broad. The segments vary in length from 1-25th to 1-30th of an inch, are slightly convex, and apparently have their front and hind edges turned up as in *X. sigillariae*. To a third species I have applied the name of *X. fractus*; here the fragments are square, the segments are not more than 1-40th of an inch in length, although the insect is as large as *X. sigillariae*; there seems to be another characteristic in a distinct dorsal furrow. The last species, which we may well name *X. Dawsoni*, is again a larger one: the segments measure from 1-20th to 1-30th of an inch in length; one of them is depicted in Fig. 59, in the Air-breathers. These segments, which are broken up into squarish or transversely oblong fragments, are very differently shaped from those of the other species, the posterior third being elevated into a prominent rounded ridge, upon the falling slope of which the suture of the succeeding segment occurs; the anterior two-thirds of the segment is concave, with a more gradual curve.

"The second genus, *Archidus*, has but a single species, which, from its resemblance to the other genus, and especially to the last mentioned species, may be named *A. xylobioides*. The segments are shaped almost exactly as in *X. Dawsoni*, but are never broken up into fragments; the segments are about 1-25th of an inch in length. Fig. 151, b, p. 383, probably refers to this species."

Should these interesting conclusions be confirmed by Mr. Scudder’s subsequent investigations, which he proposes to embody in a separate paper, they will show that the group of Myriapods must have been represented by numerous vegetable-feeding species in the Coal period—a result not surprising, when we consider the vast amount of food for such creatures which must have existed in the Carboniferous swamps.
CHAPTER XXI.

THE DEVONIAN PERIOD.

LOWER DEVONIAN OF NOVA SCOTIA.—DEVONIAN OF SOUTHERN NEW BRUNSWICK.—SECTION OF "FERN LEDGES."—USEFUL MINERALS.—CRUSTACEANS AND INSECTS.

The growth of geological knowledge in Nova Scotia and New Brunswick is in nothing more marked than in the fact that, in 1855, two chapters of Acadian Geology, and those somewhat meagre, sufficed for all the rocks older than the Carboniferous, while now the quantity of matter on these rocks will be more than doubled, and it will be necessary to subdivide them into several series.

In the present chapter I propose to describe the group of rocks immediately under the Carboniferous system, that to which the name Devonian has been given by the English geologists, and which is represented in the United States by the formations from the Catskill or Old Red Sandstone to the Oriskany Sandstone inclusive. I may remark that the controversy which has been raised by Mr. Jukes, as to the use of the term Devonian in England, in no respect affects the questions we have to discuss, since whatever views may be entertained respecting the rocks known as Devonian in Devonshire and in Ireland, in America the existence of a great mass of sediment, characterized by a distinct fauna and flora, between the Carboniferous and Upper Silurian, is a fact which cannot be set aside. It is also to be observed that in the Acadian Provinces, in passing downward from the Carboniferous to the Devonian we constantly find unconformability, and that there is ample evidence that the great masses and dikes of intrusive granite which in Nova Scotia penetrate all the rocks older than the Carboniferous belong to the close of the Devonian period.

I had to remark in regard to the Carboniferous period that a well-marked difference in the deposits could be observed in the regions east and west of the Alleghany mountains. A similar difference exists in the Devonian. Beds of oceanic character are much less developed in the Acadian region than they are in New York and
farther west. More especially the thick limestones of the latter districts are not represented, and there is a greater prevalence of sandy and argillaceous deposits, often with fossil plants. Minor differences exist in the Acadian Provinces themselves. In Nova Scotia only the lower members of the system have been distinctly recognised, though there are indications of the upper members. In New Brunswick the newer portion of the Devonian seems most largely developed, and is remarkably rich in fossil plants.

I shall first notice the Lower Devonian rocks of Nictaux and its vicinity in Western Nova Scotia, and then, crossing the Bay of Fundy, describe the rich plant-bearing beds in the vicinity of St John, New Brunswick.

Devonian of Nova Scotia.

In Nova Scotia the rocks older than the Carboniferous system have all undergone more or less alteration and disturbance. This, with the imperfect preservation of their fossils and their inland position, renders the working up of their details of structure very difficult. Large tracts of country thus remain in a state of uncertainty; their rocks being manifestly older than the Carboniferous, but yet otherwise of uncertain age. In the case of the Devonian, the only place in which it has been clearly made out as distinct from the Silurian, is the belt of hilly country extending along the south side of the Annapolis valley. Here, in the section of the Nictaux River, the first old rocks that are seen to emerge from beneath the New Red Sandstone of the low country, are fine-grained slates, which I shall describe in the sequel as Upper Silurian. Their strike is N. 30° to 60° E., and their dip to the S. E. at an angle of 72°. Interstratified with these are hard and coarse beds, some of them having a trappean aspect. In following these rocks to the S. E., or in ascending order, they assume the aspect of the New Canaan beds; but I could find no fossils except in loose pieces of coarse limestone, and these have the aspect of the Upper Arisaig series, or newest Silurian of the eastern part of Nova Scotia. In these, and in some specimens recently obtained by Mr Hartt, I observe Orthoceras elegantulum, Bucania trilobita, Cornulites ovatus, Spirifer rugacosta? and apparently Chonetes Nova-Scotica, with a large Orthoceras, and several other shells not as yet seen elsewhere,—all Upper Silurian. These fossils appear to indicate that there is in this region a continuance of beds of the upper Arisaig series nearly to the base of the Devonian rocks next to be noticed.

After a space of nearly a mile, which may represent a great thickness of unseen beds, we reach a band of highly fossiliferous peroxide of
iron, with dark coloured coarse slates, dipping S. 30° E. at a very high angle. The iron ore is from 3 to 4½ feet in thickness. The fossils of the ironstone and the accompanying beds, as far as they can be identified, are Spirifer arenosus, Strophodonta magnifica, Atrypa unguiformis, Strophomena depressa, and species of Avicula, Bellerophon, Favosites, and Zaphrentis, etc. These Professor Hall compares with the fauna of the Oriskany sandstone; and they seem to give indubitable testimony that the Nictaux iron ore is of Lower Devonian age. The most abundant fossil is a Spirifer as yet not identified with any described species, but eminently characteristic of the Nictaux deposits. It is usually seen only in the state of casts, and often also strangely distorted by the slaty structure of the beds. The specimens least distorted may be described as follows:—General form, semi-circular tending to semi-oval, convexity moderate; hinge-line about equal to width of shell; a rounded mesial sinus and elevation with about ten sub-angular plications on each side; a few sharp growth ridges at the margin of the larger valves. Average diameter about one inch; mesial sinus equal in width to about three plications. I shall call this species, in the meantime, S. Nictavensis.

I figure two distorted specimens (Fig. 176), to show the remarkable differences of form produced in this way. The original form is intermediate.

Fig. 176.—Spirifer Nictavensis.

To the southward of the ore, the country exhibits a succession of ridges of slate holding similar fossils, and probably representing a thick series of Devonian beds, though it is quite possible that some of them may be repeated by faults or folds. Farther to the south these slates are associated with bands of crystalline greenstone and quartz rock, and are then interrupted by a great mass of white granite, which extends far into the interior and separates these beds from the similar, but non-fossiliferous, rocks on the inner side of the metamorphic band of the Atlantic coast. The Devonian beds appear to dip into the granite, which is intrusive, and alters the slates near the junction into gneissoid rock holding garnets. The granite sends veins into the slates, and near the junction contains numerous angular fragments of altered slate.
This junction is of great interest, as showing the gradual alteration of slaty beds holding fossils into gneissose rock with garnets, within the distance in some places of a few hundred feet. It is observable also, that while the gneiss graduates into the slate it does not pass imperceptibly into the granite, but presents a distinct line of separation, marking the limit of the Plutonic and Metamorphic rocks, and indicating that the granite was truly a heated mass intruded among the aqueous deposits (Fig. 177). Farther, as the granite is itself of Devonian age, we learn that no great interval of geological time elapsed between the deposition and the metamorphism of the beds. Again, as the granite cannot be a superficial or surface rock, there must have been a mass of upper Devonian rocks swept away by denudation to expose the beds as at present. Lastly, though the beds are inclined at high angles, they run against the granite in their line of strike in such a manner as to show that it cuts quietly through them, without any great evidence of mechanical disturbance in connexion with its eruption, and it would appear that the general direction of dip is toward the granitic mass, as if the Devonian and Upper Silurian beds had sunk into a caldron of molten granite. Further exploration of the country southward of Nictaux will be necessary before we understand in detail the relation of the Devonian rocks to the great masses of granite which appear in this direction.

Westward of the Nictaux River, the granite abruptly crosses the line of strike of the slates, and extends quite to their northern border, cutting them off in the manner of a huge dike from their continuation about ten miles further westward. The beds of slate in running against this great dike of granite, change in strike from south-west to...
Devonian of Nova Scotia.

west, near the junction, and become slightly contorted and altered into gneiss, and filled with granite veins; but in some places they retain traces of their fossils to within 200 yards of the granite. The intrusion of this great mass of granite without material disturbance of the strike of the slates conveys the impression that it has melted quietly through the stratified deposits, or that these have been locally crystallized into granite in situ.

At Moose River the iron ore and its associated beds recur on the western side of the granite before mentioned, but in a state of greater metamorphism than at Nictaux. The iron is here in the state of magnetic ore, but still holds fossil shells of the same species with those of Nictaux.

Still farther westward, at Bear River, near the bridge by which the main road crosses this stream, beds equivalent to those of Nictaux occur with a profusion of fossils. The iron ore is not seen, but there are highly fossiliferous slates and coarse arenaceous limestone, and a bed of gray sandstone with numerous indistinct impressions apparently of plants. In addition to several of the fossils found at Nictaux, these beds afford Tentaculites, an Atrypa, apparently identical with an undescribed species very characteristic of the Devonian sandstones of Gaspé, and a coral which Mr Billings identifies with the Pleurodictyum problematicum, Goldfuss, a form which occurs in the lower Devonian in England, and on the continent of Europe.

Westward of Bear River, rocks resembling in mineral character those previously described, and probably of Devonian and Upper Silurian age, extend with similar strike, but in an altered condition, and in so far as I have been able to ascertain, destitute of fossils, quite to the western extremity of the peninsula, where they turn more to the southward, and are as I suppose, repeated by a sharp synclinal fold, after which they are succeeded by the Atlantic coast series, of lower Silurian date, and consisting of quartzite and clay slate, with chlorite and hornblende slates at Yarmouth and its vicinity, and further to the S. E. of mica slate and gneiss.

I cannot certainly indicate the Devonian system in other parts of Nova Scotia. There are, however, in various places, at the margin of the Carboniferous areas, or projecting through these beds, rocks which may be Devonian, though, not having afforded characteristic fossils, their age must remain doubtful, as they might possibly prove to be altered members of the Lower Carboniferous or rocks of Silurian date. They are usually hard gray or purplish sandstone or quartzites, associated with gray or purplish slates or shales. Such rocks occur in the flanks of the Cobequid Hills, in the vicinity of Salmon River, and
in the hills of Mount Thom and Mount Dalhousie. They are also found in the hilly country of Pictou and Antigonish; and the remarkable mass which seems to project through the Coal formation between the East and Middle Rivers of Pictou is of this character. Its rocks do not resemble those of the Silurian series, and they abound in obscure remains, evidently of land plants, which, though not certainly determinable, resemble those of the Devonian rather than those of the Carboniferous.

Mr J. Campbell of Halifax seems to have been the first to observe these rocks; and I had the pleasure of examining them in his company in 1866. The fossils which I obtained are stipes of ferns, apparently of two species: a Pinunlaria, and branching stems much resembling those of Psilophyton, a characteristic Devonian genus. There were also fragments of carbonized and pyritized wood, but not sufficiently perfect to show structure. These plants were contained in a hard gray altered sandstone or quartzite, underlying unconformably a Carboniferous conglomerate in Bear Brook, near the Middle River. I have received a specimen of laminated limestone, not fossiliferous, from this vicinity, and which probably belongs to the present series.

These somewhat unpromising rocks would afford a rich field to any geological observer who could enjoy the work of unravelling stratigraphical intricacies; and there is no reason to despair of their affording fossil remains were they explored with sufficient thoroughness. More especially the rich Devonian flora of St John, New Brunswick, encourages us to hope for similar discoveries of fossil plants in Nova Scotia. Collectors should keep this in view, more especially as, without attention, such plants might be confounded with those of the Carboniferous rocks.

Devonian of New Brunswick.

The belt of partially metamorphosed rocks rising from beneath the Carboniferous on the southern coast of New Brunswick, was mapped in my first edition as Upper Silurian or Devonian, but without any certain evidence as to its age, other than its manifestly underlying the Carboniferous, and resembling somewhat in mineral character the rocks of Upper Silurian and Devonian age in Nova Scotia. The first fossil from these rocks ever seen by me was a specimen of Calamites, brought by the late Professor Robb of the University of New Brunswick to Montreal when on a visit to Canada in 1857. Professor Robb, impressed with the importance of the occurrence of vegetable fossils in these beds, proposed to devote some time to their study; but his lamented decess prevented this intention from being
carried into effect. The subject was, however, followed out by several gentlemen of St John engaged in geological studies, and more particularly by Mr G. F. Matthew and Mr C. F. Hartt, from whom I received the specimens described in my paper on the Pre-Carboniferous Flora of Eastern America in 1861, and with whom I had subsequently an opportunity of exploring the localities of the fossils. From these gentlemen I also obtained the further material published in my Flora of the Devonian Period, in 1862.* Mr Matthew subsequently published a detailed account of the stratigraphical relations of the beds,† and Mr Hartt has since collected largely from the most productive localities for the Natural History Society of St John, which has liberally placed its collections in my hands. Many additional facts in relation to these beds have also been published in the Report of Professor Bailey on the Geology of Southern New Brunswick. With the aid of these materials, I shall endeavour to give an account of this interesting formation, and shall then notice in some detail its fossils.

The Devonian series of the vicinity of St John is well exposed in the shore of Courtnay Bay, and also in the vicinity of Carlton. The red conglomerates, which here form the base of the Carboniferous, rest on it unconformably, and it is itself underlaid by the St John slates, a group of Lower Silurian age.

The succession of beds seen in the Courtnay Bay and St John sections is thus given in my paper of 1862. The thicknesses stated are to be regarded as merely rough estimates, made up partly from Mr Matthew’s observations, and partly from my own. The names are those given by Mr Matthew and Professor Bailey:—

Carboniferous System.

Coarse red conglomerate, with pebbles of underlying rocks, and constituting in this vicinity the base of the Carboniferous System.

Devonian System.

1. *Mispeck Group.*—Dark-red and greenish shales; flaggy sandstones and grits; coarse angular conglomerate 1850

2. *Little River Group* (Upper part and passage beds).—Reddish conglomerate, with quartz pebbles; reddish, purple, and gray sandstones and grits; deep-red, gray, and pale-green shales. A few fossil plants 2350

3. *Little River Group* (Middle and Lower part).—Blackish and

* Journal of Geological Society, Nov. 1862. † Ibid., 1865.
gray hard shale and arenaceous shale (Cordaite shales in part); buff and gray sandstone (Dadoxylon sandstone) and flags. Many fossil plants; Crustaceans and Spirobis. 2800

4. Bloomsbury Group.—Reddish conglomerate, with slaty paste and rounded pebbles; trappean or tufaceous rocks; red, purplish, and green sandstones and shales. Thickness variable. 2500

Lower Silurian System.

5. Black papyraceous shale, with layers of cone-in-cone concretions. 400

6. Hard, generally coarse and micaceous, gray shales and flags, of various shades of colour, and with some reddish shale and tufaceous or trappean matter at the bottom. Lingula, burrows, and trails of animals. Also in certain beds, Paradoxides, Conoccephalites, and other primordial Trilobites. 3000 feet or more

The following details as to the several members of the Devonian are abridged from Professor Bailey’s and Mr. Matthew’s excellent memoirs already referred to. Before giving these, I may explain that the several members of the Devonian system form, on the east side of St John Harbour, a trough or synclinal form, and that from the eastern extremity of this some of the members of the series are believed to extend for a great distance to the eastward, in a more or less metamorphosed state. The general arrangement is shown in the section, Fig. 178.

Mispeck Group.

“The deposits of this group, constituting the newest member of the Upper Devonian series, occupy, in comparison with the groups to be described, a very limited area. So far as certainly known, they may be said to be confined within the narrow district intervening between the Little and Mispeck Rivers, and consequently occupying the centre of the trough already pointed out, as formed by the folding of the Upper Devonian groups.

“They rest immediately upon the beds of the Cordaite shales, and so nearly resemble the latter as to be not easily distinguished. It is therefore not unlikely that the group may yet be found to have a wider distribution, especially westward of the St John River, in the peninsula of Pisarineo.

The following descriptive remarks taken from the paper of Mr Matthew well represent its general character.
"West and north of Mount Prospect, where the Cordaita shales disappear beneath the stratified gravel which covers the top of that hill, the dip of the beds at the base of this group rapidly diminishes from 30° to 15°, and the strike at the same horizon varies 10°. The lowest member is a coarse reddish conglomerate, having a red slaty paste filled with large subangular fragments of a gray altered rock, like the lower slate of the Coldbrook group. It also contains fragments of reddish sandstone, and a few pieces of impure slaty limestone. The conglomerate is overlaid by thick beds of purple clay..."
slate, which, by accession of coarser materials, becomes a slaty sandstone and grit filled with white particles. The strata of this group are much thicker on the north than on the south side of the basin. An isolated deposit of red slates, resembling the finer beds of this group, rests against a mass of altered rock, which seems to be a continuation of the Bloomsbury volcanic beds, at Taylor's Island, west of the Harbour of St John.

"If the beds last alluded to be properly referred, it is very probable that those of Pisarineo, already mentioned, may in part at least appertain to the same group. They have been described, however, as forming a portion of the Cordaita shales. The same is true in part of the district between Musquash and Chance Harbour."

Little River Group.

"The Little River group consists of two members, one of coarse and the other of comparatively fine ingredients, termed, from the characteristic fossils which they hold, the Dadoxylon sandstone and the Cordaita shales. Though intimately connected, they do not invariably occur together, and for this reason as well as others, will be separately considered."

"(A.) Cordaita Shales.—In the consideration of this, the upper member of the Little River group, we have presented for our study by far the most useful and interesting deposit which occurs in this portion of New Brunswick, if not indeed in the whole province. Recognising its economical importance as a rich metalliferous series, it has been one of the special objects of the present survey to ascertain minutely the distribution, age, and characters of the rocks composing it, and to mark its limits accurately as the great copper-bearing group of Lower New Brunswick. Although the greater portion of the country occupied by this series is still uncleared, and among the wildest and most rugged in the province, we have so far succeeded in tracing out its rock formations, that the limits of the latter may now be looked upon as approximately fixed, at the same time that its age and productive metalliferous character are satisfactorily established. As the details of this examination are of great importance, I shall here describe the observations made more minutely than in the case of the other groups has been deemed necessary.

"It will naturally be supposed that, forming as they do two members of a single group, the Dadoxylon sandstone and Cordaita shales should be intimately associated and occur together, and that the distribution of the former should be a general indication of the position of the latter. While, however, this is true as regards that portion of the
group occurring in the neighbourhood of St John, it has been ascertained that the Dadoxylon sandstones constitute a comparatively local deposit, while the shales which succeed spread much more widely over extensive districts, both to the east and west.

"On the eastern side of the Harbour of St John, the shales referred to are first met along the coast near the mouth of the Little River, where they form a narrow band lying between the embouchure of that stream and the promontory of Red Head. The band of rocks thus appearing, though narrow at the coast, widens as it is traced into the interior of the peninsula, and follows approximately the curve already pointed out as marking the distribution of the subjacent sandstone. The line of its outcrop may be readily traced on the geological map, forming a sharp and somewhat irregular curve, extending from Red Head to the mouth of the Mispeck. In the latter portion of the curve, owing principally to a fold in the strata, the rocks occupy a somewhat wider space than is covered in the former.

"Terminating on the coast at the locality last mentioned, the Cordaitale shales, now trending south-westerly, seem for the moment to be lost in the waters of the bay. Like the sandstones which underlie them, however, they follow the curve of the volcanic beds of the Bloomsbury group, and doubling the promontory which marks the south-western termination of the latter, reappear along its eastern flank, still resting upon the Dadoxylon sandstone, and extend in this direction to the mouth of Emerson's Creek. Along this portion of their distribution, however, between the Mispeck and Black Rivers, there is a great difference in the character of the group observable, so great a difference, indeed, as to have caused some hesitation in assigning these beds to their true position. They occupy the coast from the point south-west of the Millicent Lake, including Beveridge and Thomson's Coves, as far as the mouth of the Black River. On the eastern side of the latter they extend along the shore to Emerson's Creek, and in the interior to a somewhat greater distance, but from this point are rapidly covered with the Carboniferous deposits which extend to Quaco. They reappear, however, north-west of the last named place, and eastward of Tynemouth or Ten-Mile Creek, where they rise into a low ridge, consisting chiefly of the conglomerates at the base of the series, and are crossed by all the principal roads leading in this direction.

"The same series has also been observed on Vaughan's and Macomber's Brooks, north-east of Quaco, covered as before by Carboniferous deposits on its southern slope, and to a less degree
on its northern also, where, however, it is succeeded, at a very short distance, by beds of the Lower Coldbrook. Owing to the disturbances and foldings alluded to in the description of the latter, the whole vast mass of the Lower and Upper Bloomsbury, St John slates, and Dadoxylon sandstones, have mostly disappeared, and we here find beds even below the base of the Silurian almost side by side with the shales of the Upper Devonian.

"From Vaughan's Brook, in the neighbourhood of Quaco, the upper member of the group now under consideration begins rapidly to widen, and to the eastward soon attains an enormous development. Higher members than those last described appear at Melvin's Beach; and thence, with the exception of a few isolated Carboniferous deposits at Salmon River, Goose Creek, and Martin's Head, extend with a bold and unbroken front along the coast to Point Wolf, at the western limit of Albert County. They thence no longer keep the shore, but, pursuing their normal course, may be traced in a series of bold high ridges as far as Shepody Mountain.

"While the southern limit of the group is thus uniform and regular, the line which marks its northern boundary is more difficult of recognition. Owing to one or more immense synclinal folds, the area covered by these rocks is enormously increased, and from the limited space occupied near the sea coast, behind Quaco, now widens until it embraces the whole extent of country south of the Shepody Road. On the latter thoroughfare the rocks of the group were first observed near Wallace's Post Office, in the parish of Hammond, King's, and near the source of the Great and Little Salmon Rivers. On the last named stream they were found to occupy the whole country southward to the coast. Whether they similarly occupy the entire valley of the former has not been ascertained; the difficulties of descending these rapid and mountainous water-courses, through a country without a settlement, being of too serious a character to admit of exploring both of the above named streams. The limits of the group in this direction, however, cannot vary far from the outlines as laid down on the Map.

"Following the line of the Shepody Road from the point above mentioned, the rocks of the present group, or 'coast series' as it may conveniently be termed, have been distinctly traced to the eastward as far as the high lands back of Hopewell, while deposits, probably referable to the same series, have been observed at a great variety of places both in the county of King's and eastward in that of Albert." These will be found severally referred to in the remarks on the characters of the group in Professor Bailey's Report.
"In general, it may be stated that the upper limit of the series is a line extending nearly northerly from the vicinity of Quaco, crossing the Shepody Road near the sources of the Salmon River, thence extending in the same line so as to include a large area in the parish of Hammond, to near the sources of the Pollet River. It follows the line of the Shepody Road eastward into Albert, and certainly includes all that portion of the latter county which lies southward of that road, between it and the sea; while the character of the metamorphic series which appear to the northward would seem to indicate even a wider distribution. Like all the older formations in this portion of the province, the Little River group is progressively covered to the eastward with Carboniferous deposits, which at Shepody Mountain finally cap the subjacent metamorphic beds, and form their well-marked eastern termination.

"Before the commencement of the present season’s work, our knowledge of the extent of this most important group was limited to the area immediately about St John, and eastward to Black River and Gardner’s Creek. We have now succeeded in fixing its true limits in this direction, and in giving to it a distribution which, to say the least, is as gratifying as it was unexpected.

"But not only have these metalliferous rocks been thus found to occupy such an extensive area to the east; they have also been found to spread widely to the west, and to give promise of valuable discoveries in a region to which, as yet, but little attention has been paid. I refer to portions of the peninsula of Pisarine, west of St John, and to a large district south of the Musquash River, between the Lancaster Mills and Chance Harbour." Their distribution in this direction is discussed at length in the Report above referred to.

"(B.) Dadoxylon Sandstone.—The lower member of the Little River group, to which the preceding name has been applied, immediately succeeds and rests upon the upper member of the Bloomsbury. Folded with the latter into a depression or trough, it has been traced by Mr Matthew in a double curve extending from Manawagonish, west of the Harbour of St John, around, and along the southern flank of the Bloomsbury axis, maintaining throughout this district a nearly uniform width.

"On the eastern side of Courtbay Bay, it first appears near the mouth of Little River, and thence following the line of the Bloomsbury beds below it, extends northerly and easterly towards the head of the Mispeck, being very well exposed at Mount Prospect, about four miles east of the city. Near the sources of the Mispeck the band
of these rocks bends slowly around, assumes a southerly direction, and follows the last named stream to within a few miles of its mouth. Again changing its direction, it now flanks the end of the Bloomsbury ridge, and extends in a narrow belt eastwardly as far as the east branch of the Black River. Beyond the latter, as far as known, it rapidly disappears.

"To the west of St John, besides the locality of Manawagonish, the Dadoxylon sandstones have been observed on the west branch of the Musquash River, in the village of Ivanhoe, resting upon a deposit of the Upper Bloomsbury and overlaid by Cordaite shales.

"It will be remarked, when describing the characters of the Bloomsbury group, that the red deposits, which form its upper member, constitute beds of transition between that group and the one now under consideration.

"As indicated by the name it bears, the Dadoxylon sandstone is chiefly composed of coarse materials, though less so than in the group which immediately preceded it. While the upper beds of the latter consisted chiefly of reddish conglomerates, the present series is composed of a hard gray sandstone, associated, however, with occasional beds of grit and layers of dark gray shale. The transition above alluded to consists, therefore, in a gradually increasing fineness in the sedimentary beds, indicating changes in the physical conditions under which they were deposited.

"In lithological characters, the Dadoxylon sandstone, as described by Mr Matthew, is remarkably uniform and constant, and has been of great service in the study of the geology of the section now under consideration. But the chief interest which attaches to this deposit, is derived from the abundance and wonderful perfection of the organic relics which it holds, the oldest undoubted relics of a land vegetation in this long series of formations."

Bloomsbury Group.

The Bloomsbury group, like the Coldbrook, which it closely resembles, comprises two very different series of sediments, the lower and older being volcanic, while the upper and newer is of aqueous origin. These must be separately considered.

"(A.) Sedimentary Beds.—The deposits of the Upper Bloomsbury, of purely aqueous origin, are generally found in bands of varying width, lying parallel to, and immediately above the volcanic deposits of the lower member. They may thus be traced, following the different distribution of the latter, almost throughout its entire extent. The greatest development of this member is along the space between
the Black and Mispeck Rivers, and towards the foot of Loch Lomond. On the southern shore of the latter red sediments also occur, which have been doubtfully referred to the Coldbrook Group, but may possibly be a continuation of the beds last described. On the southeastern side of the Bloomsbury axis, the upper member of the group again appears, but it is here a comparatively thin deposit, and occupies but a very limited area.

"Turning to the westward, this member is also but poorly represented, and at Courtnay Bay does not exceed a thickness of 150 feet. In St John and Carleton, as well as at Sheldon's Point, it is wanting altogether. On the west bank of the Musquash, however, in the village of Ivanhoe, reddish sediments occur resting upon the Portland series and overlaid by the Dadoxylon sandstone, and therefore belonging to the Upper Bloomsbury, but whether they have any direct connexion with the deposits to the east, or are the result of local and independent deposition, it is at present impossible to say.

"In lithological characters the upper member of the Bloomsbury group is very constant, consisting of fine-grained red clay slate and reddish-gray conglomerate. Its thickness has been stated at 500 feet. The rocks of this member, according to Mr Matthew, constitute a passage from the volcanic beds to the sandstone of the (Little River) group above. As far as known they contain no fossils."

"(B.) Volcanic Beds.—The most extensive and typical exposure of the volcanic beds of the present group is furnished by the locality from which their name has been derived, the high hill called Bloomsbury Mountain, near the centre of the parish of Simonds. This mountain, as described by Mr Matthew, constitutes the western termination of a ridge of land extending north-easterly in the centre of the county, and appears to represent one of the ancient fissures or volcanic vents, from which, during the Devonian period, were poured forth the lava, ashes, and scoria, which now constitute the lower member of the Bloomsbury group. The streams of eruptive matter thus discharged flowed from the central opening in three directions, north-easterly, westerly, and south-westerly, as indicated by the positions which they now occupy.

"The upper limit of the Bloomsbury lava streams, trending to the west, may be traced in a long, though narrow, line of hills, from the head of Black River, below Loch Lomond, to Courtnay Bay. Removed by denudation from the latter, the beds of the group reappear in the southern part of the city of St John, and again on the oppo-
side side of the harbour in the town of Carleton. They are somewhat increased in bulk in the latter place, but soon disappear to the westward under extensive accumulations of post-pliocene gravels. At Sheldon's Point, however, and Manawagonish, rocks probably referable to the present group occur, and beyond in the peninsula of Pisarincro, as well as on the Musquash River, and westward towards Lepreau.

"The second great belt of Bloomsbury lavas, trending southwesterly, though in much thicker beds than those last described, is comparatively limited in distribution, reaching only from the central vent of Bloomsbury Mountain to the Millicent Lake, in the rear of Mispeck. The valley of Black River cuts directly across, and is largely included in the series referred to, and in its upper part forms the line of division between its two members. The thickness of the lower member, as measured by Mr Matthew, has been approximately stated at 2000 feet.

"Of the eastward flow of the Bloomsbury lavas, little is known. Notwithstanding the great thickness of the group near the sources of Black River, it can be traced but a short distance in this direction, being rapidly covered and concealed by the Carboniferous deposits in the rear of Quaco.

"At Bloomsbury Mountain, where the best exposure has been stated to occur, the following peculiarities have been noticed by Mr Matthew:—

"The elevation consists of basaltic trap, and is flanked on each side by beds of amygdaloid, trap-ash, and other products of volcanic origin, which also cover the crest of the anticlinal fold for two or three miles west of the hill. The succession of strata is best displayed on the south side of the hill, where they succeed each other in the following order:—Basaltic trap, unstratified, of great thickness; bedded basalt, amygdaloidal porphyry, bedded basalt, hornblendic trap-ash, micaceous quartzite, vesicular trap-ash slate; thickness of the stratified deposits about 3000 feet. There is also on this slope a volcanic conglomerate, viz., fragments of trap rocks imbedded in trap-ash slate. The quartzite resembles some of the finer beds at West Beach and Black River, and the porphyry is that alluded to in Gesner's Third Report, p. 15. The trap-ash slate is in many places full of irregular vesicles, the sides of which are coated with minute crystals of quartz, ealeike, and specular iron.'

"The remaining portions of the lower Bloomsbury beds do not differ from those above described, except in the comparative infrequency of unstratified basalt."
The Devonian rocks appear at several places along the coast of New Brunswick, between St John and St Andrews, at which place they are connected with the Devonian sandstones of Perry, Maine. According to Professor Hind, an area of about twenty-five square miles near Campbellton on the Restigouche, consists of Devonian rocks, an extension or outlier of the Devonian of Gaspé. It is possible that some of the belts of Devonian rocks known to exist in the interior of Maine may extend into Northern New Brunswick; but this has not, I believe, been as yet certainly ascertained.

I must refer to Professor Bailey's Report for more full details on the Devonian of New Brunswick, and shall now turn to the more particular consideration of the highly fossiliferous members of the group as developed near St John, reserving for a subsequent chapter the consideration of the fossil plants.

Section at the "Fern Ledges," near St John.

Much interest attaches to that part of the St John section described above as the Little River group, on account of its fossil plants and insects; and for this reason I give below an abridgment of the detailed section prepared by Mr Hartt for Professor Bailey's Report, and which will serve to show the resemblance as to mineral character between these beds and those of the Coal formation. Mr Hartt remarks in introducing his section—

"Of the several localities for fossil plants in the vicinity of St John, the richest and most interesting is that of the 'Fern Ledges.' These are a series of ledges exposed on the sea-shore, between high and low-water mark, at the foot of the properties of Messrs N. S. Demill and Zebedee Ring, Duck Cove, Lancaster, about a mile west of the town of Carleton. The ledges are formed by the outcropping edges of beds of sandstone and shale belonging to the Little River group of Mr Matthew. These have a strike of about W. 10° N., and a southerly or seaward dip of about 45°. This strike corresponds very nearly to the trend of the shore, along which, rounded and much worn by wave action and buried in sea-weed, their edges run in long ridges. The shale-beds, in which the plants occur, are, on account of their softness, everywhere so worn away by the waves from between the enclosing sandstones, as to be in only a few places accessible.

"Only near high-water mark are the ledges of any height, and from these the plant-bearing shale-beds are almost entirely removed. The ledges extend along the shore for some 325 paces, with a width of 300 feet, more or less, exposing a thickness of strata of about 150
feet. Numerous faults occur at the locality, the principal of which, on the easternmost side of the most prominent projecting ledge, and whose direction is S. 30° W., is a downthrow of about 50 feet.

"Directly in front of the ledges, and about half a mile from the shore, is a series of skerries laid bare at low water, called the 'Shag Rocks.' I have not visited them, but the beds of which they are composed have an apparent east-and-west strike, and a high dip to the southward. They are probably the upper members of the Cordaites Shales.

"Beds of sandstone and shale, similar to those at the Fern Ledges, show themselves on the shore about three-quarters of a mile to the westward. They contain the remains of a few species of plants identical with those occurring at the 'Ledges,' but the beds are higher up in the series. This locality, called the 'Calamite Ledges,' has not been so carefully examined as that to the eastward. I have collected there the following species, nearly all of which are common to the two localities:

"Cordaites Robbi, Daw. Extremely abundant in certain layers of black shale, and very finely preserved.—Sphenopteris Hitchcockiana, Daw. Abundant in detached pinnules.—Pecopteris discrepans, Daw. Apparently rare: have found but a single pinnule. —Cardiocarpum cornutum, Daw. Not infrequent, associated with cordaites, calamites, etc.—Calamites transitionis, Goeppert. Abundant. —C. cannaeformis, Brongn.—Annularia acuminata, Daw. Pinularia disparalis, Daw. Common.—Psilophyton? glabrum, Dawds. —Stigmaria ficoidea (var.), Brongn. —A single specimen with rootlets attached was found by my father, J. W. Harri, in a bed of sandstone, about half-way up in the section here exposed. —Lepidodendron Gaspianum? Daw. Two or three ill-preserved specimens of a Lepidodendron, which Dawson has referred with doubt to this species, were collected at this locality by Mr Matthew and myself.

"The sandstone at the Fern Ledges is very compact and hard, and of a gray colour. It contains many plant remains, but usually in a badly preserved state. Thin beds of arenaceous shale, of a fine texture and dark-gray colour, becoming black sometimes, or passing into light greenish-gray, are interstratified with the sandstones, and these beds are highly charged with plants, which occur preserved as graphite, every nerve and nervule of a fern leaf being as distinct as in a pencil drawing.

"It had been ascertained several years ago by Gesner, Robb, Dawson, and others, that the beds of the Little River group were
but Ledges.' while the hands, the specimen and the published Lunn, in that following section, some obscure markings which were probably leaves of Asterophyllites longifolia, Brongn.; but it was not until May 1861 that I found that these rocks were richly fossiliferous, and discovered in Beds Nos. 1, 2, 3, and 8 (?), a large number of fossil plants, principally ferns, a remarkable Crustacean, Amphipeltis paradoxus, Salter, and a Spiorbis. Messrs Matthew, W. R. Payne, James Hegan, and Lunn, took part in the explorations which were carried on during the summer, Mr Matthew discovering, among other things, a new species of Eurypterus, E. pulicaris, Salter; while Mr Payne secured a single specimen of a trilobite, still undetermined, the only one the locality has afforded.

"These discoveries proved so interesting that Principal Dawson, to whom I communicated them, paid a visit to St John, and examined the locality in person. The collections made were put into his hands, and the plants were described in detail in his paper published in the Quarterly Journal of the Geological Society, entitled, 'On the Flora of the Devonian Period in North-Eastern America.' The number of plants obtained thus far from the Lancaster localities was 36, which, with the three species of Crustacea, the Spiorbis, and the three species of plants previously collected in St John by Mr Matthew, made the number of species of animals and plants ascertained to occur in the Little River group, 43.

"The following summer I spent thirty days at this locality, being rewarded by the discovery of some ten or more new species of plants, principally ferns, and by securing larger and more perfect specimens of many of the species described by Dawson from mere fragments. But the most valuable and entirely unexpected discovery, was that of remains of insects, of which five species have been obtained. These specimens are in the hands of my friend Mr Scudder of Boston, the well-known entomologist, for description. During the summer, I began the task of examining every bed in the section at this locality, a task not easy to perform, where the tough rocks lying below high-water mark and buried in a luxuriant growth of seaweed, are worn away in such a manner as to make it difficult to work them.

"In the summer of 1863, I spent eight days at the locality, during which time I finished my section. Several new plants were discovered,
together with many quite perfect specimens of several hitherto known only as fragments. Of the latter was a large frond of *Neuropteris polymorpha*, Dawson.

"In the following section, the measurements were taken along a line crossing the beds at right angles to their strike, from high-water mark near the bathing-house stairs, to low-water mark. The rich fossiliferous shale-beds, or plant-beds, as I shall term them, are numbered from below upwards, for convenience of reference. The thickness and lithological character of these beds vary somewhat in their different exposures. The position of one or two plant-beds appearing elsewhere at this locality, but not observed on the line of section, is indicated. I have given lists of all the plants, etc., described, which I have collected from each plant-bed, with some remarks on their mode of occurrence, and I have noticed some of the undescribed species.

"The following section begins at the base of the Dadoxylon sandstone beds, at their junction with the trappean beds of the Bloomsbury group, which form the high land skirting the shore to the northward, and takes up the overlying beds in ascending order:

"Section of the Little River Group at the ‘Fern Ledges,’ Lancaster, N.B.
By Mr C. F. Hartt.

Heavy beds of gray sandstone and flags (Dadoxylon sandstone).

Dadoxylon Ouangondonnum, Daws., *Calamites*, etc.

Thickness, by estimation, 300 feet.

Under this head I have classed all the beds underlying the Plant-bed No. 1, which I am disposed to regard as the lowest of the rich plant-bearing layers, and the base of the Cordaitae shales. These beds occupy the low ground lying between the ridge of the Bloomsbury group and the shore. They are covered by drift, and show themselves only in limited outcrops, and in the ledges on the shore. In the western part of the ledges they are thrown forward on the beach by a fault, forming a prominent mass of rock, in the summit of which a fine trunk of *Dadoxylon* is seen embedded in the sandstone. Recent excavations made in these beds in quarrying stone for building purposes, in the eastern part of the locality, where the rocks are very much broken up by dislocations, have exposed numerous badly preserved impressions of large trunks of this tree.

Plant-bed No. 1 Thickness, 1 foot.

Black arenaceous shale, varying from a fissile sandstone to a semi-papyraceous shale, very fine-grained and very fissile, charged most
rithly with beautifully preserved remains of plants, among which are the following species:

- **Calamites transitionis**, Goeppt. Occasional, in large, erect specimens.
- **Asterophyllites latifolia**, Daws. Extremly abundant, often showing ten or twelve whorls of leaves, sometimes with many branches.
- **A. acicularis**, Daws. Also very abundant.
- (?) **A. longifolia**, Brongn.**A. scutigera**, Daws. The curious stems of this species, with their scale-armed nodes, occur abundantly in this bed.
- **Sphenophyllum antiquum**, Daws. — **Pecopteris obscura**, Lesq. — **Sphenopteris sp.**
- **Cardiocarpum cornutum**, Daws. — **Pachyphylloium degana**, Daws. Occasional. I have never detected any trace of **Cordaites Robii**, Daws., in this bed. It is extremely common in the overlying strata.

Gray sandstones and flags, with occasional ill-preserved plants, **Calamites transitionis**, Goeppt., **Cordaites Robii**, Daws.—**Asterophyllites and Sternergie**... 2 feet 6 inches.

Black arenaceous shales of the same character as those of No. 1, but without fossils, so far as I have examined... 11 inches.

Compact flaggy, gray sandstone, with badly preserved plant remains, **Calamites**, etc. 2 feet.

Very soft, dark, lead-coloured shales, much slicken-sided and charged with fragments of plants. This bed is so soft that the action of the weather and the sea have everywhere denuded it to the level of the beach... 4 feet.

Plant-bed No. 2... 1 foot.

At the point where the section crosses the bed, and where I first discovered it, it consists of very compact and hard, light lead-coloured, slate-like, arenaceous shale; but the character of the shale varies much in its different exposures, being sometimes very soft and fissile, and of a very black colour. The following is the list of species which it affords:

- **Calamites transitionis**, Goeppt. Occasionally; never in good specimens.
- **C. cannaformis**, Brongn. Occasionally; never in good specimens.
- **Asterophyllites acicularis**, Daws. Rather rare.
- **A. longifolia**, Brongn. Rather rare.
- **A. parvula**, Daws. Whorls of a minute **Asterophyllites**, which may belong to this species, are not infrequent in this bed.
- **Annularia acuminata**, Daws.
- **Pinnularia displana**, Daws. Abundant.
- **Psilophyton elegans**, Daws. Quite common, always in fragments, never in good specimens.
- **P. glabrum**, Daws. Flattened stems, with a wavy
woody axis traced in a brighter line of graphite, occur in this bed, but always in fragments.—Cordaites Robbi, Daws. Extremely abundant, and very fine specimens may be obtained, especially from the upper part of the bed, and rarely specimens showing the base or the apex of the leaf.—Cyclopteris obtusa, Less. Occurs very abundantly in detached pinnules.—Cyclop. varia, Daws. Rare.—N. polymorpha, Daws. Extremely abundant, never in large fronds.—Sphenopteris Hæninghausii, Brongni. Quite abundant, often in fine fronds.—S. marginata, Daws. Abundant, in fine fronds.—S. Hartii, Daws. Very rare.—The original specimen came from this bed.—S. Hitchcockiana, Daws.—Hymenophyllites Gersdorffii, Goepp. Rather rare.—H. obtusilobus, Goepp. Rare.—H. curtilobus, Daws.—Pecopteris (Alethopteris) discrepans, Daws. Amongst all the abundance of plants afforded by Bed No. 2, I have detected only one or two pinnules of this fern, which appears first in abundance in Bed No. 3. It is afterwards one of the most common species.—Pecopteris ingens, Daws. Very rare, only two or three fragments of pinnules having been found.—Trichomanites (?)—only a single specimen, probably, as Dawson has suggested, only the skeleton of a fern.—Cardiocarpum cornutum, Daws. Abundant, and very finely preserved, never attached.—C. obliquum, Daws. Quite abundant, also never attached.—Trigonocarpum racemosum, Daws. Rare.—Eurypterus pulicaris, Salter. The occurrence in Bed No 2 of this minute Crustacean was first detected by my friend Mr George Matthew. It is very rare, not more than four or five specimens having been found by Messrs Matthew, Payne, and myself, at the time of the description of the species by Salter. I have since that time succeeded in collecting nearly twice as many more, some of which appear to belong to a new species.—Amphipeltis paradoxa, Salter. The specimen figured in Salter's paper was found by Professor Dawson and myself, in breaking a piece of shale in my cabinet, that came from this bed. Only one other specimen has since been obtained. It consists of two or more of the thoracic segments, and was collected by Mr Lunn. It is in the collection of the Natural History Society of New Brunswick. In addition to the above species, this bed has afforded the following:—Cyclopteris, sp. nov.—Neuropterus, sp. nov. A single specimen collected by Mr Lunn.—Sphenopteris, sp. nov.—Spiroboris, sp. (?) The leaves of Cordaites in the upper part of the bed are as
thickly covered with a little Spirorbis as are the fronds of the recent fucoids of the Ledges. The specimens are too poorly preserved for identification.—Trilobites. Mr. Payne collected a minute trilobite from this bed. The specimen was sent by Professor Dawson to Mr. Salter, but that gentleman has made no mention of it in his paper.—Insect Remains! In the summer of 1862, I discovered an organism in Bed No. 2, which at the time I could make nothing of; but which I have since proved to be the wing of an insect. Several weeks after, I found in Bed No. 8 an unequivocal insect's wing. This discovery was followed by that of others, my father, J. W. Hartt, finding another in this bed.

Compact flaggy sandstone, quite barren . . . 5 feet 10 inches.

<table>
<thead>
<tr>
<th>PLANT-BED No. 3</th>
<th>. . . . 10 "</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black and lead-coloured shales, quite compact in upper part, but in lower very crumbling, splitting irregularly, slicken-sided, often with polished surfaces, and traversed by thin quartz-veins. These shales are so soft that the sea and weather have everywhere denuded them to the level of the beach. There are now no exposures of the bed workable. The following are the fossils which occur in it:—</td>
<td></td>
</tr>
<tr>
<td>Calamites transitionis, Goepp. Occasionally.—C. canaeformis, Brongn.—Asterophyllites latifolia, Daws. Very beautiful whorls of this plant are very common here, the whorls, though usually detached, being sometimes found united three or four together. Annularia acuminata, Daws. Common.—Pinnularia dispaiana, Daws. Common.—Psilophyton elegans, Daws. Occasionally.—P. (?) glabrum, Daws. Occasionally.—C. pinnatifidus Robbi, Daws. Extremely abundant, but not so well preserved as in Bed No. 2. Leaves apt to be preserved as polished bands of graphite, with venation obliterated.—Cyclopteris obtusa, Lesq. Not very abundant.—Neuropteris polymorpha, Daws. In beautiful specimens, common.—Sphenopteris marginata, Daws. Not common.—S. Henninghautii, Brongn. Not common.—Pecopteris (Alethopteris) discrepans, Daws. It was here that I first discovered this species. It occurs quite abundantly, but always in fragments.—Cardiocarpum cornutum, Daws. Quite common.—C. obliquum, Daws. Quite common.</td>
<td></td>
</tr>
</tbody>
</table>

Coarse sandstone, full of obscure casts of Sternbergia and Calamites 6 feet 6 inches.

Soft shale and fissile sandstone, with Calamites 0 " 3½ ".
Sandstones 2 feet 3 inches.
Shale, with obscure remains of plants 0 " 2½ "
Sandstones, barren, so far as examined 4 " 10 "
Sandstone and shale, with a few Calamites and Cordaites 0 " 9 "
Sandstone and coarse shale, with obscure markings 5 " 10 "
Light greenish, coarse shale, with fern-stems, Cordaites, and obscure markings, Carpolites (?) 0 " 7 "
Sandstones and coarse shales, with badly preserved vegetable remains 18 " 9 "

Plant-bed No. 4 1 " 0 "
Coarse shales, affording at the point where the line of section crosses it—

Cordaites Robii, Daws.—Calamites transitionis, Goepp.—Neuropteris polymorpha, Daws.—Psilophytum glabrum, Daws.—Pinnularia dispalans, Daws.

I have examined at two different points, in the eastern part of this locality, a bed which appears to correspond to this. It is characterized there by a very beautiful Neuropteris (N. Dawsoni, Hartt) with long linear lanceolate pinnules decurrent on the rachis, to which they form a broad wing. The pinnules are often four inches in length. This is one of the most beautiful ferns occurring at the locality. Several other new forms are associated with it. Among these is a magnificent Cardiocarpum, nearly two inches in diameter (C. Baileyi, Daw.).

Sandstone with obscure markings 9 feet 6 inches.

Plant-bed No. 5 6 "
Soft, fine-grained light-greenish shale.

Cordaites Robii, Daws. Extremely abundant.—Calamites cana-formis, Brongn. Found occasionally.—Psilophytum (?) glabrum, Daws.—(? Asterophyllum acicularis, Daws.—Pecopteris (Alethopteris) discrepans, Daws. Quite abundant.—Sphenopteris marginata, Daws. Quite abundant.—Sphenopteris marginata.—Pecopteris, sp. Nov. (?)—Hymenophyllites, sp. (?)—Neuropteris polymorpha, Daws. Very abundant.—Spirorbis occurs in the bed, attached to the leaves of Cordaites. I have never detected it in any of the beds higher up.

Compact flaggy sandstones and coarse shales, with a few plants, 8 feet.
Plant-bed No. 6 ... 2 feet.

Fine-grained and light-coloured shale, with great abundance of Cordaites Robbi, and Calamites transitionis; above that a layer of coarse shale, with Cordaites, and stems of plants badly preserved, then a layer of soft, very friable shale, with few fossils; and, lastly, a layer of coarse shale of a greenish-gray colour, with—

Pecopteris discrepans, Daws. Abundant.—Cordaites Robbi, Daws. Abundant.—Calamites cannaformis, Brongn. Neuropteris polymorpha, Daws.—Cardiocarpum cornutum, Daws.—Cardiocarpum obliquum, Daws.—Pecopteris, sp. nov. Occurs abundantly in some of the overlying beds.

Sandstones and coarse shales, with abundance of plant-remains, principally Cordaites and Calamites ... 5 feet.

Plant-bed No. 7 ... 2

This is one of the richest plant-beds of the section. The shales composing it vary much in character in different exposures. They are for the most part of a gray colour, and compact, like a fine-grained sandstone, though they pass into a light-brownish, very fissile; soft shale, and there are some layers of a very black colour.

Cordaites Robbi, Daws. Very abundant, and in a beautiful state of preservation.—Calamites transitionis, Goepp. Not abundant as good specimens.—C. cannaformis, Brongn. Rare.—(?) Asterophyllites acicularis, Daws. In very beautiful specimens, very common in certain thin layers. There are two or three other species, occurring also in the overlying beds, which appear to be new.—Annularia acuminata, Daws. Extremely plentiful.—Pinnularia dispersa, Daws. Extremely plentiful.—(?) Psilophyton elegans, Daws. I have obtained several specimens of a Psilophyton, growing in tufts, and closely resembling this species.—Neuropteris polymorpha, Daws. Occasional.—Pecopteris (Alethopteris) discrepans, Daws. Abundant, and obtainable in good specimens.—Cyclopteris obtusa, Lesq. Occasional.—Sphenopteris marginata, Daws.—Hymenophyllum sulphuratus, Daws.—Cardiocarpum cornutum, Daws. Quite abundant.—C. obliquum, Daws. Quite abundant.—C. Crampii, Hartt.—Alethopteris Perleyi, Hartt.—Sphenopteris pilosa, Daws. Several other plants not yet determined.—Insects. A single insect’s wing was obtained from this bed by my father and myself.

Compact sandstone and coarse shales (barren of fossils) ... 3 feet.
PLANT-BED No. 8

Fine-grained, tough, but fissile sandstones, rather coarse shales, often of a greenish cast, and at the top a thin layer of very black shale very rich in plants. The middle portion does not contain so many plant remains, but the lower is as well stocked as the leaves of a herbarium. The following are the fossils I have collected from it:

Cordaites Robbi, Daws. As usual in great profusion, and in very fine specimens.—*C. transitionis, Goepppt.* Occasional.—*C. cannaformis, Brougn.—*(?) Asterophyllites acicularis, Daws.* Quite common, together with one or two other species apparently new, which occur also in Bed 7.—*Annularia acuminata, Daws.* Extremely common, especially in certain layers.—*Pinnularia dispalans, Daws.* Abundant.—*(?) Lycopodites Mattheiu, Daws.* Rare.—*Cyclopteris obtusa, Lesq.x.—Cyclopteris, sp. nov.—Neuropteris polymorpha, Daws.* Quite frequent in detached pinnules.—*Hymenophyllites subfurcatus, Daws.* Very common.—*Pecopteris (Alethop.) discrepans, Daws.* This is the most abundant fern in this bed. It occurs usually in detached pinnules, though not unfrequently in considerable fronds.—*Pecopteris (Alethop.).* Besides the above, there are three or four other species, some of which occur also in Beds 6 and 7.—*Cardiocarpum cornutum, Daws.* Not very common.—*C. obliquum, Daws.* Also not very common.—*C. Crampii, Hartt.* Quite common.—Several other species of plants not yet determined.—*Insects.* Two species, two specimens. One was obtained by my friend, Mr James Hegan.

Sandstones and coarse shales, with badly preserved *Cordaites Robbi, Daws., C. transitionis, Goepppt., and Pecopteris (A.) discrepans.*

Fine-grained, light-greenish shale, with obscure remains. 1 foot. Sandstone and shales, with *Calamites* and obscure markings. 23 feet.

This brings up the section to those beds which are exposed within a few feet of low-water mark. Owing to the short time during which the rocks are laid bare by the fall of the tide, to their hardness, and to the way in which they are rounded down by the surf, the work of exploring this part of the section is very difficult, and I have not been able to give them a very close examination. A very rich plant-bed crops out within a short distance of low-water mark on the very eastern margin of the Ledges. Its place in the section is somewhere near Bed 8. It is characterized by *Cyclopteris valida, Daws., which...*
appears to be limited to it. The unique specimen figured in Dawson's Paper 'On the Flora of the Devonian Period, etc.' (plate xvii. fig. 52), came from this bed. I obtained here a magnificent frond of *Neurop teris polymorpha*, Daws., showing its structure finely, and the different forms of the pinnules in different situations on the frond. Many of the species common in the underlying beds are also to be found in this; but I am unable to give a complete list.

Total thickness of the beds embraced in this section. 444 ft. 11 in."

Fauna of the Devonian Plant-beds of St John.

It will be necessary to devote a separate chapter to the interesting plant-remains of St John, which present to us a picture of the vegetation of the world at a period anterior to that of the great coal-deposits, more perfect, perhaps, than that to be obtained in any other known locality. I shall notice here some small crustaceans and worms which lived in the waters into which these plants were drifted and four species of *Insects*, the very oldest known to geologists, and which flitted through the old Devonian woods.

Fig. 179 (a, b).—*Eurypterus pulicaris*. Fig. 180.—*Amphipeltus paradoxus*.

Attached to some of the fossil plants in the Cordaite shales, we have, just as in the Coal formation, shells of *Spirorbis*. I have not been able to satisfy myself as to whether these are the familiar *S. carbonarius* of the coal or a distinct species. The crustaceans found with them are of two species, one, a little shrimp-like creature, belongs to the genus *Eurypterus*. It was found by Mr Matthews, and has been described by Mr Salter as *E. pulicaris* (Fig. 179). The other is of higher type, perhaps allied to the modern Stomatopods, and has been named by Mr Salter, to whom I sent the specimen,
which was from Mr Hartt's collection, *Amphipeltis paradoxus* (Fig. 180).

The insects found in these beds are of the very greatest geological interest, as being the oldest known representatives of that type. They occur in the same shales with the plants, and are thus proved, both by stratigraphical and palaeontological evidence, to be older than the Carboniferous period. I have, therefore, figured the remains found, which are all from the collection of Mr Hartt, and which have been kindly described by Mr Scudder of Boston, one of our best authorities on questions of this kind. They were all Neuropterous insects, and allied to the Ephemeras. It is interesting, however, to observe that, like many other ancient animals, they show a remarkable union of characters now found in distinct orders of insects, or constitute *synthetic* types, as they have been named. Nothing of this kind is more curious than the apparent existence of a stridulating or musical apparatus like that of the cricket, in an insect otherwise allied to the Neuroptera. This structure also, if rightly interpreted by Mr Scudder, introduces us to the sounds of the Devonian woods, bringing before our imagination the trill and hum of insect life that enlivened the solitude of these strange old forests.

Mr Scudder has kindly furnished descriptions of these insects as follows:

Fig. 181.—Platephera antiqua, Scudder.

"The direction of the principal nervures in this insect convinces me that it belongs to the *Ephemerina*, though I have never seen in living *Ephemerina* so much reticulation in the anal area as exists here—so, too, the mode in which the intercalary nervules arise is somewhat peculiar. It is a gigantic species, for it must have measured five inches in expanse of wings—the fragment is a portion of an upper wing."

"At first sight the neuration of the wings seems to agree sufficiently with the *Sialina* to warrant our placing it in that family

* Journal of Geological Society, February 1863.*
but it is very interesting to find, in addition to minor peculiarities, that near the base of the wing, between the two middle veins, there is a heavy cross-vein from which new prominent veins take their rise; this is characteristic of the Odonata, and of that family only. We have, therefore, a new family representing a synthetic type which combines the features of structure now found in the Odonata and Sialina, very distant members of the Neuroptera. The fragment is sufficiently preserved to show the direction, extent, and mode of branching of nearly every principal nerve. It is evidently a portion of an upper wing; the insect measured not far from $3\frac{1}{2}$ inches in expanse of wings.

"This was the first specimen discovered by Mr C. F. Hartt, and I have, therefore, named it after him:—apparently, it does not belong to any family of Neuroptera represented among living forms. It agrees more closely with the family Hemeristina, which I founded upon a fossil insect discovered in Illinois, than it does with any other; but is quite distinct from that, both in the mode of division of the nerves and in the peculiar cross-veining. The fragment which Mr Hartt discovered is very imperfect; but, fortunately, preserves the most important parts of the wing. I am inclined to think that it was a lower wing. The insect probably measured $3\frac{1}{2}$ inches in expanse of wing."

"Although in this fragment we see only the basal half or third of a wing, the peculiar mode of venation shows that the insect cannot belong to any known family of Neuroptera, living or fossil; yet it is evidently a Neuropterous insect. In addition to its other peculiarities,
there is one of striking importance, viz.:—the development of veinlets at the base of the wing, forming portions of concentric rings. I have endeavoured in vain to explain these away as something foreign to the wings, accidentally introduced upon the stone, and I know of nothing to which it can be compared but to the stridulating organ of some male Orthoptera! It is difficult to tell whether the fragment belongs to an upper or an under wing. Its expanse of wings was probably from 2 to 2\(\frac{1}{2}\) inches."

Useful Minerals of the Devonian.

In Nova Scotia the only important mineral deposit known to be contained in the rocks of this system is the iron ore of Nictaux and Moose River. This is a conformable bed, at Nictaux about six feet in thickness, and quite accessible, as it crops out at the surface without any cover. The outcrop of the bed appears at several places in Nictaux, and also at Moose River, where the thickness appears to be less than at the former place. At Nictaux the ore is a peroxide of iron, laminated in structure, and full of fossil shells. At Moose River it is in the state of magnetic iron, but retains its characters in other respects. A specimen in my collection from Nictaux contains 55\% per cent. of iron. This ore is thus of great value, but is not at present worked. Its distance from the coal-fields, and the consequent necessity of smelting with charcoal, are obstacles in the way of its commercial application.

In New Brunswick several important mineral deposits have been recognised in the Devonian of the south coast. The following account of them is from Bailey's Report. More full details as to one of these deposits, the Vernon Copper Mine, are contained in Professor Hind's Preliminary Report.

"**Iron Ores.**—The principal locality for this metal is the district in the vicinity of West Beach and Black River, where several large beds of hematite occur. As they are well known, and were described in a previous Report, it is not necessary to make further allusion to their character, than to say that one portion of the ore occurs in a coarse reddish-gray conglomerate, the other, two or three miles to the eastward, in beds of trappean and micaceous slates. These rocks have been shown by Mr Matthew clearly to form a portion of the Cordage shales in the Devonian series.

"Besides the ore-beds alluded to, iron is abundant in seams and veins through most of the rocks occurring in this district, and it is not improbable that further search would reveal the latter in available quantities."
"The only remaining district likely to be productive of this metal is the peninsula of Pisarimco. I have already alluded to the resemblance between the latter and the beds of Beveridge Cove, and stated that specular iron is not uncommon in its southern portion. Were the metal in greater demand, its presence in this region might be looked for with very good prospect of success. The same is true of the district lying to the west of Musquash Harbour, and thence towards the Basin of Lepreau.

"Copper Ores.—The most important and well-known localities of copper, appertaining to this series, are the mines occurring in the eastern portion of St John, and western portion of Albert, counties. In the district alluded to, between Martin's Head and the settlement of Great Salmon River, no less than four distinct attempts have been made to carry on operations, with varying success. These constitute respectively the Vernon, Alma, Gordon, and Williams Mines. The three latter were visited by myself in the summer of 1863, and described in my Report of that year; the former, though also alluded to in the same Report, was not visited until the past season. It may therefore not be out of place to add a few observations, made by Mr. Matthew and myself, upon its present condition.

"The Vernon Copper Mines are situated upon the Bay Shore, about three miles eastward of Martin's Head, and about two from the mouth of Goose Creek. The rocks in which operations have been begun are metamorphic beds of the Bay Shore belt, which here rise abruptly from the level of the sea to a height varying from six to eight hundred feet. Their character has already been described. They consist of dull purple and gray micaceous slates, conglomerates, and grits, much injected with igneous matter, and holding veins of quartz, cale-spar and chlorite. They are in every way identical with the rocks of Martin's Head and the region to the westward, belonging, with the latter, to the Cordurite division of the Little River group, a formation referable to the Upper Devonian age.

"Since the date of my last Report, operations of a vigorous character have been begun, and a force of about forty men is now constantly employed. At the time of my visit, three adits had been driven near the base of the hill, and preparations were in progress for systematic labour. Owing, however, to the abrupt character of the shore, the want of a suitable harbour, and the difficulty of procuring supplies through the unsettled district above, active operations had been greatly retarded. A road is now being opened to connect the mines with the Shepody Road, and I believe it is the intention of the Company to erect a breakwater, whereby the obstacles at present existing may be greatly diminished."
"The rocks of the Alma, Williams, and Gordon Mines, are in every way similar to those of the Vernon, and, for this reason, do not require further notice. All mining operations at these localities have been for the present discontinued.

"In addition to the places above described, the following are localities appertaining to the Cordaitae shales, in which the presence of ores of copper has been ascertained:

"(a.) The shores of the Great Salmon River, Albert County, probably a continuation of the lodes at the Alma and Gordon Mines. Ore—Copper glance.

"(b.) On the Farm of Andrew M'Farlane, three miles back of Salmon River, Albert, and on the road to New Ireland. Ore—Peacock copper and yellow sulphuret, in dark slaty grits. No explorations have been made.

"(c.) Near entrance of Little Salmon River, St John County.* A small quantity of copper associated with much iron pyrites, occurring in slate.

"(d.) M'Lachland's Farm.* Indications somewhat more promising than at the last named locality.

"(e.) Near Martin's Head, at foot of the hills, on the north side of the marsh connecting the headland with the shore. Ore—Erubescite (or Peacock ore). The specimens seen were of a very rich character. No attempt had been made, at the time of our visit, to ascertain the extent of the deposit, but the locality is a promising one, and deserves further exploration. The facilities for the successful carrying on of mining operations are very superior to those of the Vernon Mine, the land being lower, and the shore protected by the promontory of Martin's Head. Indications of copper have also been observed upon the Head itself.

"(f.) Shepody Mountain. Near the Manganese Mine of Mr Steadman, a shaft has been sunk in greenish chloritic slate, to a depth of 50 feet in search of copper, which is said to occur in veins of quartz. The locality was examined by Mr Hartt, but no indications of that metal were observed. It has also been stated that native copper occurs in quartz veins in the conglomerates of the Manganese Mine.

"(g.) Black River Settlement, on the mountain road from Loch Lomond. Ore—Copper pyrites and the green carbonate, in hard clay slate.*

"(h.) Pisarineo. Yellow sulphuret of copper has been found in the altered slates and grits of this peninsula, but not in profitable quantities. * Observed by Mr Matthew.
At all the above named localities, the rocks are certainly members of the upper division of the Little River group. In those which follow, the beds are probably portions of the same series, but, as expressed in the remarks on the characters of this group, their position has not been ascertained with absolute certainty.

(i.) Blackwood Block, Albert County. I am informed by Mr Matthew, that in this district, and near the lake which forms the source of one of the branches of the Salmon River, copper has recently been found by Mr G. F. Keans of St John.

The latter gentleman observed some veins, and numerous boulders of quartz on the hillsides about the lake, as well as felspar, mica (silvery gray and black), hornblende, actinolite, and chlorite. The copper was observed in a ledge of hard gray metamorphic slate, on the north side of the lake, filling seams in the rock, and is a green carbonate, not the original ore. The accompanying rocks are described as paller and coarser slates, some of the latter having an ash-like aspect (volcanic?), and reddish felsite. All of these rocks are similar to those occurring in the Cordaites shales, or cupiferous band of the coast. Both of the above named gentlemen, to whom I am indebted for the facts of its occurrence, regard the locality as a promising one, and deserving of further examination.

This locality is not very distant from the point at which particles of drift gold were observed by myself and others in the summer of 1863. The occurrence of the latter is curious, and difficult of explanation. It can scarcely be supposed that this metal should have come from beds of Devonian age, such as those of the neighbourhood appear to be. Neither are there any rocks of a greater age in this portion of the province, unless we suppose the re-appearance of the St John slates, or some portion of the Coldbrook and Portland groups. As to the former, as far as observed to the eastward, no approaching alteration, such as is usually found in gold-bearing series, was observed, and eastward of King's County the group itself appears to be entirely wanting. The same is true of the Portland group, but it is not at all unlikely that beds of the Coldbrook may be represented in this district, and to them we must provisionally look for the origin of this metal. It should, however, be borne in mind, that Dr Hayes of Boston has, by analysis, ascertained the presence of gold in the rocks of the Vernon Mine, also a part of the series of which the locality at Blackwood is supposed to form a member.

(k.) Beech Hill, Westmoreland. On the south-eastern side of the Memramcook River, in the parish of Dorchester, and about three miles from Charters' Inn, occurs a very singular metalliferous locality, but
recently discovered, and which opens a new field of investigation in a district heretofore supposed to be destitute of metal-bearing rocks.

"The precise locality where this discovery was made, is on the land of Joseph Landry, constituting a portion of the settlement known in the vicinity as Beech Hill. The land has been leased from its owners by Mr Alex. Wright of Salisbury, with whom I paid a visit to the spot during the past season.

"In examining the district where the ore occurs, I found that the land immediately surrounding the lode is everywhere covered with rocks of Carboniferous age, over the surface of which are scattered innumerable boulders of highly crystalline quartz. The beds from which the latter have been derived are not directly visible, but near the point where they are most abundant, a pit has been sunk to a depth of about 50 feet, exposing a distinct quartz lode of from four to five feet in thickness. This lode has a course about N. 22° W., a nearly perpendicular dip, and is bounded by regular walls. Only one of the latter was distinctly visible, and consisted of buff-coloured and reddish altered grit or breccia. Covering the latter, as well as a portion of the lode, are an ochreous clayey conglomerate, then a reddish slaty clay, and, finally, over all some two or three feet of soil. These uppermost deposits have a decidedly Carboniferous look, and are destitute of metallic indications.

"The ore, which is confined to the quartz lode, is the gray sulphuret, and is scattered through the rock in veins and spots, while, by alteration, it has given a green tinge to much of the associated gangue. A portion of the quartz is distinctly, and at times finely, amethystine (indicating the presence of manganese). Barytes is also found in the lode, and specimens from the neighbourhood contain a green variety of fluor. There seemed to be an entire absence of calcareous matter.

"Hoping that some exposures might be found in the neighbourhood, by which the age of the deposit could be ascertained, I made a careful search, but found no beds in situ, with the exception of Carboniferous sandstones, shales, and conglomerates, the former holding characteristic plants. Boulders, however, were common, and evidently derived from a metamorphic series, such as gneiss, sylvinite, mica schist, green and ashy slates.

"This locality is certainly an interesting one, and worthy of further exploration. It would seem to imply an easterly prolongation of the metalliferous coast belt, as well as a great thinning out of the Carboniferous beds by denudation. It is not unlikely that similar exposures, from which the boulders have been derived, may be discovered in the neighbourhood."
CHAPTER XXII.

THE DEVONIAN PERIOD—Continued.

FLORA OF THE DEVONIAN.

The state of our knowledge of this subject at the time when the writer commenced his labours upon it, may be learned from the following extract from his paper of 1861, already referred to:—

"The known flora of the rocks older than the Carboniferous system has until recently been very scanty, and is still not very extensive. In Goeppert's recent memoir on the flora of the Silurian, Devonian, and Lower Carboniferous rocks,* he enumerates twenty species as Silurian, but these are all admitted to be Algae, and several of them are remains claimed by the zoologists as zoophytes, or trails of worms and mollusks. In the Lower Devonian, he knows but six species, five of which are Algae, and the remaining one a Sigillaria. In the Middle Devonian he gives but one species, a land plant of the genus Sagenaria. In the Upper Devonian the number rises to fifty-seven, of which all but seven are terrestrial plants, representing a large number of the genera occurring in the succeeding Carboniferous system.

"Goeppert does not include in his enumeration the plants from the Devonian of Gaspé, described by the author in 1859,† having seen only an abstract of the paper at the time of writing his memoir, nor does he appear to have any knowledge of the plants of this age described by Lesquereux in Rogers' Pennsylvania. These might have added ten or twelve species to his list, some of them probably from the Lower Devonian. It is further to be observed, that certain specimens found in the Upper Ludlow of England,‡ appear to prove the presence of Lepidodendron in that formation; and that, in the paper above referred to, I have noticed specimens from the Gaspé limestone which seem to me to indicate the occurrence of Psilophyton and Noeggerathia or Cordaites in the Upper Silurian of Canada.

* Jena, 1860.
† Journal of Geological Society of London, also Canadian Naturalist.
"It thus appears that, according to our present knowledge, the plant life of the land, so rich in the Coal formation, dies away rapidly in the Devonian, and only a few fragments attest its existence in the Upper Silurian. Great interest thus attaches to these oldest remains of land plants; and fragmentary though they are, and often obscure, they merit careful attention on the part of the geologist and botanist.

"No locality hitherto explored appears more favourable to the study of this ancient vegetation than those parts of Eastern America to which this paper relates. The Gaspé sandstones have already afforded six Devonian species, some of them of great interest, and in a remarkably perfect state of preservation; and from beds of similar age in New Brunswick and Maine, I am now prepared to describe at least ten species, most of them new. This already raises the species found in the band of Devonian rocks, extending through the north-eastern States of the Union, and the eastern part of British America, to one-third of the number found in all other parts of the world; and the character of the containing rocks, the number of nondescript fragments, and the small amount of exploration hitherto made, justify the hope that a much larger number may yet be discovered."

In the paper from which the above extract is taken, the total number of American Devonian species was raised to twenty-one, of which seven were from St John. Subsequently the much larger collections obtained at this place, farther collections by the writer at Perry, and specimens kindly placed at his disposal by Professor Hall of Albany and Sir William Logan, have raised the known species to eighty-two; and have thus placed Eastern America, in the matter of pre-carboniferous land plants, in advance of Europe. To these I am now able to add eleven species recently obtained by Mr Hartt, and not before published, making the whole number ninety-three, of which fifty have been found in the St John beds.

The general character of the Devonian flora, in comparison with that of the Carboniferous period, may be thus stated:—

1. In its general character the Devonian flora resembles that of the Carboniferous period, in the prevalence of Gymnosperms and Cryptogams; and, with few exceptions, the generic types of the two periods are the same. Of thirty-two genera to which the species described in this paper belong, only six can be regarded as peculiar to the Devonian period. Some genera are, however, relatively much better represented in the Devonian than in the Carboniferous deposits, and several Carboniferous genera are wanting in the Devonian.

2. Some species which appear early in the Devonian period continue to its close without entering the Carboniferous; and the great majority
of the species, even of the Upper Devonian, do not reappear in the Carboniferous period; but a few species extend from the Upper Devonian into the Lower Carboniferous, and thus establish a real passage from the earlier to the latter flora. The connexion thus established between the Upper Devonian and the Lower Carboniferous is much less intimate than that which subsists between the latter and the true Coal measures. Another way of stating this is, that there is a constant gain in number of genera and species from the Lower to the Upper Devonian, but that at the close of the Devonian many species and some genera disappear. In the Lower Carboniferous the flora is again poor, though retaining some of the Devonian species; and it goes on increasing up to the period of the Middle Coal measures, and this by the addition of species quite distinct from those of the Devonian period.

3. A large part of the difference between the Devonian and Carboniferous floras is probably related to different geographical conditions. The wide swampy flats of the Coal period do not seem to have existed in the Devonian era. The land was probably less extensive and more of an upland character. On the other hand, moreover, it is to be observed that, when in the Middle Devonian we find beds similar to the underclays of the Coal measures, they are filled, not with Stigmaria, but with rhizomes of Psilophyton; and it is only in the Upper Devonian that we find such stations occupied, as in the Coal measures, by Sigillaria and Calamites.

4. Though the area to which this paper relates is probably equal to any other in the world in the richness of its Devonian flora, still it is apparent that the conditions were less favourable to the preservation of plants than those of the Coal period. The facts that so large a proportion of the plants occur in marine beds, and that so many stipes of ferns occur in deposits that have afforded no perfect fronds, show that our knowledge of the Devonian flora is relatively far less complete than our knowledge of that of the Coal formation.

5. The Devonian flora was not of lower grade than that of the Coal period. On the contrary, in the little that we know of it, we find more points of resemblance to the floras of the Mesozoic period, and of modern tropical and austral islands, than in that of the true Coal formation. We may infer from this, in connexion with the preceding general statement, that in the progress of discovery very large and interesting additions will be made to our knowledge of this flora, and that we may possibly also learn much more of the land fauna contemporaneous with it.

6. The facies of the Devonian flora in America is very similar to
that of the same period in Europe, yet the number of identical species
does not seem to be so great as in the coal-fields of the two continents.
This may be connected with the different geographical conditions in
these two periods; but the facts are not yet sufficiently numerous to
prove this.

7. The above general conclusions are not materially different from
those arrived at by Goeppert, Unger, and Brongniart, from a con-
sideration of the Devonian flora of Europe.

The following list includes all the species of the St John beds
known up to the present time, the most important of which I shall
endeavour to illustrate by short descriptions and figures:

Dadoxylon Ouangondianum, Dawson. Neuropteris polymorpha, Dn.
Sigillaria palpebra, Dn. —— sp. nov.
Stigmaria fecoides (var.), Brong. —— probably two other sp.
Calamites transitionis, Goeppert. Sphenophyton Heninghausii, Brongn.
— cannaformis, Brongn. —— marginata, Dn.
Astrophyllites acicularis, Dn. Hartiti, Dn.
— latifolia, Dn. Hitchcockiana, Dn.
— sculptigera, Dn. pilosa, sp. nov.
— longifolia, Brongn. Hymenophyllites Gersdorffii, Goeppert.
— parvula, Dn. —— obtusilobus, Goeppert.
— laxa, sp. nov. —— curtilobus, Dn.
Annularia acuminata, Dn. —— subfurcatus, sp. nov.
Sphenophyllum antiquum, Dn. Pecopteris (Aethopteris) decurrens, Dn.
Planularia dispalana, Dn. —— (—) ingens, Dn.
Lepidodendron Gaspiianum, Dn. (—) obscura (?), Lesquereux.
Lycopodites Matthewi, Dn. —— preciosa, Hartt.
Psilophyton elegans, Dn. —— Perleyi, Hartt.
— glabrum, Dn. —— serrulata, Hartt.
Cordaites Robibi, Dn. Trichomanites, sp.
— angustifolia, Dn. Cardiocarpum cornutum, Dn.
Cyclopteris Jacksoni, Dn. —— obliquum, Dn.
— obtusa, Goeppert. —— Crampii, Hartt.
— varia, Dn. —— Baileyi, sp. nov.
— valida, Dn. Trigonocarpum racemosum, Dn.
— Bockshiana, Goeppert. Antholithes Devonicus, sp. nov.

(Coniferæ.)

Dadoxylon Ouangondianum.*—Dn. Trunks of this fine coniferous
tree are frequent in the St John sandstones. They retain their structure
in great perfection, especially in silicified specimens. Some of the trunks
have been a foot or more in diameter. They show traces of growth-
rings on their weathered ends, and when perfect, are traversed by the
transversely wrinkled pith-cylinders, formerly known as Sternbergiae.
Under the microscope the wood-cells are seen to be of remarkable

* I have named this species after the ancient Indian designation of the St John
River, Ouangonda. I use the generic term Dadoxylon as probably best known to
English geologists; but I sympathize with Goeppert in his preference of the generic
term Araucarites for such trees.
size, being fully one-third larger in their diameter than those of *Pinus strobus* or *Araucaria Cunningham*, and also much larger than those of *Pinus sylvestris* or *Araucaria Cunningham*.

Fig. 185.—**Dadoxylon Ouangondianum.**

A. Fragment showing Sternbergia pith and wood; (a) Medullary sheath; (b) Pith; (c) Wood; (d) Section of pith.

B. Wood cell (a), and hexagonal areole and pore (b).

C. Longitudinal section of wood, showing (a) Areolation, and (b) Medullary rays.

D. Transverse section showing (a) Wood-cells, and (b) Limit of layer of growth.

The ordinary coniferous trees of the Coal measures. They are beautifully marked with contiguous hexagonal areoles, in which are inscribed oval slits or pores, placed diagonally. The medullary rays are large and frequent, but their cells, unlike the wood-cells (*prosenchyma*), are more small and delicate than those of the trees just mentioned. The pith when perfectly preserved presents a continuous cylinder of cellular tissue, wrinkled longitudinally without, and transversely within, and giving forth internally delicate transverse partitions, which coalesce toward the centre, leaving there a series of lenticular spaces, a peculiarity which I have not heretofore observed in these Sternbergia pith cylinders. It is interesting to find in a Devonian conifer the same structure of pith characteristic of some of its allies in the Coal formation, where, however, as I have elsewhere shown, such structures occur in Sigillaria as well; and since Corda has ascertained a similar structure in *Lomatofloyos*, a plant allied to *Ulodendron*, it would appear that the Sternbergiae may have belonged to plants of very dissimilar organization.

In my specimen the pith is only half an inch in diameter, and only a small portion of the wood is attached to it; but Mr Matthew has a specimen of a trunk ten inches in diameter, with the pith one inch in thickness, and another 11 1/4 inches in diameter, with the pith 2 1/4 inches. Both had the appearance of decayed trunks, so that their original size may have been considerably greater.

Mr Matthew states in reference to the mode of occurrence of this interesting species, that the wood is always in the state of anthracite or graphite, or mineralized by iron pyrites, calc spar or silica. The pith is usually calcified, but in pyritized trunks it often appears as a sandstone cast with the external wrinkles of Sternnber gia. The pith is often eccentric, and specimens occur with two or three centres; but these either consist of several trunks in juxtaposition, or are branching stems. The annual layers vary from one-eighth to one-thirtieth of an inch in thickness, and adjoining layers sometimes vary from one-tenth to one-twentieth of an inch.

The trunks of this species appear to have had a strong tendency to split in decay along the medullary rays, and in consequence the cross section often presents a radiating structure of alternating black lines representing the wedges of wood, and white rays of eale spar. The heart wood seems to have had its cell walls much thickened, and in consequence to have been more durable than that nearer the surface. They appear to have been drift trees, and to have been much worn and abraded before they were embedded in sediment.

(Sigillaria:)

Sigillaria palpebra, Dn. Ribs narrow, about a quarter of an inch in width. Leaf-scars transversely acuminate, small. My only specimen is a small fragment, showing three or four ribs, and with only a few of the scars preserved. The most perfect leaf-scars are shaped much like a half-closed eye; but the specimen is only a cast, and very imperfect. Locality, St John.

Stigmaria ficoides (variety), Brongniart. Large roots of *Stigmaria,* in some instances with rootlets attached, occur, though rarely, in the sandstone or arenaceous shale near St John—only two or three specimens having been found. They are not distinguishable from some varieties of the *Stigmaria ficoides* of the Coal measures.

(Calamites:)

Calamites transitionis, Goeppert. "Canad. Nat.," vol. vi. p. 168 (Fig. 186). This species, so characteristic, according to Goeppert, of the Upper Devonian and Lower Carboniferous series in Europe, is abun-
FLORA OF THE DEVONIAN.

...dant at St John, both in the sandstone containing coniferous trees, and the shales which afford Ferns, Cordaites, etc. Some of the beds of the latter are filled with flattened stems. This was one of the first fossils recognised in the St John rocks, specimens having been shown to me in 1857 by the late Professor Robb.*

Fig. 186.—Calamites transitionis.

Calamites canniformis, Brongniart. This species, presenting the characters which it exhibits in the Coal measures, occurs in the ledges west of Carlton, associated with the last species, but in much less abundance. It is a widely distributed species, but has not, I believe, been found previously in rocks older than the Lower Carboniferous.

(Asterophyllites, etc.)

Asterophyllites acicularis, Dn. (Fig. 194, H and II). Stems slender, striated, thickened at the nodes, leafy. Leaves one-nerved, linear,

* Dr Gesner mentions (Second Report, 1840, p. 12) a Calamite (probably this species) as occurring near Little River.
slightly arcuate, ten to fifteen in a whorl, longer than the internodes. Length of leaves one-half to three-fourths of an inch. This plant is abundant in some layers of shale near St John. It resembles A. foliosa, L. and H., but the leaves are longer, less curved, and more numerous in a whorl. Some of the specimens show that the stem was leafy, as well as the branches; and I have a specimen, apparently the termination of a main stem, showing the whorls of leaves diminishing in size toward the apex. My specimen of this and the following species of Asterophyllites are from the collections of Messrs Matthew and Hartt, and were obtained from the ledges and cliffs west of Carlton. I believe the small strobiles, one of which is seen at H2 to be the fruit of this species.

Fig. 187.—Asterophyllites.

B, Do. apex of stem (?) fruit. D1, Leaf.
C and C1, Asterophyllites scutigera.

Asterophyllites latifolia, Dn. (Fig. 187, A, B, D). Stem somewhat slender, with enlarged nodes. Leaves oblong-lanceolate, about thirteen in a whorl, one-nerved, longer than the internodes. Length of leaves varying from one-fourth of an inch, near the ends of branches, to an
inch or more. This species abounds in the same locality with the preceding, and is often very perfectly preserved. It has some resemblance to *A. galioides*, L. and H., and to *A. fertilis*, Sternberg; but it differs from the former in the number and form of the leaves, and from the latter in the acuteness of their points. The fruit or growing extremity of the stem is represented at (B).

Asterophyllites (?) scutigera, Dn. (Fig. 187, C.) Stems simple, elongated, attaining a diameter of half an inch, obscurely striated; bearing on the nodes whorls of round or oval scales, or flattened nutlets, which at the ends of the stems are crowded into a sort of spike, while on other parts of the stems the nodes are sometimes an inch apart. This is a plant of uncertain nature, which I place only conjecturally in this genus. The stems, which are very long, may have been horizontal or immersed, and the apparent scales may either have constituted a sort of sheath, as in *A. coronata*, Unger, or may have been seeds or nutlets flattened like the rest of the plant. Near some of the specimens are fragments of linear leaves, which may have belonged to this plant, though I have not found them attached. When flattened obliquely, the stems appear as rows of circular marks, which represent the harder tissue of the nodes, and have a very singular appearance. This plant, though found with the preceding, does not occur in the layers which contain the other plants; and this may possibly mark a difference of habitat.

Asterophyllites longifolia, Brongniart. In the shales containing the preceding species are some fragments of an *Asterophyllites* with slender stems, internodes about an inch in length, and linear leaves two or three inches in length, and about six to eight in a whorl. It may belong to the species here named; but the remains are not sufficiently distinct to render this certain.

Asterophyllites parvula, Dn. (Fig. 188, A). “Canad. Nat.” vol. vi. p. 168, figs. 6 a, b, c. Branchlets slender. Leaves five or six in a whorl, subulate, curving upwards, half a line to a line long. Internodes equal to the length of the leaves or less. Stems ribbed, with scars of verticillate branchlets at the nodes. This diminutive species was originally found by Mr. Matthew in the graphitic shale, associated with the Dadoxylon sandstone, at the southern part of the city of St. John. Small fragments of it have subsequently been obtained from the shales of Carlton.

Asterophyllites laxa, sp. nov. Stems very slender and flexuous. Internodes about an inch long. Nodes with about ten long linear one-nerved obtuse leaves an inch or more in length. This form was included in *A. longifolia* in my former paper, but additional specimens
show it to be quite distinct. The Devonian plant-beds of St John are relatively richer in species and individuals belonging to the genus

Fig. 188.—Asterophyllites, Sphenophyllum, and Lycopodites.

\[\text{Diagram of plant species:}
\]

A. Asterophyllites parvula: (a) Branches; (b) Leaves enlarged; (c) Stem.

B. Sphenophyllum antiquum: (a) Magnified; (b) Natural size.

C. Lycopodites Matthew: (a) Branch and leaves; (b, c, d) Different forms of leaves.

Asterophyllites than any zone of the Coal formation with which I am acquainted. The genus is represented in the Devonian of Europe, and more especially by the fine species *A. coronata* from Thuringia.

Annularia acuminata, Dn. (Fig. 194, G). Leaves oblong, acuminate, one-nerved, six to nine in a whorl, erect or slightly spreading. Whorls usually found disconnected. Detached whorls of this species occur, though rarely, on the surfaces of the shales of Carlton. It seems to be a plant of the same type with *A. sphenophyloides*, Unger, which, according to Lesquereux, occurs in the Coal formation of Pennsylvania. Some specimens show a few whorls attached to each other by a very slender stem.

Sphenophyllum antiquum, Dn. (Fig. 188, B). "Canad. Nat.," vol. vi. p. 170, fig. 7. Leaflets cuneate, one-eighth of an inch wide at the apex, and less than one-fourth of an inch long. Nerves three, bifurcating equally near the base, the divisions terminating at the apex of six obtuse, acuminate teeth. About eight leaves in a whorl. This plant was described from a few detached leaflets from the graphitic shale of St John, which preserved their form and venation in the most wonderful perfection, though they were completely
changed into films of shining graphite. I have since obtained from Mr. Hart a specimen found at Carlton, which, though the individual leaflets are more indistinct, shows their general arrangement in whorls of eight or nine on a slender stem. It is a beautiful symmetrical little plant, quite distinct from any of the species in the Coal measures.

Pinularia dispalans, Dn. (Fig. 194, L). Smooth slender stems, producing nearly at right angles long branchlets, some of which produce secondary branchlets in a pinnate manner. Stem and branches having a slender vascular axis. This plant was not very dissimilar from some common forms of Carboniferous Pinulariae. Its main stem must once have been cylindrical, and had a delicate central axis, now marked by a darker line of graphite in the flattened specimens. The branches were not given off in one plane, and also show traces of an axis. There are indications that the stems grew in bundles or groups. It was probably, as has usually been supposed in the case of the species in the Coal formation, an aquatic root or submerged stem of an *Asterophyllites* or some similar plant.

(Lycopodiaceae.)

Lepidodendron Gasbianum, Dn. (Fig. 189, A). Dawson, Quart. Journ. Geol. Soc., vol. xv, p. 483, figs. 3 a–3 d. This species, originally discovered in Gaspé, and described in my paper on the plants of that locality, was afterwards recognised among the fossils from Perry, and more recently at St. John; and numerous and beautiful specimens are contained in Professor Hall's collections from New York State, where the species occur in the base of the Catskill group and in the upper part of the Hamilton group. The varied aspects of the species presented in the numerous specimens thus submitted to me, would, with a less perfect suite of examples, afford grounds for specific or even generic distinctions. Flattened specimens, covered with bark, present contigous, elliptical, slightly elevated areoles, with an indistinct vertical line and a small central vascular scar (Fig. 189). Decorticated specimens, slightly compressed, show elliptical depressed areoles, not contigous, and with only traces of the vascular scars. In more slender branches the areoles are often elevated at one end in the manner of a Knorria (Fig. 189); and in some specimens the areoles are indistinct, and the vascular scars appear as circular spots, giving the appearance presented by the plants named *Cyclostigma* by Haughton. All these forms are, however, merely different states of preservation of the same species. This plant is closely allied to *L. nothum*, Unger, but differs in its habit of growth and in the size of the areoles relatively to that of the branches. The branches were
long and slender, bifurcating rarely; and, unless they were very woody, must have been pendent or decumbent. No large trunks have been seen. It was a widely distributed and abundant species in the Upper and Middle Devonian periods. The plant figured by Professor Rogers in the "Report on Pennsylvania," p. 829, fig. 677, can scarcely belong to any other than this species; and it is also figured in Vanuxem's "Report on New York," p. 191, fig. 55, and p. 157, fig. 38.

Fig. 189.—Lepidodendron and Psilophyton.

Lycopodites Matthewi, Dn. (Fig. 188, C). "Canad. Nat.," vol. vi. p. 171, fig. 8. Leaflets one-veined, narrowly ovate-acuminate, one-tenth to one-fourth of an inch in length, somewhat loosely placed on a very slender stem, apparently in a pentastichous manner. This species was described from specimens found...
by Mr Matthew in the graphitic shale in the city of St John. Somewhat larger specimens have since been obtained from the same bed; but I have not seen the plant elsewhere.

Psilophyton princeps, Dn. Quart. Journ. Geol. Soc., vol. xv. p. 479, figs. 1 a to 1 i. This remarkable plant, so characteristic of the whole Devonian system at Gaspé, filling many beds with its rhizomes, in the manner of the *Stigmaria* of the Coal measures, and preserved in such abundance and perfection that it is much better known to us in its form, structure, and habit of growth than any other plant of the period, proves, as might have been anticipated, to have had a wide distribution in space as well as in time. Fragments of its stems are distinguishable in the sandstones of Perry, and numerous fine specimens occur among the plants from New York State committed to me by Professor Hall. It occurs in the Hamilton group at Schoharie, New York, and at Akron, Ohio, in the Chemung group at Cascade Falls, and in the Catskill group at Jefferson. Most of the specimens are stems, which show the habit of growth very perfectly. They confirm my inference from the structure of the Gaspé specimens that the plant was woody and rigid, as they often do not lie in one plane, but extend upward and downward in the manner of firm branches buried in sand. Most of the New York specimens seem to have been drifted; but groups of rhizomes, possibly *in situ*, occur in argillaceous sandstone from Fullenman, Schoharie, and in similar beds at Cazenovia and Cascade Falls. These are the only instances presented by Professor Hall's collections of root-beds resembling those of Gaspé. In New York only the Upper and Middle Devonian have as yet afforded land plants; but in Gaspé *Psilophyton princeps* occurs in the Lower Devonian, and fragments which have belonged to it occur in the Upper Silurian.

Psilophyton elegans, Dn. (Fig. 189, B, C). Stems slender, produced in tufts from thin rhizomes, bifurcating and curving at their summits. Surface smooth, with very delicate wrinkles. Fructification in groups of small, broadly oval scales, borne on the main stem below the points of bifurcation. I distinguish this species from *Psilophyton princeps* by its smaller size, its smoother surface, its growth in tufts, and the different form of its organs of reproduction. Still it must be admitted that imperfect specimens could not readily be distinguished from branchlets of *P. princeps*. It was found by Mr Matthew in the shales near Carlton.

Psilophyton (?) glabrum, Dn. Smooth, flattened, bifurcating stems, two lines in width, with a slender woody axis. These are objects
of doubtful nature. They must have been stems or roots, bifurcating in the manner of *Psilophyton*, but having a very slender woody axis. They may have been either roots of some plant, or stems of a smooth and comparatively succulent species of *Psilophyton*.

Fig. 190.—*Cordaites Robbii*.

Cordaites Robbii, Dn. (Fig. 190). Leaves elongated, lanceolate, sometimes three inches wide and a foot in length. Veins equal and parallel. Base broad, clasping the stem, point acuminate. When this species was described in my paper in the "Canadian Naturalist," only very imperfect specimens were in my possession; but numerous and fine specimens recently found now enable me more perfectly to characterize the species. The leaves vary much in form; and

* May 1861, p. 168.
in their young state, as represented in Fig. 190 a, were often of a regularly oblong form. They have numerous equal parallel nervures, which were probably fibro-vascular, like those of Ferns, as they present precisely the same appearance as the nervures of the plants of this family preserved with them, and which, in these beautiful graphitized specimens, are traced in deeper lines of graphite than the film of the same material which represents the intervening parenchyma. In the best preserved specimens, the leaf is quite smooth; but in some the space between the nervures rises into little ridges, so as to give a striated appearance. These different aspects, however, often occur on different portions of the same leaf. The present species so closely resembles \textit{C. borassifolia} of the Coal formation that it might readily be mistaken for it; but it differs somewhat in the form of the leaf, and still more in the venation, the nervures in the present species being perfectly equal.*

In the paper already referred to, I have stated at length my reasons for preferring, in the ease of this plant and \textit{C. borassifolia}, the generic name \textit{Cordaites}, to \textit{Procites}, \textit{Flabellaria}, and \textit{Naeggerathia}, all of which have been applied to such plants, together with others having no affinity to them. To the name \textit{Pychnophyllum}, proposed by Brongniart, this objection does not apply; but \textit{Cordaites}, I believe, has priority, and is due to the describer of the typical species.

I associate the genus \textit{Cordaites} with Lycopodiaceous plants without hesitation, notwithstanding the peculiar character of its foliage, because Corda has shown that its stem is strictly acrogenous in structure, and of the same type with those of \textit{Lomatofloyos} and \textit{Ulodendron}—a fact which excludes it alike from association with Monocotyledonous plants and with Ferns. (See Chap. XX., supra.)

It is worthy of notice that, while the leaves of \textit{Cordaites}, unlike those of \textit{Sigillaria} and \textit{Lepidodendron}, were not attached by narrow bases, but clasping, they were still, like those of nearly all other Devonian and Carboniferous plants, deciduous and capable of disarticulation, as is proved by the immense abundance of fallen leaves, while the stems, probably remaining attached to the soil, are rare. It is further to be observed that these leaves were rigid, and long resisted decomposition; on which account, no doubt, they formed a favourite base of attachment for the little \textit{Spirorbes} which swarmed both in the Devonian and Carboniferous Periods. At St John, many of these leaves are covered with these little shells.

* The nervures in \textit{C. borassifolia} are alternately thick and thin; but there is another species in the \textit{Upper Coal measures} of Nova Scotia which has equal nervures.
The leaves of the present species are very abundant in the shales of the vicinity of St John, and indeed are eminently characteristic of them; and on this account I regard the dedication of it to my late lamented friend, Dr Robb, as specially appropriate. I have

Fig. 191.—Cyclopteris Jacksoni.

not recognised this plant in the specimens from Gaspé or Perry; and the only indication of it in the New York collection is a fragment of a leaf from the Hamilton group of Cazenovia, New York, not sufficiently perfect to render its identification certain.

Cordaites angustifolia, Dawson. Leaves linear, much elongated, one-tenth to one-fourth of an inch broad, with delicate, equal, parallel
nervures. This species, originally described from specimens collected at Gaspé where it abounds in the roof of the little Devonian coal-seam, occurs also at St John, and in the Marcellus Shale of New York; and it has also been found by Sir W. E. Logan in the Upper Silurian of Cape Gaspé, together with fragments of the rhizomes of Psilophyton. It usually occurs as long riband-like detached leaves, not always easily distinguishable from the flattened stems and roots of other plants found in the same beds. I have not seen the apex nor the base of the leaf, but among Professor Hall's specimens from the Marcellus Shale is one which appears to consist of the remains of several leaves, attached to a short stem, of which the structure and markings have perished.

Plants closely resembling this are described by Unger and Goeppert, from the Devonian of Europe; but the characters given do not enable me to identify any of them with the present species. Such plants are placed by those writers in the genus Nauggerathia, which I reject for the reasons above stated.

(Filices)

Cyclopteris Jacksoni, Dawson (Fig. 191). "Canad. Nat." vol. vi. p. 173, fig. 9. "Fond bipinate; rachis stout and longitudinally furrowed; pinnae alternate; pinules obliquely obovate, imbricate, narrowed at the base, and apparently decurrent on the petiole; nerves nearly parallel, dichotomous; terminal leaflet large, broadly obovate or lobed." This species, first described, in my paper in the "Canadian Naturalist," from a specimen found at Perry, occurs also in small fragments at St John, and large specimens occur in the collection of Professor Hall from the Old Red Sandstone of Montrose, New York. It is closely allied to C. Hibernica, and is its American representative. It would be placed by many botanists in the genus Adiantites of Broun., but this name is objectionable in the case of Ferns evidently not related to Adiantum.

Cyclopteris obtusa, Lesquereux (Fig. 192, A). To this species, described by Lesquereux, from the Old Red Sandstone of Pennsylvania, I refer a beautiful Fern not unfrequent in the shales near St John. Lesquereux places it in the genus Nauggerathia, a name applied by other botanists to a very different group of plants.

Cyclopteris valida, Dawson (Fig. 192, B). Tripinnate; primary divisions of the rachis stout and wrinkled. Pinnae regularly alternate. Lower pinules nearly as broad as long, deeply and obtusely lobed, narrowed and decurrent at the base; regularly diminishing in size and breadth toward the point, and the last pinules narrowly obovate and confluent with the terminal pinule. Nerves delicate, several
THE DEVONIAN PERIOD.

Fig. 192.—Devonian Ferns.

A	Cyclopteris obtusa.
B	Cyclopteris valida, and pinnule enlarged.
C	Neuropteris polymorpha, terminal pinnules.
D	Sphenopteris marginata, and portion enlarged.
E	Sphenopteris Hartii.
F	Sphenopteris pilosa.
G	Hymenophyllites cartilobus.
H	Hymenophyllites Gerdorffii, and portion enlarged.
I	Anthopteris discrepans.
J	Pecopteris serrulata.
K	Pecopteris preciosa.
L	Alethopteris Perleyi.
M	Hymenophyllites subfurcatus.
times dichotomous. This is one of the most perfect and beautiful of the St John Ferns. It resembles at first sight _Sphenopteris macilenta_, L. and H.; but on examination it differs materially in details. It is an elaborate and ornate example of the peculiar type of _Cyclopteris_ already referred to as characteristic of the Upper Devonian Period.

Cyclopteris varia, Dawson. Pinnate (or bipinnate). Pinnae with a thick petiole. Pinnules decreasing in size to the terminal one, which is ovate and lobed. Pinnules oblique, decurrent on one side. Nerves frequently dichotomous. This Fern has been found only in fragments. It seems to have been a thick fleshy frond, but the specimens are insufficient to show its habit of growth. Its nearest allies seem to be _C. Villiersi_, Sternberg (_Neuropteris Villiersi_, Brongn.), and _Cyclopteris heterophylla_, Goeppert; but it differs from both.

Cyclopteris, s. n. (?) Many fragments occur in Mr Hartt's collections of a very large _Cyclopteris_ which may possibly have resembled _C. Brownii_ of Perry in Maine, but the specimens are not sufficient for its full description.

Cyclopteris _Bockshiana_, Goeppert. Fragments referable to this species (if it is really a distinct species from _C. obtusa_), are found rarely in the St John shales. I retain the generic name _Cyclopteris_ for all these Ferns, so eminently characteristic of the Devonian as distinguished from the Carboniferous; not that I have any certainty that they belong to one natural genus, but because they resemble each other in venation, and the attempts to arrange them in such genera as _Adiantites_ and _Noeggerathia_ are evidently injudicious.

Neuropteris polymorpha, Dawson (Fig. 192, C). Pinnate or bipinnate. Rachis or secondary rachis irregularly striate. Pinnules varying from round to oblong, unequally cordate at base, varying from obtuse to acute. Terminal leaflet ovate, acute, angulated or lobed. Midrib delicate, evanescent. Nervures slightly arcuate, at acute angles with the midrib. This Fern is very abundant in the shales near Carlton, at St John. At first sight it appears to constitute several species, but careful comparison of numerous specimens shows that all the various forms may occur on the same frond. In its variety of forms it resembles _N. heterophylla_, Brongn., or _N. hirsuta_, Lesquerueux; but it differs from the former in its delicate midrib and acutely angled nervures, and from the latter in its smooth surface. In the more recent collections of Mr Hartt there are very fine and perfect examples which I hope at some future time to figure. The fragment here figured is a part of a terminal pinna.
Fig. 193.—Neuropteris Dawsoni.*

(a) Fragment of pinna.
(b) Point of pinnule.
(c) Venation.

* The Midrib is not accurately given in this figure.
Neuropteris Dawson, Hartt (Fig. 193). This remarkable fern, discovered by Mr Hartt, and to which he has done me the honour to attach my name, presents curious points of affinity to Cyclopterids and Neuropterids, and perhaps may, when more fully known, be placed in a distinct genus. Mr Hartt describes it as follows:

"Frond, pinnate or bipinnate (most probably the latter); rachis thick, sometimes when compressed half an inch wide, coarsely striated, always winged; pinnae (pinnules?) alternate, very oblique, linear lanceolate, moderately acute at apex, slightly notched above its base, decurrent on the rachis, often about an inch in width, and sometimes six inches long; margin strong, a few large undulations; midrib thick, tapering gradually, disappearing before reaching the apex, straight, entering a pinna (pinnules?) obliquely from the upper side, giving off very numerous nerves, which spring very obliquely from it, running about parallel with it, forking once near the midrib, and once more half-way to the margin, sometimes again close to the margin, the whole series being strongly arched.

"The pinnae, particularly when the midrib are thick, show a strong tendency to split up in a direction to the rachis. I have sometimes noticed them folded in a conduplicate manner."

Neuropteris crassa, sp. nov. Single pinnules, broad, oval, oblique at base, thick, smooth above with very numerous arched veins. A pinna with somewhat larger pinnules similarly veined may belong to the same species.

There are fragments which possibly indicate two other species of Neuropteris.

Sphenopteris Hæninghausi, Brongniart. One of the ferns from the shales near St John appears to be identical with the above species, which belongs to the Lower Carboniferous of Europe.

Sphenopteris marginata, Dawson (Fig. 192, D). This resembles the last species in general form, but is larger, with the pinnules round or round-ovate, divided into three or five rounded lobes, and united by a broad base to the broadly winged petiole. Found with the preceding. One specimen, given to me by Mr Hartt, shows a frond six inches in length.

Sphenopteris Harttii, Dawson (Fig. 192, E). Bipinnate or tripin-nate. Divisions of the rachis margined. Pinnules oblique, and confluent with the margins of the petiole; bluntly and unequally lobed. Nerves small, oblique, twice-forked. This beautiful fern very closely resembles S. alata from the Coal-field of Port Jackson, but differs in several of its details. I name it in honour of Mr Hartt, the discoverer of several of the St John ferns. Found with the preceding.
Sphenopteris Hitchcockiana, Dawson. Doubtful fragments only occur.

Sphenopteris pilosa, sp. nov. (Fig. 192 F). Bipinnate or tripinnate, pinnae oblong, with crowded, ovate, decurrent, pinnules, with a few forking veins. Terminal leaflet, broad, oblate, surface thickly covered with minute hairs, which generally mask the venation. I refer this curious fern to *Sphenopteris* with much hesitation, but I think its venation places it there in the present state of our classification, though in general aspect it rather resembles a *Neuropteris* or *Cyclopteris*. It has some points of resemblance to the Carboniferous fern *Sphenopteris decipiens*.

Hymenophyllites curtilobus, Dawson (Fig. 192, G). Bipinnate. Rachis slender, dichotomous, with divisions margined. Leaflets deeply cut into subequal obtuse lobes, each one-nerved, and about one-twentieth of an inch wide in ordinary specimens. According to Lesquereux, the genus *Hymenophyllites* is characteristic in America of the Upper Devonian. In Europe it is represented also in the Lower Coal. I have seen only one or two species in the Carboniferous rocks of Nova Scotia or New Brunswick. The present species resembles a gigantic variety of *H. obtusilobus*, Goeppert (*Sphenopteris trichomanoides*, Brongn.).

Hymenophyllites obtusilobus, Goeppert. Found with the preceding.

Hymenophyllites Gersdorffii, Goeppert (Fig. 192, H). Found with the preceding.

Hymenophyllites subfurcatus, sp. nov (Fig. 192, N). This species is among Mr Hart's recent collections. It is of the type of *H. furcatus*, which, according to Lesquereux, is found in the Devonian of Pennsylvania, but it differs in its broader and acute divisions.

Alethopteris discrepans, Dawson (Fig. 192, I). Bipinnate. Pinnules rather loosely placed on the secondary rachis, but connected by their decurrent lower sides, which form a sort of margin to the rachis. Midrib of each pinnule springing from its upper margin and proceeding obliquely to the middle. Nerves very fine and once-forked. Terminal leaflet broad. This fern so closely resembles *Pecopteris Serlii* and *P. lonchitica* that I should have been disposed to refer it to one or other of these species but for the characters above stated, which appear to be constant. *P. Serlii* is abundant in the Lower Carboniferous of Northern New Brunswick, and *P. lonchitica* is the most common fern throughout the whole thickness of the Joggins Coal measures; but in neither locality does the form found at St John occur. On this account I think it probable that the latter is really distinct. In Murchison's "Silurian," 2d edition, p.
321, a fern from Colebrook Dale is figured as *P. lonchitica*, which, so far as I can judge from the engraving, may be identical with the present species. Locality, St John.

Pecopteris *entdens*, Dawson. Pinnules more than an inch wide, and three inches or more in length, with nerves at right angles to the midrib and forking twice. Only a few fragments of pinnules of this species have been found in the shales near St John. They are usually doubled along the midrib, as if it had been their habit to be folded in a conduplicate manner. Their general aspect suggests a resemblance to the Mesozoic Tropiopterids rather than to the Pecopterids of the Coal formation.

Pecopteris (*Alethopteris*) *obscura* (?), Lesq. Mr Hartt has recently sent to me, from St John, a pinna of a *Pecopteris* having oblong, obtuse pinnules attached by the whole base, with a slender midrib, and slightly repand edges. The nerves are not preserved. It closely resembles *A. obscura*, Lesquereux, from the Coal of Pennsylvania.

Pecopteris (*Alethopteris*) *serrulata*, Hartt (Fig. 192, K). This species is, I believe, the same with *Neuropteris serrulata* of a former paper, the imperfect specimens in my possession causing me to refer it to that genus. Mr Hartt, however, has found specimens which enable him to correct this error. I retain the specific name to prevent confusion of terms, though there are already species of *Pecopteris* known as *serrula* and *serrata*. The present species approaches closely to *P. plumosa* of Brongni, but differs in its more distant pinnules, not connate at the base, with the veins not forking at the margin, and the midrib more oblique and decurrent on the rachis. It resembles rather less closely *P. serra*, L. and H., and *P. delicatula* and *dentata* of Brongni., and may be regarded as the Devonian representative of this group of small-leaved Pecopterids. It is thus described by Mr Hartt:

"Tripinnate, pinnae short, alternate, close or open, lanceolate, very oblique, situated on a rather slender rounded subflexuose rachis; pinnules small, linear lanceolate, crenulate, revolute, moderately acute, oblique, sessile decurrent, widest at the base, open, separated from one another by a space equal to the width of a pinnule, slightly arched towards the point of pinna; longest at base of pinna, decreasing thence gradually to the apex; terminal pinnule elongated. Median nerve entering the pinnule very obliquely, flexuous, running to the apex. Nervules very few, oblique, simple, and somewhat rarely forking at the margin."

Pecopteris (*Alethopteris*) *preciosa*, Hartt (Fig. 192, L). Pinnae a little larger than those of the last species, not serrated; placed nearly
at right angles to the rachis, obtuse, narrow toward the extremity, suddenly widened or almost auriculate at the lower side; midrib extending to the apex; nerves few, at a somewhat acute angle.

Alethopteris Perleyi, Hartt (Fig. 192, M). "This species resembles _Alethopteris serrula_ of Lesq. It differs from it in the following points:—The pinnae are wider and closer, and not so long; the pinnae are usually tridentate. The teeth acuminate, the middle one sometimes emarginate. The vein is three-forked, sending a veinlet into each lacinia. The middle veinlet branches in the middle lacinia. In _A. serrula_ the pinnales, or, as Lesq. terms them, the _lobes_, are united more than half the way up. _A. Perleyi_ has the pinnales united only one-third of the way; and whereas in the former they are divided by a sharp gash, in the latter they are divided by a deep rounded sinus.

"Dedicated to the late M. H. Perley, Esq., H.M. Commissioner of Fisheries and Vice-President of the Natural History of St John."

(Incertae sedis.)

Cardiocarpum cornutum, Dawson (Fig. 194, A). Broadly ovate, emarginate at base, dividing into two inflexed processes at top. A mesial line proceeds from the sinus between the cusps, downward. Nucleus more obtuse than the envelope, and acuminate at the top. Surface of the flattened envelope striate, that of the nucleus more or less rugose. Length about seven lines. Numerous in shale near St John. The specimens are all perfectly flattened, and many of them are also distorted, being elongated or shortened according to the direction in which they lie in the shale. The nucleus constitutes a strongly shaded spot of graphite. The flattened envelope appears as a less distinct wing or border.

Cardiocarpum obliquum, Dawson (Fig. 194, B). Unequally cordate, acuminate, smooth, with a strong rib passing down the middle; length about three lines. Found with the preceding. It somewhat resembles some of the forms of _C. acutum_, L. and H.

Cardiocarpum Crampii, Hartt (Fig. 194, C). Elongate, slightly expanding at the middle, obtuse at base, obtuse or emarginate at apex, length one inch, greatest breadth ½ inch; nucleus small, central, oval, connected by a median line with the extremities; surface of margin slightly rugose. This fruit may at once be recognised by its resemblance to the samara of an ash. It is dedicated to Mr Cramp of St John, a zealous collector of the Devonian plants.

Cardiocarpum Baileyi, sp. nov. (Fig. 194, D). This species, discovered by Mr Hartt, is the largest and most beautiful of these winged fruits as yet afforded by the Devonian. It is broadly cordate
and emarginate at the apex, 1-5 inch broad, and one inch long, with a large broadly oval acuminated nucleus, and the usual mesial line.

We have thus four distinct species of these mysterious winged seeds from the Devonian. They must have been fruits of trees, but whether of phanogams, or enormous winged spore cases of some cryptogamous plant, is uncertain. Their marginal wings show no venation whatever, though preserved in shales which show very well the venation of ferns. The margin must have been membranous, and the nucleus thick and dense, that part appearing as a comparatively strong graphitic film, while the wing or margin is excessively tenuous.

Fig. 194.—Devonian Fruits, etc.

Trigonocarpum racemosum, Dawson (Fig. 194, E). Ovate, obtusely acuminate, in some specimens triangular at apex. In flattened specimens the envelope appears as a wing. Attached in an alternate manner to a thick, flexuous, furrowed rachis. This is evidently a fruit or seed, borne in a racemose manner on a stout rachis. In some specimens the seeds are close to each other, in others more
remote. Attached to some are apparently traces of calyx-leaves or bracts. Shales of St John.

Antholithes Devonicus, sp. nov. (Fig. 194, E). Stipe thick, rugose; flowers distichous, somewhat distant, each with a strong, straight spine or bract, and several broader scales. In some specimens a number of slender threads (filaments or styles) are seen to project from between the scales. This fossil is evidently of the same general character with the *Antholithes* of the Coal formation.

I have to add to the above descriptions the remark, that I have been unable to figure the larger and finer ferns and other fossils of St John in a manner worthy of them. I have given merely such fragments as will aid in their identification. I trust that now, when so extensive collections have been made, the means will be found to figure the finer specimens. In the meantime, after examining with care twelve large cases of these fossils, the property of the Natural History Society of New Brunswick, I have arrived at the conclusion that we have nearly all the material necessary for a full illustration of most of the species, —a labour which I hope yet to complete. In examining this large collection, while I see much that throws new light on the species, it is a source of satisfaction to me that I have to retract so little of what I published on the evidence of comparatively imperfect material.

Note.—Illustrations of several of the above species not figured in this work, will be found in the Author's papers on the Devonian plants of Eastern America in the Journal of the Geological Society, vols. xviii. and xix.
of St John fragments have been nearly species, it of what material.
CHAPTER XXIII.

THE UPPER SILURIAN.

UPPER SILURIAN OF NOVA SCOTIA—OF NEW BRUNSWICK—USEFUL MINERALS—FOSSIL REMAINS—METAMORPHISM OF SEDIMENTS—IGNEOUS ROCKS.

That enormous mass of sediments constituting the Silurian system of Sir Roderick Murchison, is by some geologists divided into three portions—the Upper, Middle, and Lower. As will be seen, however, by reference to the table of geological cycles on p. 137, in North America this great system of formations represents two entire geological cycles, and no more. One of these has been named the Upper and the other the Lower Silurian; though, in accordance with ordinary geological nomenclature, each of these great groups, coordinate in importance with the Devonian and Carboniferous, might have a distinct name. The illustrious author of "Siluria" has not, in his latest edition (1867), claimed for the Silurian rocks this distinction of constituting two systems; but he has recognised the term Primordial, proposed by Barrande, in so far as to designate the lowest members of the system as "Primordial Silurian." While, however, the term Silurian as thus held includes two great cycles of the earth's history, the term Primordial is to be understood in a limited sense, since the only truly Primordial rocks are the Laurentian, or those still older sediments from which the materials of the Laurentian have been in part derived.

Acadia cannot, however, claim to be a typical region for any of these series of rocks, presenting them but in limited areas, and so much altered and disturbed, that their arrangement and subdivisions are by no means so clear as in the great inland plains of North America. We may therefore in this work rest content with the present nomenclature, and proceed to consider the Upper Silurian as developed in Nova Scotia and New Brunswick.

On consulting the map, it will be observed that I have coloured as Upper Silurian certain areas in Cape Breton, more particularly in the eastern and northern parts; a very irregular hilly tract in Eastern Nova Scotia, commencing at Cape Porcupine and Cape St George, and extending toward the Stewiacke River; the long narrow band of the Cobequid Mountains; and a belt of variable width skirting the northern side of the older or Lower Silurian metamorphic district in the western counties. The area occupied by these rocks includes the highest land and the principal watersheds of Nova Scotia.

Owing to the alteration and disturbance to which its rocks have been subjected, the structure of this district is much more complicated than that of those which have been described above, and its interior position causes it to present fewer good sections to the geologist. For these reasons less attention has been devoted to it than to the Carboniferous districts, and the details of its structure are comparatively little known. In describing it, however, I shall endeavour to follow the method previously pursued, by attending somewhat minutely to some of the best and most instructive exposures in coast and river sections, and applying the information obtained from those to the elucidation of the true relations and structure of the remaining portions. I shall then describe the important deposits of useful minerals which occur in this group of rocks, and their fossil remains. In this order of proceeding, it will be convenient to study first the development of the formation in Eastern Nova Scotia, and to proceed westward, returning afterward to the Island of Cape Breton.

At Cape Porcupine the igneous and metamorphic rocks come boldly out upon the Strait of Canseau, in a precipice 500 feet in height, and afford a good opportunity of studying these rocks and their relations to the Carboniferous system. The central part of Cape Porcupine is a mass of reddish syenite, consisting principally of red felspar and hornblende. This once molten mass passes by gradual changes into hard flinty slates, which, in shattered and contorted layers, lean against its sides, and on these again rest beds of conglomerate, forming the base of the Carboniferous series, and made up of pebbles of syenite and flinty slate, like those of the cape itself. Here we can plainly read the following history:—First, Beds of mud deposited in the sea, probably in the Upper Silurian period. Secondly, These beds upheaved and metamorphosed by the injection of the molten syenite. Thirdly, Large portions of the altered and igneous rock ground up into pebbles by water, and scattered over the sea-bottom to form the lowest layer.
of a new geological formation, the same that we have studied in preceding chapters. The structure of Cape Porcupine is represented in Fig. 195.

Fig. 195.—Arrangement of Syenite, Slate, and Conglomerate at Cape Porcupine.

At Cape Porcupine the altered rocks of the group now under consideration occupy less than three miles of the coast section, and are separated by Carboniferous rocks and by Chedabucto Bay from the eastern extremity of the older metamorphic district of the Atlantic coast, distant about twenty-four miles. As Cape Porcupine affords no fossils, and can therefore tell nothing of the condition of the earth and its inhabitants at the time when these slates were deposited, we may proceed to trace the continuation of its rocks into the interior.

From Cape Porcupine, the southern margin of the metamorphic rocks extends along the northern side of the Carboniferous district of Guysborough for about sixty miles, when it meets the Lower Silurian rocks of the coast. In several places along this line, igneous action appears to have continued or to have recurred as late as at least as the Coal formation period. This is testified by the condition of the Lower Carboniferous rocks in many places near Guysborough, westward of which place a considerable promontory of altered and igneous rocks extends to the southward, nearly across the Carboniferous district.

The northern margin of the band, commencing at Cape Porcupine, may be traced to the westward about forty miles, when it unites with a broader but very irregular promontory of similar rocks extending toward Cape St George. Between these two bands is included the Carboniferous district of Sydney County. The tract formed by their union is the widest extension of these rocks in the province.

The metamorphic promontory extending to Cape St George, and including the Antigonish and Merigomish Hills, attains a greater elevation than the band connected with Cape Porcupine. At its extremity, however, it becomes divided into a number of detached hills and ridges, separated by Lower Carboniferous beds, to which in some cases the metamorphic action has extended itself. The Antigonish and Merigomish Hills contain large masses of syenite, porphyry, compact felspar, and greenstone, associated with slates and quartzite.*

On their western side, near Arisaig, there is a patch of shale, slate, quartzite is a flinty rock produced by the hardening and alteration of sandstone.
and thin-bedded limestone, with fossil shells, and but very little altered, to which we must return in the sequel in a more particular manner.

The northern boundary of the broad band of metamorphic and hypogene rocks, formed by the union of the two promontories already noticed, extends in a westerly direction along the south side of the Pictou Carboniferous district, until it reaches the east side of the East River of Pictou, when it suddenly bends to the south, allowing the Carboniferous strata to extend far up the valley of that river. Here, as at Arisaig, its margin includes fossiliferous slates, among which is a thick bed of iron-ore including fossil shells. With respect to these fossils, I may remark that they are all marine, that they belong to numerous genera and species, and that they are all of distinct species from those of the formations before mentioned, there being a decided break between the fauna of the Upper Silurian and that of the Devonian period, and of course the Carboniferous fauna is still more remote in its characters.

Both at Arisaig and the East River excellent opportunities are afforded for studying the contrast between the Upper Silurian and the Carboniferous. The collector may, in the shales of Arisaig or the slates of the East River Hills, collect a great number of marine species, some of them in a fine state of preservation, others distorted and partly defaced by the partial alteration of the containing rocks. At both places he can observe that the rocks containing these fossils have been tilted up and hardened before the lowest beds of the Carboniferous system were deposited. At both places he can find in these overlying Carboniferous rocks abundance of fossils, also marine, but entirely distinct from those of the older group. He thus finds that, in passing from one of these formations to the other, he has passed from one great period of the earth's history to a subsequent one, in which no trace remained of the animal population of the former. He has entered, in short, on a new stage of the creative work.

Immediately on the east of the East River, the metamorphic band is about fifteen miles in breadth, and includes masses and dikes of syenite and greenstone, and beds of quartzite and slate, the latter of very various colour and texture. Beyond the East River, the metamorphic band again widens; and between the upper part of the Middle River of Pictou and that of the west branch of the St Mary's River (the point to which we have already traced its southern boundary) it forms a broad and irregular tract of metamorphic country. Westward of this tract it becomes narrower, and, after extending between the Stewiacke and Salmon Rivers, sinks beneath the Carboniferous beds, while a group of detached masses of igneous and altered rock,
extending through Mount Thom, imperfectly connects it with the eastern extremity of the Cobequid range of hills. In the hilly country connected with Mount Thom, and in the vicinity of the upper parts of the Salmon, West, and Middle Rivers, considerable breadths of Lower Carboniferous strata have been partially metamorphosed, and invaded by greenstone and other igneous rocks. It is also quite possible that portions of the rocks here cropping out from beneath the Carboniferous may be Devonian. A mass of granite, containing dark gray felspar, abundance of black mica, and very little quartz, occurs on the east side of Mount Thom. This is the only instance, so far as I am aware, of the occurrence of true granite in this group of rocks in this part of Nova Scotia.

The Cobequid Hills, extending nearly in an east and west direction for about ninety miles, in that part of Nova Scotia lying north of the southern arm of the Bay of Fundy, must be referred to the metamorphic group now under consideration. Both their stratified and igneous rocks are similar to those of the parts of this group already described. Fossils are absent or very rare in those parts of them which I have explored, with the exception of Earlton, in the eastern extremity of the range, where there are slates containing fossils similar to those already noticed. I shall make no attempt to describe the numerous and singular varieties of altered and igneous rocks found in the Cobequid range, but shall content myself with a description of its structure in its central portion, which is illustrated by the general section attached to the map.

On the northern side of the hills, near the post road from Truro to Amherst, and also on Wallace River, the lowest rocks of the Carboniferous system, consisting of reddish-brown conglomerates, are seen at the base of the hills. Their dip is to the northward at a high angle. On ascending the hills, masses of red, flesh-coloured, and gray syenite are seen, and rise rapidly to the height of several hundred feet; the northern side of the range being steeper and more lofty than the southern. The syenite of this part of the hills has often been described as a granite; but wherever I have observed it, it is a true syenite, containing reddish or white felspar, black hornblende, and nearly colourless quartz. Some of the red varieties are large grained and very beautiful. The gray varieties are often fine grained, and appear to pass into greenstone.

It is remarkable that the syenite and greenstone of this part of the mountain are traversed by numerous small veins of true granite. Whether these have been produced by segregation, or are parts of a later outburst of granite rock, I cannot determine with certainty, but
think the latter more probable. I am not aware that any masses of true granite occur here. It is, however, quite possible that after or during the cooling of the syenite, veins may have been injected into it from granitic masses below, which have not reached the surface.

Penetrating further into the range, we find thick beds of dioritic rock associated with slate and quartzite, of a great variety of colours and textures. There appear to be also dikes of greenstone at some points, penetrated by a network of syenitic or felspathic veins. The general course of the greenstone dikes coincides with that of the range of hills. Toward the southern side of the hills, gray quartzite, and gray, olive, and black slate prevail, almost to the exclusion of igneous rocks. The strike of these beds is nearly S.W. and N.E., with high dips to the southward. On the south they are bounded and overlaid unconformably by Carboniferous conglomerate and sandstone.

The structure observed in this part of the chain appears to prevail throughout; the syenitic rocks forming a broad band on the northern side, and slate and quartz rock with dikes of igneous rock, probably of later date than those on the north side, occurring on the southern ridges. The only exception to this that I am aware of is at the extreme eastern end, where the igneous rocks are less massive and the syenite disappears.

The Cobequid range presents a succession of finely wooded and usually fertile ridges; and the chain is very continuous, though broken by some narrow transverse ravines. Many of the streams flowing from these hills plunge downward in fine cascades at the junction of the hard rocks with the softer Carboniferous beds. The most remarkable of these waterfalls on the south side is that of the Economy River, on the north side that of the principal branch of Waugh's River.

Passing from the Cobequid Mountains to the Slate hills of the south side of the Bay, in King's County, we find slates not very dissimilar from those of the Cobequids, in the promontory northward of the Gaspereaux River. Here the direction both of the bedding and of the slaty structure is N.E. and S.W.; but the planes of cleavage dip to the S.E., while the bedding, as indicated by lines of different colour, dips to the N.W. These slates, with beds of quartzite and coarse limestone, are continued in the hills of New Canaan, where they contain crinoidal joints, fossil shells, corals, and in some beds of fawn-coloured slate beautiful fan-like expansions of the pretty Dictyonema represented in Fig. 196. Very fine specimens of this fossil were found by the late Dr Webster of Kentville. It was the habitation of thousands of minute polypes, similar apparently to those of the modern Sertularia. The general strike of the rocks in New
NOVA SCOTIA.

Canaan is N.E. and S.W., and they extend from that place westward to the Nicolaux River. Westward of Nicolaux River, as already mentioned in describing the Devonian, the beds of the Upper Silurian, as

Fig. 196.—Dictyonema Websteri.

(a) Portion enlarged.

well as those of the last mentioned formation, are interrupted by great masses of granite, which form the hills along the south side of the Annapolis River, from a place called Paradise to Bridgetown, and with some interruptions nearly as far as the town of Annapolis. This granite is hardly distinguishable in its character from that of the south coast of the province, except that it is perhaps more felspathic, and less largely and perfectly crystalline. Its age, as already stated, must be that of the newer Devonian or older Carboniferous. Near Paradise it is traversed by veins of reddish compact felspar, with crystals of schorl and transparent smoky quartz. The latter mineral is found in very large and beautiful crystals scattered in the surface rubbish, and is collected and sold by the inhabitants.

Westward of Paradise, I have not traced the equivalents of the Upper Silurian; the Devonian beds, as already stated, appearing at Moose and Bear Rivers. At the Joggin near Digby, the slates, probably of this series, are broken up and much altered by masses or dikes of porphyritic rock. At one place here I found the strike of the bedding to be N. 15° E., while that of the slaty structure is N. 45° E. Westward of this place the slates in a highly metamorphic condition continue with general N. E. and S.W. strike to the coast of Clare, where a considerable breadth of country is occupied with olive and gray slates, quartz rock, and occasional dikes of greenstone. At Montengan these beds include veins of iron pyrites, one of them a foot in thickness. I have not been able to observe the junction of the group now under consideration with the metamorphic district of the Atlantic coast; but I think it probable that the limit of the altered Upper Silurian rocks in this direction is near Beaver River.

With respect to the age of these rocks, it is certain that the fossil-
iferous parts are Upper Silurian. Some portions of the altered rocks may, however, be either Devonian or Lower Silurian. The first upheaval and alteration of the beds must have occurred long before the beginning of the Carboniferous period, but igneous action continued, especially in the eastern part of the province, during and perhaps after that period. In their original state these slates and quartz rock, and their iron ore, must have been shales, sandstone, and iron sand, abounding in fossil remains, and with layers of calcareous matter mostly made up of shells and corals. Over large tracts the fossils have been obliterated by metamorphism, and a perfect slaty structure has been induced.

In Cape Breton, rocks similar to those above described constitute the several irregular tracts of metamorphic and igneous country to which the colour of this group has been assigned. Syenite and porphyry are extensively developed in a line extending from St Peter's along the east side of the Bras d'Or, in the country between little Bras d'Or and the East Arm, in the high ridge extending to Cape Dauphin, in the hills near the Bedeque, Middle, and Margarie Rivers, in those near Mabou, and in the irregular tract at the sources of the Inhabitants River, and River Denys. Slates are associated with them in these places, but I am not aware that they contain any fossils.

I am informed by Mr Brown that the elevated region occupying the extreme northern part of Cape Breton, and of which I have seen only the southern borders, consists, at least in the vicinity of the coast, principally of red syenite and mica slate. Its interior is entirely unknown to geologists; but from its appearance as viewed from a distance, I infer that it consists of a number of elevated ridges similar to those of the Cobequid Mountains, and probably attaining an equal elevation. The patches of Lower Carboniferous rocks which appear at intervals along its margin, indicate that, like the Cobequids, it formed a rocky island in the seas of the Carboniferous period.*

We may now return to those portions of the rocks whose distribution has been sketched above, in which fossil remains indicative of their geological age have been found. The most important and instructive of these is Arisaig, in the county of Antigonish, a locality to which the writer first directed the attention of geologists in a paper published in the Journal of the Geological Society in 1848, and more fully in a paper published in the "Canadian Naturalist," vol. v.; and which has subsequently been more minutely described by Dr Honeyman.† For a knowledge of its fossils we are indebted principally to Professor Hall, who described forty new species from this place in con-

* See Appendix.
† Journal of the Geological Society, 1864.
NOVA SCOTIA.

565

The rocks
of the Lower Silurian, having been the
most upper
constituents of the
beds, and also the
most
continuous, have
been
found after
the
brook, and
in
the
sand. After
these
have
been
examined
all the
specimens
in
my
collection,
with
a
considerable
number
of
additional
species
kindly
given
to
me
by
Dr
Honey-
man. Next
to
this
is
the
locality
on
the
east
branch
of
the
East
River,
referred
to
in
the
first
edition
of
this
work,
and
from
which
I
have
lately
obtained
additional
collections
made
by
Mr
D.
Fraser
of
Springhill.

Arisaig.—Near
this
place,
the
northern
limit
of
the
Silurian
system
on
the
eastern
coast
of
Nova
Scotia,
is
one
of
the
most
instructive
sections
of
these
rocks
in
the
province.

At
the
eastern
end
of
the
section,
where
they
are
unconformably
overlaid
by
Lower
Carboniferous
conglomerate
and
interstratified
trap,*
the
Silurian
rocks
consist
of
gray
and
reddish
sandish
shales
and
coarse
limestone
bands
dipping
south
at
an
angle
of
44°.
The
direction
of
the
coast
is
nearly
east
and
west,
and
in
proceeding
to
the
eastward
the
dip
of
the
beds
turns
to
south
30°
west,
dipping
45°,
so
that
the
series,
though
with
some
faults
and
flexures,
is
on
the
whole
descending,
and
exhibits,
in
succession
to
the
rocks
just
mentioned,
gray
and
dark
shales,
and
bands
and
lenticular
patches
of
coarse
limestone,
some
of
which
appear
to
consist
principally
of
brachiopodous
shells
in
situ,
while
others
present
a
confused
mass
of
drifted
fossils.

Below
these
the
beds
become
more
discoloured,
and
in
places
assume
a
slaty
structure,
and
occasionally
a
red
colour.
The
thickness
of
the
whole
series
to
this
point
was
estimated
at
500
feet.
The
dip
then
returns
to
the
south,
and
the
beds
run
nearly
in
the
strike
of
the
shore
for
some
distance,
when
they
become
discoloured
and
ochraceous,
and
then
red
and
hardened;
and
finally,
at
Arisaig
Pier,
are
changed
into
a
coarse
reddish
banded
jasper,
where
they
come
into
contact
with
a
great
dike
of
augitic
trap
of
Carboniferous
date.

Beyond
this
place
they
are
much
disturbed,
and,
so
far
as
I
could
ascertain,
destitute
of
fossils;
but
Dr
Honeyman
has
detected
fossils
in
their
continuation
at
Doctor's
Brook.
The
alteration
of
the
beds
extends
to
a
distance
of
300
yards
from
the
trap,
and
beyond
this
in
some
places
slaty
cleavage
and
reddish
colours
have
been
produced;
the
latter
change
appearing
to
be
connected
with
vertical
fissures
traversing
the
beds.

In
the
lower
or
shaly
portion
of
the
Arisaig
series,
the
characteristic
fossils
are
Graptolithus
not
distinguishable
from
G.
Clintonensis,
Lepto-

* See
my
paper
on
Eastern
Nova
Scotia,
J.
Geol.
Soc.,
1844.
Section
ante.
catia (Atrypa) intermedia (Hall), a new species closely allied to L. hemispherica of the Clinton group of New York, Atrypa emacera, Orthis testudinaria, Strophomena profunda, S. rugosa, Rhynchonella equiradiata, Aviculo emacera, Tentaculites, allied to or identical with T. distans, Helopora allied to H. fragilis. There are also abundant joints and stems of erinoids, and a Palaeaest, the only one as yet found in Nova Scotia, which was presented to me by Dr Honeyman, and has been described by Mr Billings in the "Canadian Naturalist" under the name of P. parvusculus. These and other fossils associated with them, in the opinion of Professor Hall, fix the geological position of these rocks as that of the Clinton group, the Upper Llandover of Murchison, in the central part of the Upper Silurian.

In the upper and more calcareous part of the series, fossils are very abundant, and include species of Calymene, Dalmania, Homalomotus, Orthoceras, Murchisonia, Clidophorus, Tellinonya, and several brachiopods, among which are Discina tenuilamellata, Lingula oblonga, Rhyphonella quadricosta, R. Saffordi (Hall), allied to R. Wilsoni, R. neglecta, Atrypa reticularis, all found in the Upper Silurian elsewhere in America. Most of the other forms are new species descriptions of which have been given in Professor Hall's paper. The general assemblage is on the whole not unlike that of the Clinton, but is of such a character as to warrant the belief that we may have in these beds a series somewhat higher in position, and probably equivalent to the Lower Helderberg, the Ludlow of the English geologists. The new species Chonetes Nova-Scotica is very characteristic of the upper member.

On the whole, we must regard the Arisaig series as representing the middle and upper parts of the Upper Silurian, a position somewhat lower than that assigned to it in the first edition of "Acadian Geology." In explanation of this, I may further state that, in papers published previously to 1855, I had regarded these rocks as Silurian; and that it was only in deference to the opinions of able paleontologists, both in Britain and America, who compared the fossils with those of the Hamilton group, that I abandoned this view, returning to it in 1859, when enabled to do so by Professor Hall's examination of the fossils, the results of which were published in 1860. It is only just to Dr Honeyman to state, that he had independently stated similar conclusions in Nova Scotia in 1859. Unfortunately the Arisaig series stands alone, wedged between Carboniferous and Phallic rocks, so that little opportunity occurs on the coast of verifying the conclusions derived from fossils, by the evidence of stratigraphical connexion with newer or older Silurian deposits, and I have been unable
to devote sufficient time to this object to attempt to trace the beds in their succession or continuation inland.

Dr Honeyman has addressed himself with some success to the work of tracing the relations and continuation of the beds exposed in the Arisaig section, and has published an interesting paper on the subject in the Journal of the Geological Society (1864). In this paper he divides the whole series seen at Arisaig into five sub-sections, noted respectively in ascending order as A, B, B', C, D. He distinguishes the groups A and B from my Lower Arisaig series, which he regards as equivalent to his groups B' and C, while D is the equivalent of my Upper Arisaig series.

Group A, of Dr Honeyman's paper, includes the altered jaspideous shales seen near Arisaig Pier, and the gray argillaceous and arenaceous shales of Doctor's Brook. Dr Honeyman mentions, as occurring in them, species of Orthoceras, Murchisonia, Strophomena, Orthis, Rhynchonella, Calymene, Comurites, Tentaculites, and Petraia (?), and, on the authority of Mr Salter, regards them as equivalents of the English Mayhill sandstone, a member of the Upper Llandovery series. Their thickness is estimated at 200 feet.

Groups B and B' include principally dark and ferruginous shales. One of the most characteristic fossils of which is Graptolitcrus Clintonensis. They contain also Tentaculites, joints of crinoids, Strophomena depressa, and other fossils; and Dr Honeyman has added in his paper two species of Grammysia, G. triangulata, and G. cingulata, and several other fossils not determined as to species. This group is regarded by Dr Honeyman and Mr Salter as equivalent to the Lower Ludlow of England, which is above the horizon of the American Clinton and Niagara.

Group C, which is also characterized by fossils in the main Clinton in character, is regarded by Dr Honeyman and Mr Salter as the equivalent of the subordinate group known in England as the Aymestry limestone. The beds of this group are harder than those of the last and more calcareous; and in addition to the fossils mentioned above as characteristic of the Lower Arisaig series, Dr Honeyman mentions Rhynchonella Saffordi, Spirifer rugacecosta, and some other fossils previously regarded by me as characteristic of the upper series, and which indicate that this group includes the transition from the lower to the upper member.

Group D, of Dr Honeyman's paper, is equivalent to my Upper Arisaig series, and contains a great number of fossils, some of which are of Lower Helderberg or Upper Ludlow types, and so strikingly resemble those figured by Sir R. Murchison in his "Siluria," as char-
acteristic of that group, that the most cursory glance would assure a
gologist of their probable identity. Yet, as observed by Professor
Hall, there is also a mixture of forms looking toward a much lower
part of the Upper Silurian series; and it is worthy of notice that
Hall, comparing the fossils with those of New York, gives to the
upper members of the series a rather lower or older place than that
assigned by Salter in comparison with English fossils, taking as our
standard the equivalency of formations in England and America as
usually recognised. As the species are in great part different from
those of England and America, this slight difference of result may
depend merely on defective data, and may be explained when larger
materials have been collected, and when we shall be in a position to
make allowance for the geographical as well as geological relations of
the formations. On either view the equivalent of the Niagara or
Wenlock series does not appear, and we may suppose it absent, or
that an upward extension of Clinton forms occupies the Niagara period.

Merigomish.—Dr Honeyman has traced the fossiliferous Upper
Silurian along the hilly country crossing the upper waters of the
rivers of Merigomish, connecting the Arisaig rocks with those next
to be noticed on the East River of Pictou. What may be the arrange-
ment of the beds in this thick band of slaty rocks is not certainly
known, but they appear to contain equivalents of the Upper Arisaig
series and also beds with Graptolithus Clintonensis, and others con-
taining nodules charged with Lingula. Below these are beds with
Petraia (?) and Cornulites, which may be equivalents of the lowest
group at Arisaig. On the north, these rocks are overlaid by the
Carboniferous rocks of the coast. On the south, they are continuous,
with a broad belt of metamorphic and igneous rocks, the former of
similar mineral character, extending across the country to the valley
of the St Mary's River. The only locality in which fossils have as
yet been discovered in this broad belt is at Lochaber Lake, where
Dr Honeyman has found some of the Arisaig fossils and also a species
of Zaphrentis, a form which, with some other obscure fossils found at
this place, would seem to indicate the presence of beds possibly newer
than those of Arisaig. The occurrence of these fossils at Lochaber,
as well as the mineral character of the beds, shows that a belt of
country about fifteen miles in breadth is here occupied principally by
Upper Silurian rocks, probably thrown into a series of synclinal and
anticlinal folds, and penetrated by considerable masses and dikes of
Syenitic and Dioritic rock.

East River of Pictou.—We next find the fossiliferous Upper
Silurian rocks on the east branch of the East River of Pictou,
and its vicinity, where these deposits rise from beneath the Lower Carboniferous series, forming the high ground on the eastern side of the river. The beds are here much altered, and penetrated by igneous dikes, and are vertical, or with very high southerly dips and N.E. and S.W. strike. They consist of coarse slates and calcareous bands resembling those of the Upper Arisaig series in mineral character, and holding many of the same species, especially *Chonetes Nova-Scotiae*; but we have here in addition a great bed of fossiliferous peroxide of iron, in some parts forty feet in thickness, and with oolitic structure; but passing into a ferruginous sandstone, and associated with slate and quartz rock. The precise age of these ferruginous rocks relatively to the Arisaig series, it is not easy to determine, but they are evidently Upper Silurian. The stratigraphical evidence, though obscure, would place them in the upper part of the series. The fossils are in a bad state of preservation; but, in so far as they give any information, it coincides with the apparent relation of the beds. Similar ferruginous beds occur in the Clinton series (the Surgent of Rogers) in New York and Canada; and as we have already seen in the Lower Devonian in the western part of Nova Scotia. On the whole, I regard the beds seen at the East River of Pictou, as belonging to the same line of outcrop with the Arisaig series, but as probably containing, in addition to the upper member of that series, beds somewhat higher in position.

I am indebted to Mr D. Fraser of Springville, East River, for a large addition to my collection from this place; by the aid of which I am now enabled to present the following list, which has been kindly revised by Mr Billings. Unfortunately, many of the specimens were in a condition too imperfect to permit of satisfactory specific determination, and Mr Billings, with proper caution, declined to give them specific names for the present, in the hope that better materials might be found. The species common to the East River and Arisaig are indicated by an asterisk.

* Chonetes Nova-Scotiae, Hall, very characteristic of certain hard calcareous bands.
C. tenuistriata, Hall.
Strophomena, flat striated species.
Spirifer, resembling *S. cycloptera*, but with regular ribs.
* Spirifer rugaecosta, Hall.
* Spirifer subsulcata, Hall.
Rhynchonella (?) n. s., like *R. transversa*, Hall. This and another species very abundant in hard impure limestone,
* Atrypa reticularis.
* Crania (?) Acadiensis.

Athyris (Meristella) didyma, a characteristic European Upper Silurian shell.

Lingula.

* Megambonia striata.
* Megambonia (?) n. s.
* Clidophorus (?) n. s.
* P. crinea or Megambonia.
* Orthonata or Nuculites (?) n. s.
* Bucania trilobita, Hall.
* Murchisonia, two species.

* Platyceras.
* Orthoceras punctostriatum, Hall. Some specimens found at East River, with the external markings of this species, are as much as two inches in diameter.

Orthoceras (?) n. s.
* Cyrtoceras (?) n. s.
* Cornulites flexuosa, and probably another species.
* Beyrichia, two or more species.
* Calymene Blumenbachii.
* Serpulites.

* Stenopora allied to S. fibrosa.

Cobequid Mountains.—At the eastern end of this chain, in Earlton and New Annan, though the rocks are generally in a highly metamorphosed condition, fossils are found in a few places; and in so far as I have been able to determine from very small suites of specimens, are those of the Arisaig series. From the apparent continuity of strike along this long salient line of outcrop, it seems probable that these fossils indicate the true age of the greater part of the sedimentary rocks of the Cobequid Hills; a conclusion confirmed by their similarity in mineral character to the altered equivalents of the Arisaig and East River series as seen elsewhere. There are, however, some indications of beds of Devonian age, along the flanks of these hills, especially at their eastern end. The arrangement of the beds and their mineral contents, in the central part of the chain, will be found noticed in my paper of 1849, already referred to. They are not known to contain beds of iron ore; but have enormous vein-like deposits of spathic and specular iron associated with the carbonates of lime and magnesia, and running with the strike of the beds. These will be described in the section relating to useful minerals.
New Canaan.—Between the East River of Pietou and New Canaan, in King's County, 100 miles distant, I know no Silurian beds with fossils south of the Cobequid Hills; and in the central part of the province these rocks disappear under the Carboniferous deposits. In the hills of Horton and New Canaan they reappear, and constitute the northern margin of a broad belt of metamorphic and plutonic country, occupying here nearly the whole breadth of the peninsula. The oldest fossiliferous beds seen are the fine fawn-coloured and gray clay slates of Beech Hill, in which Dr Webster, many years since, found the beautiful Dictyonema, mentioned in a previous page. It is a new species, closely allied to D. retiformis and D. gracilis of Hall, and has received the name of D. Websieri, in honour of its discoverer. It is most readily characterized by the form of the cellules, which are very distinctly marked in the manner of Graptolitus. A portion of a frond is represented in Fig. 196.

The Dictyonema slates of Beech Hill are of great thickness, but have in their upper part some hard and coarse beds. They are succeeded to the south by a great series of dark coloured coarse slates, often micaceous, and in some places constituting a slate conglomerate, containing small fragments of older slates, and occasionally pebbles of a gray vesicular rock, apparently a trachyte. In some parts of this series there are bands of a coarse laminated magnesian and ferruginous limestone, containing fossils which, though much distorted, are in parts still distinguishable. They consist of joints of crinoids, casts of brachiopodous shells, trilobites and corals. Among the latter are two species of Astrocerium, not distinguishable from A. pyriforme and venustum of the Niagara group, and a Heliolites allied to H. elegans, if not a variety of this species. On the evidence of these fossils, and the more obscure remains associated with them, Professor Hall regards these beds as equivalents of the Niagara formation of the New York geologists, the Wenlock of Murchison. Their general strike is N.E. and S.W.; and to the southward, or in the probable direction of the dip, they are succeeded, about six miles from Beech Hill, by granite. They have in general a slaty structure coinciding with the strike but not with the dip of the beds, and this condition is very prevalent throughout this inland metamorphic district, where also the principal mineral veins usually run with the strike. The beds just described run with S.W. strike for a considerable distance, and are succeeded in ascending order by beds holding the fossils of the Upper Arisaig series, which are
either but slightly developed or obscured by imperfect exposures, and on these rest the Lower Devonian slates and iron ore of Nictaux, already described.

Regarding the above as the most typical and most thoroughly explored portions of the Upper Silurian of Nova Scotia, it is important to attain to as correct notions as possible as to their equivalency with the beds of that system elsewhere. In estimating this, we must bear in mind the fact that they belong to the Eastern or Atlantic slope of America, in which the Upper Silurian rocks are not only more altered by heat and chemical agents than in the great central plain west of the Alleghanies, but appear to have differed in the original character of the deposits. These would seem to have been more affected by local differences of deposition, so as to produce great diversities of mineral character within limited distances. They seem also on the whole to have been more argillaceous and less calcareous. These considerations may serve to account for the apparent absence of the great Niagara formation, the equivalent of the English Wenlock, from the Arisaig section, while the Clinton is greatly developed; and the Niagara formation, under a peculiar modification, occurs in considerable thickness at New Canaan and Kentville. Beyond the limits of Nova Scotia, the Upper Silurian of Southern New Brunswick and of the State of Maine presents much resemblance both in its mineral character and fossils to the Arisaig group in Nova Scotia. On the other hand, in Northern New Brunswick and Gaspé, beyond the great Lower Silurian belt of Northern New Brunswick, the Upper Silurian becomes more calcareous, and differs much in its fossils from the Upper Silurian of Nova Scotia. The Island of Anticosti presents another development of the lower part of the Upper Silurian not hitherto recognised in Nova Scotia.

In the presence of so great local diversity, it seems chimerical to compare our Upper Silurian either with the fine and regular series of New York and Upper Canada (Ontario) or with the English series. It must be admitted, however, that, in a general way, the Nova Scotia Upper Silurian presents in its fossils characters in some respects intermediate between the American and European series, and therefore comparable with either or both. As the general result of the facts already stated, in their bearing on these questions, I may state the following conclusions:—(1.) The Upper Arisaig and Nictaux series may be regarded as on the horizon of the Lower Helderberg of New York and the Ludlow of England, though with some older forms among their fossils. (2.) The New Canaan beds are probably

(3.) The Lower Arisaig series represents the Clinton of New York, and the Upper Llandovery series of England, with perhaps a portion of the time elsewhere represented by the Wenlock or Niagara. (4.) It is not improbable that the fossiliferous rocks recognised by Dr Honeyman at Doctor's Brook may represent a somewhat lower member of the Upper Silurian, but still probably not so low as the Medina and Oneida of New York, or the Lower Llandovery of England. I entertain no doubt that farther and more minute investigation will make the details of our Nova Scotian and New Brunswick Upper Silurian more complete. I think, however, that the above general comparison will continue in the main to hold good. In my own limited researches, I have found much difficulty to arise from the want of identity of the fauna with that of typical Silurian localities, from the imperfect preservation and frequent distortion of the fossils, and from the difficulty of tracing the succession of the contorted and faulted beds. These difficulties can only be finally overcome by detailed surveys and extensive collection of specimens. In the meantime, much caution is necessary in writing on the subject.

I have coloured certain limited areas in Southern New Brunswick as Upper Silurian, on evidence which I think indisputable, collected principally by Mr Matthew and Professor Bailey, and detailed in a paper by the former in the Journal of the Geological Society, and in the Report of the latter on the Geology of Southern New Brunswick. From these sources the following statements are taken. These rocks constitute the "Kingston Group" of the last mentioned Report, from which I quote the following description:

"The peninsula of Kingston, constituting the neck of land lying between the Long Reach and the Kennebeckasis in the county of King's, has heretofore been described as a region composed solely of eruptive rocks, such as trap, syenite, and greenstone, and in previous geological maps has been undistinguished from the widely different volcanic beds which occur in other portions of the province. In reality this group of rocks is quite distinct, and is of very uniform as well as remarkable characters.

"To describe the district as wholly a volcanic one is essentially erroneous. Although beds of such an origin are abundant, and taken collectively occupy much space, they are seldom purely eruptive, being invariably associated with aqueous deposits, and being themselves for
The most part of a stratified metamorphic character. The whole peninsula is of sedimentary origin, and in some portions, aqueous deposits have alone been concerned in its formation. Although occupying an extensive area, little variety is apparent, the group consisting principally of compact felspathic rocks, with some chloritic slates and numerous beds of interstratified greenstone or diorite.

"Three parallel bands, differing slightly in character, and running the entire length of the peninsula, may be distinguished.

"The first, forming the southern side of the peninsula, and skirting the north shore of the Kennebecasis in a series of very bold and remarkably picturesque cliffs, is largely schistose, and extends with an almost unbroken front from the Milkish to Hampton Ferry. Near the latter place and opposite Darling's Island, the group is represented by the following rocks:—

"Gray gneiss (?) or altered micaeous sandstone, with small crystals of red felspar.—Str. N. 60° E.

"Greenstone or diorite.

"Porphyritic felspathic schist of a pink colour, weathering white.

"Gray felspathic quartzite, injected with quartz veins.

"Grayish white altered slate.

"The whole series is nearly vertical, and no satisfactory dip could be ascertained. My impression is that the tendency is to the north.

"In the neighbourhood of Clifton, rocks of the same band contain large masses of chlorite and epidote, with veins of specular iron.

"The second band of rocks alluded to, although passing insensibly into the last, differs from it chiefly in the much greater abundance of altered sandstones and bedded greenstones, with a comparative infrequency of slaty beds. The greenstones or diorites are interstratified with compact felspathic rocks, varying from white to pale pink, the latter at times associated with and passing into fine-grained syenite and syenitic gneiss. Slates are comparatively rare, and when occurring, are sometimes chloritic and sometimes micaeous, being also, as a rule, much twisted. Like the members of the first division, these rocks also contain chlorite and epidote. The group may be readily seen in the village of Kingston, or along the Land's End at the southwest extremity of the peninsula.

"The third band, into which the last insensibly passes by the absence of its bedded diorites, occupies principally the northern side of the peninsula, where it is represented by a comparatively uniform series of clay and chloritic slates. Though not so numerous as in the centre and south of the district, trap beds are present, and at times
These resemble some altered aspect of series extending glomerates.

The rocks of the Kingston group, besides occupying the peninsula which properly bears that name, extend to the eastward within the limits represented on the map. Like most of the older formations in this part of the province, they are progressively covered to the eastward by Carboniferous rocks. They extend, however, on the south as far as Dickie Mountain, near Norton Station, and upon the north within a few miles of Belleisle Point, forming two bands, separated by a valley now occupied by Carboniferous sandstones and limestones.

On the northern shore of the Long Reach, lying between the main river and the granites of the Nerepis, is a band of rocks which I have, with some doubt, referred to the group now under consideration. I have not been able to examine this district in sufficient detail to fully establish its relative age, but have connected it with the Kingston rocks, for the following reasons:—

1st. At the extremity of Oak Point, towards the head of the Reach, and in the rocky islands occurring in this neighbourhood, the beds are undoubtedly connected with those of Kingston. At Oak Point two varieties occur, interstratified with each other.

(a.) Very hard, black and green bedded diorite, with calc spar, chlorite, and epidote.

(b.) Light-coloured fine-grained felspathic rocks, graduating into coarser beds of syenite and syenitic gneiss. (General strike, N. 50° E, Dip N°?) These latter are undoubtedly altered sandstones and conglomerates.

2nd. Rocks similar to the above seem to form a well defined band extending westward as far as the Nerepis. At Jones' Creek they are well exposed in thick beds, and apparently rest on a still thicker series of blue and gray altered slates. These latter are little disturbed, having a strike about east and west, and a southerly dip of 62°.

Along the line of the Nerepis, and in the neighbourhood of the Douglas Arms, altered rocks similar to the above in their granitoid aspect occur, and are probably a continuation of the same series.

Between these and the great granite range of the Nerepis valley, altered sandstones and slates, diorite, felsite, and cherty quartzite, occur.

It will thus be seen that the band of rocks now under consideration resembles those of Kingston, in the presence of felspathic and greenstone beds, while it differs principally in the abundance of coarse
The rocks of Oak Point seem to be a connecting link between the two.

"To the southwestward of the series last described, and directly opposite the termination of the Kingston peninsula, the nature and relations of the rocks are no longer doubtful. The abundance of pale pink felsites and felspathic quartzites, with beds of interstratified greenstone, at once recalls the rocks of Kingston, and indicates an extension of this series to the westward. Except along the line of the main river, however, their development in this direction is little known, the district being as yet wholly unsettled. Rocks probably forming a part of the same series appear far to the south-west, along the New River, in the County of Charlotte. (See the Geological Map.)

"While the rocks of Kingston have thus been shown to occupy an extensive district, west and north of the St. John River, along both shores of the Reach, observations in other localities would seem to indicate a corresponding easterly extension.

"It has already been stated that, while occupying the entire peninsula from which their name has been derived, these rocks may be traced to the eastward in two diverging ridges, the one terminating at Dickie Mountain, near Norton Station, the other at a short distance below the head of Belleisle Bay. Stretching along the northern side of the latter, and forming the watershed between the tributaries of the Belleisle and Washademoak Rivers, is a ridge of rocks, somewhat variable in composition and of moderate elevation, which, though exhibiting some peculiarities, can with difficulty be distinguished from the deposits of Kingston and the Reach."

In Professor Bailey's Report these rocks are described in detail, as they occur at Bull Moose Hill, Belleisle Corner, and Kars. The following remarks may be made with reference to their age and stratigraphical relations:

(1.) A series of specimens were submitted by Professor Bailey to the author and Dr. Hunt, with the results stated in the following words:

"In regard to the probable age of these rocks, Dr. Hunt does not regard them as very like anything he knows in Canada. They are not like the Quebec group or the Laurentian, our two principal series of metamorphic rocks in Lower Canada.

"In comparing them with Nova Scotia, I have no hesitation in saying that they are unlike our Atlantic coast series, which I believe to be Lower Silurian, but that they are very like the rocks of the Cobequid Mountains and of the inland hills of Eastern Nova Scotia, which I believe to be Middle and Upper Silurian. This is the age to
which I would therefore be inclined to refer your rocks, though I
would not affirm that they may not include Lower Devonian, which
in Nova Scotia are altered with the Upper Silurian.

"I regard your specimens as altered sediments, though some of the
felspathic and hornblende ones may be true Plutonic rocks."

(2.) Mr Matthew has found, in loose fragments, near St John, prob-
ably derived from these rocks, the following fossils:—*Chonetes,*
Pteiricea or *Avicula,* *Clidophorus,* *Orthis,* *Rhyncho-
mon* (?), *Leptodoma* (?), etc.; and still more recently specimens have been obtained
from undoubted members of the Kingston group, in which the follow-
ing characteristic Upper Silurian assemblage of genera occurs, though
in a state too imperfect for specific determination.

The genera are *Dalmania, Phacops, Orthoceras* (2 species), *Murchi-
sonia* (2 species), *Laxoneria, Holopea* (?), *Lucina* (?) or *Anatina* (?),
Avicula (?), *Leptodoma* (?), *Spirifer,* *Chonetes* (?), *Atrypa,* *Rhy-
chonella* (?), *Retzia* (?), *Strophomena,* *Orthis,* *Dizina,* *Favosites,
Zaphrenitis* (2 species), *Syringopora* (?), and other corals. From
Frye's Island also, in the south-western extension of these rocks,
Upper Silurian fossils have been obtained.

(3.) A comparison of these rocks with those in Maine, in their line
of strike, and ascertained by Hitchcock to be Upper Silurian, confirms
the above evidence from mineral character and fossils.

One source of perplexity in the determination of these rocks arises
from the fact that, in the vicinity of St John, the Devonian rests on
the Lower Silurian without the intervention of Upper Silurian beds.
This, as Mr Matthew suggests, may be accounted for by denudation,
or by the elevation of the Lower series before the deposition of the
Upper. In Maine, however, it would seem that these rocks appear in
their regular sequence below the Devonian.

It will be observed that, as in Nova Scotia, the Upper Silurian
sediments are more argillaceous and less calcareous than the beds of
this age in the more inland parts of the continent, and that they are
also much more metamorphosed. In both of these particulars we shall
find a decided difference in the Upper Silurian of Northern New
Brunswick, next to be noticed.

A glance at the map will enable the reader to perceive, extending
south-west from Bathurst, in the Bay de Chaleur, that broad and
ragged belt of altered Lower Silurian and Plutonic rocks, the terror
of railway engineers, which forms the natural limit of Acadia on the
north-west, and separates the Coal-field of New Brunswick from the
Upper Silurian valley of the Restigouche and Upper St John, the debatable
land, in point of physical geography, between the high lands of

NEW BRUNSWICK. 577
the Nepisiquit which belong to New Brunswick, and the high lands of Rimouski and Gaspé which belong to the Province of Quebec.

This belt of very ancient rocks was probably a physical barrier even as early as the Upper Silurian period; for on passing it we find in the valleys of the Restigouche and the neighbouring streams beds of highly calcareous and fossiliferous Upper Silurian rock identical in character with those of Gaspé, and differing both in mineral character and the assemblage of fossils from those which we have just been studying. The southern limit of this Upper Silurian area, in so far as it is known, may be seen on the map; and its structure may be learned from the following description by Professor Hind of the section at Cape Bon Ami, near Dalhousie. The section is in ascending order, and the dips are to the northward at an angle of 45°.

1. Trap.
2. Calcareous shales.
3. Trap or trappean ash, more or less stratified, and with veins of carbonate of lime and quartz.
4. Calcareous shales and honestones, weathering buff or pale yellow.
5. Trap, vesicular, hard and black, weathering red.
6. Calcareous shale and limestone, with honestone. Many layers are fissile and shaly, weathering buff, others are hard and silicious. The limestones contain Favosites Gothlandica, Strophomena rhomboidalis, etc. In the upper part of this series there appears to be a conglomerate 14 feet thick, capped by honestone 36 feet thick.
7. Massive trap.
8. Limestone highly fossiliferous. Among its fossils are Favosites Gothlandica, F. polymorpha, F. basaltica, Strophomena rhomboidalis, S. punctulifera, Calymene Blumenbachii, Atrypa reticularis.
9. Trap, highly ferruginous.*

It is instructive to observe the large amount of bedded trap or volcanic ash in the above section. This accords with the presence of large quantities of apparently interstratified igneous rock in the Kingston group and in the Cobequid Mountains, as already noticed. Such interstratified volcanic matters are abundant in some parts of the Silurian of Great Britain. They are comparatively rare in other parts of Nova Scotia, though beds of this kind occur in New Canaan. Similar traps occur in Gaspé, but they are absent from the typical Upper Silurian of New York and Western Canada. Their presence indicates the recurrence of volcanic eruptions at frequent intervals during the Upper Silurian period.

A collection of fossils from the beds at Dalhousie and its vicinity

* The total thickness of the above series is not stated by Professor Hind.
has been kindly communicated to me by Professor Bailey, and has
been submitted to Mr Billings, who regards the species as equivalent
to those of the Port Daniel limestones of the northern side of the Bay
de Chaleur, which may be regarded as intermediate in age between
the Niagara and Lower Helderberg groups, and therefore probably
not far from the horizon of the Upper Arisaig series, or perhaps
between this and the Lower Arisaig group.

The following fossils from Dalhousie and Restigouche, now in the
Museum of the University of New Brunswick, have been determined
by Mr Billings. The assemblage is in the main that of the Lower
Helderberg.

- Favosites basaltica.
- Favosites Gothlandica.
- Zaphrentis, n. s., same as one in the Gaspé limestone.
- Stenopora.
- Halysites catenulatus.
- Syringopora.
- Diphphyllum.
- Orthis tubulistrata, Hall, or allied.
- Orthis oblata, Hall.
- Strophomena rhomboidalis.
- Strophomena punctifera, Conrad.
- Strophomena variastriata.
- Spirifer cycloptera.
- Atrypa reticularis.
- Cyrtila Dalmani.
- Rhynchonella vellicata, Hall.
- Athyris princeps, or allied.
- Leptocella, allied to L. hemispherica.
- Fenestella.
- Megambonia, allied to M. ovoides, Hall.
- Conocardium.
- Pleurotomara, allied to P. labroasa, Hall.
- Fiuomphalus sinuatus (?)
- Dalmanites.

General Remarks.

The group of partially metamorphic Upper Silurian rocks above de-
scribed includes the most elevated land of Nova Scotia and Southern
New Brunswick. The Cobequid range, attaining at several points a
height of 1200 feet, is the highest chain of hills in Nova Scotia; and
forms, in its whole length, the watershed dividing the streams flowing
into Northumberland Strait and Chiegnecto Bay from those flowing into Cobequid Bay and Mines Basin and Channel. In like manner, the complicated group of hills extending westward from Cape Porcupine and Cape St George, though less elevated than the Cobequid hills, contains the sources of all the principal rivers of the counties through which it extends. The largest of these is the St Mary's river. Its western branch, originating in the same elevated ground that gives rise to the Musquodoboit, the Stewiacke, and the Middle River of Pictou, flows for about thirty miles nearly due east along the valley which here separates the Lower and Upper Silurian districts. Its east branch flowing from the hills in the rear of Merigomish, and passing near the lakes from which the principal branch of the East River of Pictou flows, receives tributary streams from the metamorphic promontory stretching towards Cape Porcupine, and unites with the west branch at the northern margin of the Lower Silurian metamorphic band. The united stream then flows through a narrow valley, cutting the Lower Silurian belt transversely, to the Atlantic.

Judging from the direction of the principal streams, as for instance the Liverpool River, it would appear that in the western counties, as well as in the eastern, this group of metamorphic rocks, with its associated igneous masses, forms the most elevated ridges. In the southern part of New Brunswick also, and in Cape Breton, we everywhere find these rocks forming rocky ridges separating the river valleys.

The character of the surface over these rocks is very similar to that which prevails in those parts of Lower Canada (Quebec) and New England, in which similarly altered Upper Silurian rocks occur. The soil, where not too rocky for cultivation, is fertile; and in their natural state the hills are clothed with a rich growth of hard-wood trees.

M. Jules Marcou, in the summary of American geology which accompanies his geological map, endeavours to apply to these elevations De Beaumont's theory of the parallelism of mountain ranges of like age. According to this view, the Cobequid Mountains, and the hills on the east side of the Bras d'Or Lake, belong to a system of elevations older than the Lower Silurian rocks; and the Merigomish and Antigonish Mountains, with the hills of Western Cape Breton, to a later dislocation, dating at the close of the Silurian period. It appears to me that both these dates are by much too ancient. I have already stated that the rocks of the Cobequid Mountains have been altered and elevated before the Carboniferous period; but, on the other hand, these altered rocks themselves are in
part Devonian, and there is no reason to believe any of them to be older than Upper Silurian. I would therefore refer the great line of dislocation of the Cobequids, which runs nearly W. 10° S., as well as the nearly parallel lines of the south mountains of King's County, the range ending in Cape Porcupine, and most of the hills of Cape Breton, to the close of the Devonian period. These ranges have, however, been broken and deranged in places, as at the eastern end of the Cobequids, the Antigonish Mountains, the hills near Guysboro', and in the south-west of Cape Breton, by disturbances probably coeval with the great Alleghany range, that is, at or toward the end of the Carboniferous system, and there is evidence that between this time and the end of the Devonian period, igneous action was constantly more or less felt, and was also accompanied by elevatory movements. Hence these later movements in part, as along the Cobequid range, have conformed to the course of the older movement, and in part have broken out into irregular projecting ridges, having a tendency to a north-east and south-west direction. In short, the study of these elevations in Nova Scotia tends to show, that though there may be a certain parallelism between elevatory movements of the same period, when they take place in districts previously undisturbed, yet that in regions broken up by previous dislocations, they may either conform in direction to these, or break forth irregularly from them along lines of least resistance produced by previous transverse fractures. It is to be observed, however, that those very marked and important physical changes which closed the Devonian period were precluded by volcanic outbursts extending through the Upper Silurian and Devonian eras.

In New Brunswick, the area occupied by the Kingston group is broken and elevated, and separates what may be termed the southern bay of the Carboniferous area from the remainder. As an ancient geographical feature, it is also connected with the large development of Lower Carboniferous rocks in this bay or arm. Still, it is not sufficiently extensive or continuous to give it any great importance in the present drainage of the country. The great Upper Silurian area in Northern New Brunswick is of much more importance in this respect, and contains the principal sources of the St John and the Restigouche; the former of which, the largest river of Acadia, gathering the waters of many tributaries from a great area chiefly of Upper Silurian rocks, finds a devious path through transverse valleys of the great Lower Silurian belt, crosses the south-west angle of the Carboniferous area, and entering the Silurian band of the coast, follows its strike for some distance in the "Long Reach" before it finds its way to the sea.
Before leaving these rocks, I must state that their boundaries, as marked on the map, are often very rude approximations to the truth. It is impossible in the present state of our knowledge to distinguish accurately between these older rocks and the Carboniferous beds which have in many parts of their borders been metamorphosed with them, or to indicate accurately the position and limits of the irregular masses and dikes of igneous rocks. An immense amount of labour will be required before these disturbed and altered rocks can be accurately mapped, or their intricacies fully unravelled.

Useful Minerals of the Upper Silurian in Nova Scotia.

Iron, in veins traversing the altered rocks, abounds in this district; and it also occurs in thick beds coeval with the neighbouring slates, and filled, like them, with fossil-shells. I shall first notice those deposits which are veins properly so called. These, though occurring in many places, have been worked only along the southern slope of the Cobequid Hills in Londonderry, in the vicinity of the Great Village and Folly Rivers. This deposit appears to have been noticed as early as the time when the land on which it occurred was granted by the Crown; and it received some attention from Mr. Duncan and other gentlemen in Truro nearly twenty years ago. No steps were, however, taken toward its scientific exploration until 1845. In the summer of that year I received a specimen of the ore for examination, and in October of the same year I visited and reported on the deposit. In the same autumn it was examined by Dr. Gesner. In 1846 I again visited it, and reported on it to C. D. Archibald, Esq., of London, and other gentlemen associated with him; and in the summer of 1849 I had the pleasure of again going over the ground and examining the vein at some new points, in company with J. L. Hayes, Esq., of Portsmouth, U. S. Since 1849 the extent and economical capabilities of the deposit have been discussed by several writers, both in this province and in Great Britain; and it has been opened, and smelting furnaces erected by an association of capitalists.

I shall begin by describing the vein as it occurs on the west branch of the Great Village River, at the site chosen by C. D. Archibald, Esq., for the furnace and buildings of the "Acadia Mine," and as seen in 1849. In the western bank of this stream, at the junction of the Carboniferous and Metamorphic series, a thick series of gray and brown sandstones and shales of the former system, dipping to the south at angles of 65° and 70°, meet black and olive slates, having a nearly vertical position, and with a strike N. 55° E. The dip of these slates, where apparent, is to the southward, and the strike of the slaty
cleavage and of the bedding appears to coincide. Near the falls of the river, a short distance northward of the junction just noticed, the slates give place to gray quartzite, which, with some beds of olive slate, occupies the river-section to, and for some distance beyond, the iron vein.

The vein is well seen in the bed of the stream, and also in excavations in the western bank, which rises abruptly to the height of 327 feet above the river-bed. In the bottom of the stream it presents the appearance of a complicated network of fissures, penetrating the quartzite and slate, and filled with a crystalline compound of the carbonates of lime, iron, and magnesia, which, from its composition and external characters, I refer to the species *Ankerite*. With this mineral there is a smaller quantity of red ochrey iron ore, and of micaceous specular iron ore.

In ascending the western bank of the stream, the vein appears to increase in width and in the quantity of the ores of iron. In one place, where a trench was cut across it, its breadth was 120 feet. Though its walls are very irregular, it has a distinct underlie to the south, apparently coinciding with the dip of the containing rocks. As might have been anticipated from its appearance in the river-bed, it presents the aspect of a wide and very irregular vein, including large angular fragments of quartzite, and of an olivaceous slate with glistening surfaces. These fragments are especially large and abundant in the central part of the vein, where they form a large irregular and interrupted rocky partition.

That the reader may be enabled to understand the description of this singular deposit, I give the composition of the various substances contained in it, as ascertained by my own analyses and examinations.

1. *Specular Iron Ore*, or nearly pure peroxide of iron, in black crystalline scales and masses.

2. *Magnetic Iron Ore*, a compound of the peroxide and protoxide of iron. This and the first-mentioned ore, as they occur intermixed in this vein, are capable of affording from 60 to 70 per cent. of pure iron. Both of these ores have been introduced into the vein by igneous fusion or sublimation.

3. *Ochrey Red Iron Ore*. This is the most abundant ore in the vein, and is of great value on account of its richness and easy fusibility. It is also the material of which the mineral-paint produced by this region is manufactured. It varies somewhat in quality, but the purest specimens are peroxide of iron, with scarcely any foreign matter.

4. *Ankerite*, or carbonate of iron, lime and magnesia. This is the most abundant material in the vein, and is usually of a grayish-white colour, though sometimes tinged red by the peroxido of iron. A
specimen of the reddish variety, containing small scattered crystals of specular iron, gave on analysis—

<table>
<thead>
<tr>
<th>Commodity</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peroxide of iron</td>
<td>33·0</td>
</tr>
<tr>
<td>Carbonate of lime</td>
<td>46·0</td>
</tr>
<tr>
<td>Carbonate of iron</td>
<td>19·5</td>
</tr>
<tr>
<td>Carbonate of magnesia</td>
<td>8·8</td>
</tr>
<tr>
<td>Silicious sand</td>
<td>4·0</td>
</tr>
</tbody>
</table>

99·7

The white variety consists of—

<table>
<thead>
<tr>
<th>Commodity</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbonate of lime</td>
<td>54·1</td>
</tr>
<tr>
<td>Carbonate of iron</td>
<td>23·2</td>
</tr>
<tr>
<td>Carbonate of magnesia</td>
<td>22·2</td>
</tr>
<tr>
<td>Silicious sand</td>
<td>5·3</td>
</tr>
</tbody>
</table>

99·7

With this mineral is found a variety of Spathose Iron, or sparry carbonate of iron, containing about 20 per cent. of carbonate of magnesia. It is of a light yellow colour, and runs in little veins through the Ankerite. I have no doubt that all these substances have been molten by heat, and injected from beneath into the irregular fissure in which they are now found. The ochrey red ore, previously mentioned, appears to be a result of the subsequent action of heat on the spathose iron. The ankerite and spathose iron may become valuable for mixing with the other ores, affording lime for a flux and much iron.

5. Yellow Ochrey Iron Ore. This is found in great quantity on the surface of the vein, and has resulted from the rusting of the ankerite, which soon becomes covered with a yellow rusty coat when exposed. The yellow ochre is a peroxide of iron combined with water, and when calcined it affords a good red pigment. On analysis, it gave—

<table>
<thead>
<tr>
<th>Commodity</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peroxide of iron</td>
<td>74·52</td>
</tr>
<tr>
<td>Alumina</td>
<td>4·48</td>
</tr>
<tr>
<td>Carbonate of lime and magnesia</td>
<td>40</td>
</tr>
<tr>
<td>Silica and silicates</td>
<td>6·20</td>
</tr>
<tr>
<td>Water, mostly combined</td>
<td>14·40</td>
</tr>
</tbody>
</table>

100·00

6. Brown Hematite occurs in large balls along the outcrop of the vein. It has been produced by the solvent action of acid water on the carbonate of iron, and the subsequent precipitation of iron from these solutions. It is a valuable ore, but is probably most abundant near the surface of the vein.
7. **Sulphate of Barytes** occurs in small crystals lining fissures, and in compact veins in the ankerite. Though quite insoluble, this substance can be decomposed by heated solutions of alkaline carbonates; and when these are cooled it is re-formed and deposited.* It has probably been introduced in this way into this vein.

I shall endeavour in the following remarks to state the manner in which these minerals occur in the complicated mixture which fills this vein, and their probable origin. Let the reader then imagine that he is standing on the side of the deep ravine of the Great Village River, looking into a rocky excavation in which the minerals above mentioned appear to be mixed together in the most inextricable confusion, in great irregular cracks of the slaty rocks, and he will be able, perhaps, to wade through the following description.

The ankerite should evidently be considered the veinstone, as it surrounds and includes all the other contents of the vein, and greatly exceeds them in quantity. Where not exposed, it is white and coarsely crystalline. On exposure it becomes yellowish; and near the surface, as well as on the sides of fissures, it is decomposed, leaving a residue of yellow ochrey hydrous peroxid. of iron. In some parts of the vein, the ankerite is intimately mixed with crystals and veinlets of yellowish spathose iron. The red ochrey iron ore occurs in minor veins and irregular masses dispersed in the ankerite. Some of these veins are two yards in thickness; and the shapeless masses are often of much larger dimensions. Specular iron ore also occurs in small irregular veins, and in disseminated crystals and nests. At one part of the bank there appears to be a considerable mass of magnetic iron ore, mixed with specular ore; this mass was not, however, uncovered till after I had left the ground.

The whole aspect of the vein, as it appears in the excavations in the river-bank, is extremely irregular and complicated. This arises not only from the broken character of the walls, the included rocky fragments, and the confused intermixture of the materials of the vein; but also from the occurrence of numerous transverse fissures, which appear to have slightly shifted the vein, and whose surfaces usually display the appearance named "slickenside," and are often coated with comminuted slate or iron ore. In some places these are so numerous as to give an appearance of transverse stratification. One of them was observed to be filled with flesh-coloured sulphate of barytes, forming a little subordinate vein about an inch in thickness.

The general course of the vein, deduced from observations made by Mr Hayes and myself at the Acadia Mine and further to the eastward,

* Bischoff, quoted by De la Beche. Geol. Obs. p. 669.
is S. 98° W. magnetic, the variation being 21° west. At the Acadia Mine this course deviates about 33° from that of the containing rocks. In other localities, however, the deviation is much smaller; and in general there is an approach to parallelism between the course of the vein and that of the rock formation of the hills, as well as that of the junction of the Carboniferous and Metamorphic systems. The vein, for a space of seven miles along the hills, is always found at distances of from 300 yards to one-third of a mile northward of the last Carboniferous beds, and always in the same band of slate and quartzite.

Westward of the Acadia Mine the course of the vein over the high ground is marked by the colour of the soil, as far as Cook's Brook, about a mile distant. The outcrop of the ore was not exposed in this brook, but large fragments of specular ore have been found in its bed, and a shaft, sunk on the course of the vein, has penetrated more than forty feet through yellow ochre containing a few rounded masses and irregular layers of ankerite. At this point the decomposition of the ankerite and spathic iron has extended to a much greater depth than usual, and is so perfect that a specimen of the yellow ochre was found to contain only 4 per cent. of the carbonates of lime and magnesia; the remainder being hydrous peroxide of iron, alumina, and silicious matter.

Still further west, in Martin Brook, I observed indications of the continuation of the vein. Beyond this place I have not traced it; but I have received specimens of specular iron ore and ankerite from the continuation of the same metamorphic district, as far west as the Five Islands, twenty miles distant from Acadia Mine.

On the east side of the west branch of the Great Village River, the ground does not rise so rapidly as on the western bank, and the vein is not so well exposed. On this side, however, a small quantity of copper pyrites has been found in or near the vein, but it does not seem to be of any importance. Indications of the vein can be seen on the surface as far as the east branch of the river. In the east branch, red and gray conglomerates, dipping to the south, and forming the base of the Carboniferous system, are seen to rest unconformably on olive, black, and brown slates, whose strike is S. 75° W. The continuation of the iron vein was not observed in the bed of this stream.

Further eastward, on the high ground between the Great Village and Folly Rivers, indications of the ores of iron have been observed; especially near the latter river, where in two places small excavations have exposed specular and red ores, and where numerous fragments of brown hematite are found scattered on the surface.

The ravine of the Folly River affords a good natural section of the
USeFUL MINERALS.

587

quartzite and slate of the hills, as well as of the Carboniferous beds of the lower ground. This section, as far as the base of the hills, is described in Chapter XV. The lowest Carboniferous bed is a thick, coarse, gray and brownish conglomerate, dipping S. 20° W. It rests unconformably on a bed of slate very similar to that seen in a like position at the Great Village River, and which differs considerably in appearance from most of the slates of these hills. The strike of the slate is S. 70° W.; and that of the bedding and slaty structure appear to correspond. In a layer of graywacke included in this slate I observed small and well-rounded pebbles of light-coloured quartz. This slate is succeeded by thick beds of gray quartzite and hard olivaceous slates. These occupy the river section for about 700 yards, or as far as the "Falls," where the river is thrown over a ridge of quartzite fifty-five feet in height; a small rill pouring in on the eastern side from a much greater elevation. Between the conglomerate and the waterfall the quartzite contains a few narrow strings of ankerite, and at the fall there is a group of reticulating veins, some of them six inches in thickness. They contain a little iron pyrites. These are the only indications of the iron vein observed in this section; and as the group of beds in which it should occur is well exposed, it is probable that it is represented here only by these small veinlets distributed over a great breadth of rock. Above the fall the quartzite and slate continue to alternate for a considerable distance, the dip being generally to the southward, in one place at about an angle of 55°. About a quarter of a mile above the fall they are traversed by a dike or mass of fine-grained hornblende igneous rock.

On the elevated ground east of the Folly River the vein is again largely developed, and two excavations exposed a part of its thickness on the property of the Londonderry Mining Company. The excavation nearest to the river showed a thickness of 190 feet of rock on the south side of the vein. This consists of gray quartzite, olive slate, and about three feet of black slate. These beds are traversed by a few small strings of ankerite, which increase in dimensions on approaching the broken and irregular wall of the vein. About seventeen feet of the south side of the vein consist principally of ankerite. Adjoining this on the north is red iron ore, with nests of specular ore, veins and blocks of ankerite decomposed in part to yellow ochre, and fragments of rock. Ten feet in thickness of this red ore were seen without exposing the north wall of the vein.

On the surface in this vicinity are large fragments of brown hematite, which mark the course of the vein. In the eastern excavation, this mineral was seen in place near the surface and occupying fissures...
in a fragment of quartzite. In this second excavation the red ore was more largely mixed with the micaceous specular variety, and also included large rounded blocks of ankerite and angular fragments of rock. The width exposed here was thirteen feet, and neither wall was seen. The ankerite is decomposed to the depth of eight feet. The same appearance of transverse vertical layers seen at the Acadia Mine is observed here, and is probably due to the same cause.

Still further east, on the property of C. D. Archibald, Esq., and on ground equally elevated, three excavations have shown a still greater development of the vein. A trench fifty-three feet in length, and nearly at right angles to the course of the vein, showed in its whole length a mixture of red and specular ores with ankerite. Another excavation, ninety-five feet to the northward of the first, exhibited ankerite tinged of a deep red colour by peroxide of iron, and traversed by reticulating veins of red iron ore. A third opening, 365 feet south-eastward of the first, showed white and gray ankerite, having some of its fissures coated with tabular crystals of white sulphate of barytes. The walls of the vein were not seen at this place; but 150 paces south of the first trench a thick dike of greenish igneous rock, apparently a very fine-grained greenstone, appears, with a course of S. 102° W. This dike was not seen westward of this place, but it can be traced for a considerable distance to the eastward. In the Mill Brook, two miles east of Folly River, it appears in connexion with a bed of black slate near the margin of the metamorphic system, and probably a continuation of that seen in a similar position in the Folly and Great Village Rivers. At the Mill Brook the dike is about 100 feet in thickness.

In the bed of the Mill Brook, the vein is seen in the form of a network of fissures chiefly filled with ankerite; and in its eastern bank it attains a great thickness. In the bank of another brook still further to the eastward, and in the same line of bearing, it appears to be of large dimensions, and contains abundance of red iron ore and red ankerite. I have not traced it further to the east, but I have no doubt of its continuance to a great distance in that direction.

The geological history of this deposit embraces the following occurrences:—1st, The formation of a wide irregular fissure, along a great part of the length of the Cobequid Mountains. 2dly, The filling of this fissure with a molten or softened, and partially even sublimed, mass of ferruginous and calcareous matter, presenting, as I think, an evident illustration of the igneous formation of a vein of calcareous, magnesian, and ferruginous carbonates. 3dly, The breaking up of the vein thus formed by cross-fractures and faults. 4thly, The partial roasting of its contents by heat, so as to produce the red ores, which
are obviously the result of the heating and oxidation of a part of the carbonate of iron, and this process may be seen, on minutely examining the vein, to have extended itself from the walls of the smallest fissures. 5thly, The action of heated waters passing through its crevices, and depositing sulphate of barytes and brown hematite. 6thly, The influence of the air and surface waters in changing large portions of the superficial contents of the vein into ochre hydrous peroxide of iron.

It is, however, to be observed that this deposit might be accounted for on the supposition that a bed of iron ore and carbonate of lime and magnesia, similar to those occurring elsewhere in the Upper Silurian, had been so softened and altered by heat as to penetrate in vein-like forms the surrounding rocks. Sir W. E. Logan has shown that phenomena of this kind occur in the Laurentian regions of Canada.

This deposit is evidently wedge-shaped, being largest and richest on the surface of the highest ridges. It contains, however, an immense quantity of valuable ores of iron, though its irregular character opposes many difficulties to the miner. Difficulties have also been found in smelting the ore to advantage; but these are often incident to the first trials of new deposits, to which the methods applicable to others, of which the workmen have had previous experience, do not apply. It is believed, however, that these preliminary hindrances have been overcome, and that the mine has now become highly profitable to its proprietors. I quote the following estimate of the value of the deposit from the elaborate Report of J. L. Hayes in 1849. It has been fully confirmed by experience:

"From the descriptions which I have above given, it is evident, that although the unlimited extent of the ore at any particular point can only be determined by working the deposits, yet an immense field is open for explorations and working.

"Although it is quite probable that an abundant supply of ore will be found upon the west bank of the river, at a price which will not exceed two dollars to the ton of iron; if this should not be the case, an ample supply can be furnished from the other localities at an expense which, including raising and hauling, could not exceed four dollars to the ton of iron. I would advise the opening of the veins at different points upon the line, to determine the cheapest point for mining, and the ores which can be used most advantageously. If this is done, the price of the ore cannot be fairly set down at the sum for which it can be obtained from the nearest locality, but at an average of the prices of the ores from different localities, delivered at the point selected for the furnace. This may be estimated at three dollars to the ton of iron."
"The value of this locality with respect to ore may be judged of
by comparing it with establishments in the United States. In Berks-
shire County, Massachusetts, at some establishments which have been
successfully conducted, the price of the ore is between five and six
dollars to the ton of iron. In Orange County, New York, ore yielding
between 40 and 50 per cent. costs between four and five dollars to the
ton of iron. At one locality in New York the ore costs ten dollars to the
ton of iron. At some establishments on Lake Champlain, ore costing
one dollar per ton at the mine, is carried twelve miles to the furnace.
The ore at the Baltimore furnaces costs over seven dollars to the ton of
iron. This is about the average cost of the ore at the furnaces in
Pennsylvania. Estimating the cost of the ore even at four dollars to
the ton of iron, there will be advantage over the average American
localities.

"The cost of ores at some of the Swedish and Russian furnaces is
still greater. In certain parts of the Ural Mountains the minerals are
carried by land to the forests a distance of from 40 to 80 miles. Some
of the forges of Sweden are supplied with minerals from Presburg and
Dannemora, which are transported by land-carriage, the lakes, and
the sea, to distances exceeding 370 miles.

"There is no trace of sulphur, arsenic, or any foreign matter which
can deteriorate the quality of the iron, or of titanium or chrome, which
would render the ores refractory. The red ochrey ore, the most
abundant variety, being sufficiently porous to present large surfaces
to the reducing gases in the blast furnace, and yet sufficiently compact
not to choke the furnace, but to allow the free passage of the blast,
can be used with peculiar advantage. The daily make of iron from
these ores will be large, and the consumption of combustible com-
paratively small.

"I have no doubt that iron of the first quality for purity and strength,
and which will demand the highest prices in the market, can be made
from these ores. If Mr Mudgett's opinion, based upon his own ex-
periments, that these ores will furnish steel-iron equal to the best
Swedish marks, should prove correct, these ores possess a rare value;
for, of the many charcoal iron establishments in the United States,
I know but one which furnishes iron suitable for making the first
quality of steel."

In addition to the use of the ores of iron in these deposits as sources
of the metal, mineral paints and artificial slate of excellent quality are
manufactured from the iron ochres of the Folly Mountain, and are
extensively used for protecting wooden buildings, etc.
Since the publication of the first edition of this work, extensive
mining and smelting operations have been carried on at the Londonderry mines, and in 1865 I saw a thriving mining village where, in 1849, there had been but a wild wooded ravine. I had not time to visit the excavations; but Dr Honeyman informs me that the original vein at Great Village still holds out, or rather appears as two veins, about twenty feet apart, and each with from four to five feet of ore, though occasionally widening to about twenty feet or diminishing to mere strings. One of them consists chiefly of brown hematite. Extensive openings have been made at Martin's Brook, where the ore is also hematite. The ore is now smelted with charcoal, large quantities of which are made in the neighbouring hills; but a great extension of the operations is anticipated, so soon as the railway shall connect the mines with the coal district of Springhill. The reputation of the iron made from this ore is very high, owing to its excellent quality, and suitableness to the manufacture of steel.

Within the last few years veins of hematite are stated to have been discovered in rocks of Upper Silurian age on the East River of Pictou, near Springville, and I have received from a locality near the French River of Merigomish a fine specimen of compact carbonate of iron, which is said to occur there in large quantity, though whether as a vein or bed I am not informed.

Veins of iron ores, similar in character to those above described, occur in nearly every part of this metamorphic district; they are, however, of small magnitude, and I am not aware that they are in any place of workable dimensions. In many places extensive masses of shattered quartzite and slate are penetrated in every direction by slender veins of micaceous specular iron ore.

In addition to these veins of iron ore, conformable beds, as already mentioned, exist in the Upper Silurian slates, more especially on the East River of Pictou, at the locality indicated on the map. At this place, one bed appears to be forty feet thick, and much resembles that in the Devonian at Nictaux, but the ore is more silicious, and contains only about forty per cent. of metal. It is not at present worked. This bed of ore could no doubt be traced extensively, and must eventually become of great economical importance. Though the ores are less rich than those of the Cobequid Mountains, the deposits are likely to be more continuous and persistent. This great bed of ore on the East River of Pictou is especially worthy of the attention of capitalists engaged or about to engage in smelting operations, as it is only ten miles distant from the Albion coal-mines, and is in the vicinity of abundance of limestone and
building-stone. The hematite and clay ironstone of the same region might also be profitably used with the specular ore of the great bed.

Copper ores occur in several parts of this district. In the country eastward of the Lochaber Lake, in the county of Sydney, large fragments of copper and iron pyrites are found in the surface gravel, and have no doubt been derived from a vein containing this ore, along with ores of iron similar to those of the Cobequid Hills, and which are found attached to the loose fragments. These indications were examined by the author in 1848, and made known to the Mining Association. A Cornish miner was afterwards employed by the Association to explore the locality, but his labours were unsuccessful; and as yet nothing has been found except the loose masses already referred to, some of which are from two to three feet in diameter. The strike of the rocks at this place is S. 70° W. to S. 20° W., and the district in which the ores occur consists of olive, gray, and black slates, with beds of quartzite and dikes of greenstone and compact felspar. In some places the slates are filled with small veinlets of specular iron ore and ankerite. The pyrites contains from four to seventeen per cent. of copper, the average of several specimens being 10.8 per cent. This would be a valuable ore if found in sufficient quantity and of easy access; there appear, however, to be serious difficulties in the way of opening the deposit, more especially its low situation and the depth of the surface cover.

Copper pyrites, yielding 31.6 per cent. of copper, and therefore of very rich quality, has been found on the south branch of Salmon River; but I am not aware that it occurs in sufficient quantity for mining purposes. This ore has also been found in small quantity near the Acadia iron-mine, and in the barytes veins at the Five Islands.

Sulphate of Barytes.—This mineral occurs in considerable quantity, in numerous irregular veins traversing the slates in the banks of the East River of the Five Islands. I have little doubt that these veins are strictly a continuation of the great iron veins already described; but here barytes predominates, and only a small quantity of specular iron is present and a very little copper pyrites. The barytes at this place is pure white, and often in very beautiful crystalline masses. Its cavities are coated with fine crystals of carbonate of lime of the variety known as dog-tooth spar. Large quantities of barytes have been extracted at this place, by levels and open excavations in the steep sides of the ravine, and have been exported to the United States; but I believe the demand has not been found sufficient to warrant a
USEFUL MINERALS.

593

continuance of the works on a large scale. The presence of copper ores at this place, associated with such a veinstone as sulphate of barytes, affords some promise that if the excavations were continued, valuable quantities of such ores would be discovered.

White marble occurs in the metamorphic slates at Five Islands, as well as a coloured marble of a purplish hue, with green spots tinged by serpentine. These beds at Five Islands have not been sufficiently opened fairly to test their quality. The white marble affords small specimens of great purity and of very fine grain. The coloured variety has been objected to on the ground of unequal hardness.

Slate, apparently of good quality, is found in New Canaan, and on the Middle River of Pictou. It is not at present quarried, but the first-mentioned locality would appear to present great facilities for profitable working.

Syenite and Porphyry, suitable for building and ornamental purposes, occur in various parts of the Cobequid Mountains, and on the east side of the Bras d'Or, and other places in Cape Breton. Owing to their inland position, and the want of any internal demand, these rocks are not at present quarried.

Smoky Quartz, in large and beautiful crystals, is found in the surface debris at Paradise in Annapolis County; and its native matrix is a reddish compact felspar, which occurs in veins in the granite of that district.

Useful Minerals of the Upper Silurian in New Brunswick.

The Upper Silurian rocks of Charlotte County afford promising indications of lead and copper, and are a continuation of the metaliferous rocks of Washington County, Maine; but little has yet been done to ascertain their actual value. To this age are referred the copper ores of Le Tete and the sulphate of barytes of Frye's Island, said to be in large quantity and accessible. Copper and iron have been stated to occur at Dickie Mountain and Bull Moose Hill, in the Kingston group; but are not very favourably reported on by Professor Bailey. As I have not personally examined any of the localities, I may refer the reader for such information as is at present to be obtained to the Reports of Professor Bailey and Professor Hind.

It may be anticipated that the igneous and metamorphic hills of this district in Nova Scotia and New Brunswick, so varied in their composition, and at present so little open to detailed investigation, will be found to contain many useful minerals in addition to those
above mentioned; and that as population and enterprise increase, they will become important mining and manufacturing districts.

The soils of this district are in general good. They produce in their natural state a fine growth of hardwood timber, sufficient for a long time to supply the demands of the shipyards and iron furnaces, and when cultivated they are remarkably favourable to the growth of hay and grain crops. They are well supplied with lime and phosphates; and when deep are less easily exhausted than most other kinds of upland. Hence in the more fertile parts of these hills, as in Southern Horton, Earlton, New Annan, the Pictou Hills, Lochaber, and Northern Cape Breton, there are fine and flourishing agricultural settlements, which, in spite of a climate a little more rigorous, are advancing more rapidly in wealth than most of the lower districts.

Fossils of the Upper Silurian.

Under this head I give the descriptions of new species published by Professor Hall in 1860, and notices of additional species since obtained, including the Palceaster described by Mr Billings, and species mentioned by Mr Salter as occurring among Dr Honeyman's specimens submitted to him, also the specimens communicated to me by Professor Bailey in 1867.

1. Radiata.

Stenopora, allied to S. fibrosa. East River, Arisaig.

Favosites Gothlandica, Lin. Dalhousie, Professor Bailey.

Favosites polymorpha, Goldfuss. Dalhousie, Professor Bailey.

Favosites basaltica, Goldfuss. Dalhousie, Professor Bailey.

Helopora fragilis, Hall, var. Acadiensis. Arisaig, coll. J. W. D.

Zaphrentis, n. s., identical, according to Mr Billings, with a species from Port Daniel. Dalhousie, Professor Bailey.

Astrocerium pyriforme, Hall. New Canaan, coll. J. W. D.

Astrocericum venustrum, Hall. New Canaan, coll. J. W. D.

Heliolites, allied to H. elegans. New Canaan, coll. J. W. D.

Petraia Forresteri, Honeyman, Arisaig. I have seen no description or figure of this species.

Dictyonema Websteri, Dawson. Beech Hill (for description and figure see p. 163, supra).

Palaeaster parvisculus, Billings (Fig. 197). The specimen is about six lines in diameter. The rays are two lines in length and one line and a half in width at the base, tapering at an angle of a little less than 45°. The five oral plates are sub-pentagonal, about half a line in width. The first adambulacral plates of each pair of
adjacent rays are in contact with each other outside of the oral plates, and not completely separated as they are in *P. Niagarensis*. There are six or seven adambulacral plates on each side of the ambulacral groove in each ray, and they gradually decrease in size from the oral plate outwards to the point of the ray. The width of the ambulacral groove is equal to one-third the width of the ray, and consequently the ambulacral rows of plates are also each equal to one-third the whole width of the ray. In each groove there are two rows of small and apparently nearly square ambulacral plates, twelve or fourteen in each row, and they seem to be continued round on the inner margin of the oral plates; the mouth is about one line wide.

This species differs from *P. Niagarensis*, Hall (Pal. N. Y., Vol. 2, page 247, Pl. 51, Figs. 21, 22, 23), in being smaller, the rays not so slender, and more importantly in the junction of the adambulacral plates outside of the oral plates.

The specimen was collected at Arisaig by Rev. Dr Honeyman.

Crania Acadiensis, Hall (Fig. 198). Circular or broadly sub-oval, moderately convex, the greatest convexity near the apex; apex obtuse.

Several casts show a central elevated area, with strong muscular impressions; the more elevated portion being surrounded by a flattened border, which is radiatingly striate.

These specimens are casts which appear to be of the ventral valve; and the form of the muscular impressions is so characteristic of the genus that I can have little hesitation in thus referring them. Arisaig, East River, coll. J. W. D.*

Discina tenuilamellata, var. subplana. Shell broadly elliptical, or suborbicular, externally depressed, apex subcentral; surface marked by thin sharply elevated lamelae.

This closely resembles the Niagara species of New York, but may be distinct. Should further examination prove it a distinct species, the name *D. subplana* may be adopted. Arisaig, coll. J. W. D.

Three other species of *Discina* are mentioned by Dr Honeyman as in his Arisaig collections.

Chonetes Nova Scotica, Hall (Fig. 199). Shell semi-elliptical, width varying from one and a half to nearly twice the length. The

* Of the species from Arisaig thus marked, some specimens were collected by Dr Honeyman, and were placed with my own collections in the hands of Professor Hall.
ventral valve variably convex, and often showing a flattened or slightly concave space down the middle of the shell; cardinal margin ornamented by four or five minute spines on each side of the beak; cardino-lateral margins often a little wrinkled; surface finely striated, striae flexuous, dichotomising and increasing by interstitial addition, so that there are more than 100 on the margin of the shell; striae increasing in size below the umbo; concentric striae fine, close, rounded and slightly undulating.

Dorsal valve moderately concave; striae much stronger below the middle of the shell and sometimes bifurcating toward the margin.

This species resembles in form the Chonetes cornuta of the Clinton group of New York, but is a much larger and more ventricose shell; the striae are proportionally less numerous and more closely arranged, the interstices being less than the striae, while in the C. cornuta the interstices are wider than the striae, and the latter increase only by interstitial additions below the middle of the shell. A stronger and more elevated stria often marks the median line from beak to base of the ventral valve. Arisaig, East River, Nictaux, coll. J. W. D.

Chonetes tenuistriata, Hall (Fig. 200). Shell semi-oval, twice as wide as long; ventral valve moderately convex, hinge-line equalling the width of the shell; surface marked by fine, even, closely arranged striae, which apparently increase only by interstitial additions, and are not flexuous. The number of striae on the margin of the shell is nearly 100.

This species is more finely striated than the preceding, the striae not flexuous, more even, and in shells of equal size much more numerous. This species is somewhat larger and more closely striated than the C. cornuta of the Clinton group of New York. Arisaig, East River, coll. J. W. D.

Spirifer rugecosta, Hall. Shell somewhat semi-elliptical; dorsal valve very convex, with the mesial fold depressed along the centre; ventral valve with a wide deep mesial sinus; plications six or seven
on each side of the mesial fold and sinus, strong, and much elevated, subangular, crossed by numerous strongly elevated, lamelllose, imbricating concentric striae.

The specimens examined are almost all imperfect casts, some of which preserve the impression of the strong concentric striae, and in one or two specimens an impression of the shell reveals the strength of the surface markings.

In many respects this species resembles the _S. perlamellosa_ of the Lower Helderberg group in New York, but the mesial elevation of this species is flattened or depressed, a character never observed in New York specimens. _Arisaig_, East River, coll. J. W. D.

Spirifer subsulcatus, Hall. Shell semi-elliptical, hinge-line equalling or greater than the length of the shell below; plications five or six on each side of the mesial fold; mesial fold somewhat flattened or very slightly rounded on the summit; plications rounded; surface concentrically lamelllose.

The specimens are all casts, or impressions of the shells.

They bear some resemblance to _S. sulcatus_ of the Niagara group, and are intermediate between that species and the _S. cycloptera_ of the Lower Helderberg group. _Arisaig_, East River, coll. J. W. D.

Spirifer, resembling _S. cycloptera_, but with regular ribs. East River, coll. J. W. D.

Strophomena profunda, Hall. _Arisaig_, coll. J. W. D. Dalhousie, Professor Bailey.

S. rugosa. _Arisaig_.

S. flat striated species. East River, coll. J. W. D.

S. corrugata, Conrad. _Arisaig_, coll. J. W. D.

Trematospira Acadia, Hall (Fig. 201). Shell wider than long; beak of the ventral valve produced and incurved; mesial depression marked by a small fold on each side, which originates about one-third of the length below the beak and continues to the margin; sinus bounded on each side by a more strongly elevated plication, beyond which are six other plications on each side. Surface marked by fine concentric striae.

This shell is referred to the genus _Trematospira_ from external characters alone, which are unlike _Rhynchonella_ proper, and the shell is not a _Spirifer_. _Arisaig_, coll. J. W. D.

Rhynchospira sinuata, n. sp. Shell ovoid, ventricose beak of the ventral valve incurved; a mesial sinus beginning a little below the beak; surface marked by about eight or nine simple scarcely subangular plications on each side of the mesial sinus.

Surface marked by concentric lines of growth.
This species differs from the *Rhynchonella* of the Lower Helderberg rocks of New York in the plications being more slender, in the more defined sinus of the ventral valve, and the continuation of the two small folds in the sinus nearly to the beak. Arisaig, coll. J. W. D.

Rhynchonella Saffordi. Shell varying in form from ovoid to globose. Full grown specimens usually wider than long, and sometimes becoming extremely ventricose, so that the diameter across the two valves much exceeds the length. Ventral valve depressed convex, with the beak minute, closely incurved; dorsal valve very ventricose, most prominent toward the front. Cardinal slope a little depressed, sides rounded, and the front in direct line flattened but not depressed. Surface finely plicated, plications little elevated, rounded or scarcely subangular, about five or six depressed in the flattened sinus of the ventral valve, and a corresponding number raised on the flattened mesial elevation, which rises abruptly, though usually but slightly above the lateral portions of the shell. From ten to fourteen plications mark the surface on each side of the mesial fold and sinus. Plications in front marked by a sharp groove along the centre, and those of each valve deeply interlocking.

This species resembles the *Rhynchonella nucleata* of the Lower Helderberg rocks of New York, and in some specimens it approaches to *Rhynchonella ventricosa*, but is always much more finely plicated than either. It closely resembles the *Rhynchonella Wilsoni* of Europe in its general form, but the plications are more rounded and somewhat coarser, and while in that species the sinus causes no depression in the ventral valve below the general surface of the shell, in ours there is an abrupt depression as well as a slightly abrupt elevation on the dorsal valve, while there is no similar feature in the *Rhynchonella Wilsoni*.

The Nova Scotia specimens are in all respects identical with those from Tennessee. Arisaig, Earlton, coll. J. W. D.

The geological position of the specimen from Tennessee is in rocks of the age of the Lower Helderberg group, associated with *Pentamerus galeatus*, *P. Verneilli*, *Spirifer macropleura*, *Spirifer perlamellosa*, *Spirifer cycloptera*, and others.

Rhynchonella equiradiata, Hall. Arisaig, coll. J. W. D.

Rhynchonella neglecta, Hall. Arisaig, coll. J. W. D.

Rhynchonella, n. s. (?) allied to *R. transversa*. Arisaig, coll. J. W. D.

Leptocelia intermedia, Hall (Fig. 202). Shell concavo-convex; outline semi-elliptical, cardinal extremities rounded, and the hinge-line a little shorter than the greatest width of the shell; ventral

* Sowerby, M. C., vol. ii., page 38, says: The "sinus at the front, although deep, does not alter the evenness of the surface."
valve moderately convex, carinate in the middle by a strong plication with six or seven smaller ones on each side, the lateral ones slightly curved towards the outer extremity. Dorsal valve concave, with a broad shallow mesial sinus, the margins on either side being bent a little upward, giving a sinuous outline to the margin of the shell; surface marked by fine concentric striae.

This species resembles the *L. hemispherica* of the Clinton group in New York in general form, but the hinge-line is shorter, and the extremities rounded; the mesial elevation consists of a single strong plication, while in *L. hemispherica* the surface is regularly plicated, with the central one sometimes a little stronger than the others. *Arisaig*, coll. J. W. D.

Atrypa reticularia, Dalman, Arisaig. East River, coll. J. W. D.
Atrypa emacerrata, Hall. Arisaig, coll. J. W. D.
Athyris (Merista) dilatata, Dalman. East River, coll. J. W. D.
Orthis testudinaria, Dalman. Arisaig, coll. J. W. D.
Lingula oblonga, Hall. Arisaig, coll. J. W. D.
Lingula, (?) n. s. Merigomish, Dr Honeyman.

Modiolopsis (?) rhomboides, Hall (Fig. 203). Shell sub-rhomboid, rounded in front, wider and obliquely truncate behind, hinge-line slightly ascending from the anterior end; beaks subterminal, posterior umbonal slope obtusely subangular below, anterior to which the shell is flattened; basal margin nearly straight, the shell gradually widening behind, and the posterior basal extremity abruptly rounded. Surface evenly striated concentrically.

Anterior muscular impression very strong, posterior muscular impression less strongly defined, but still very conspicuous and sub-duplicate; pallial line simple, nearly parallel to the basal margin, strongly and almost equally defined in all parts of its length between the two muscular imprints.

This shell bears some resemblance to *M. primigenius*, but is less ventricose in the middle, and the sub-angular umbonal slope is not so well defined in that species. *Arisaig*, coll. J. W. D.

Modiolopsis sub-nasutus, Hall. Shell elongate sub-spatulate, the length being more than twice the greatest width at the hinge-line; slightly ascending posteriorly; beaks sub-anterior, the anterior end very narrow, gibbous on the umbones, with a sub-angular ridge on the umbonal slope which extends to the postero-basal angle; basal margin nearly straight, the posterior end somewhat flattened and obliquely sub-truncate at the extremity; surface marked by concentric lines of growth.

This shell bears a close general resemblance to *M. nasutus* of
the Trenton limestone, but a careful comparison shows it to be wider and more abrupt at its posterior termination, while the direction of the striae of growth is very distinctive, these marks being regularly curving toward the posterior end in *M. nasutus*, while in this species they are abruptly bent at the postero-basal angle, and again on the cardinal side, corresponding with the truncate posterior extremity of the shell. Arisaig, coll. J. W. D.

Modiolopsis allied to *M. subcarinatus*. Arisaig, coll. J. W. D.

Clidophorus cuneatus, Hall. Shell ovoid, gibbous in the middle and on the umbones, gradually declining behind; beaks anterior, sub-terminal; anterior end broadly rounded, the posterior end narrower and sub-acute, posterior umbonal slope marked by an obtuse rounded ridge, which extends to the posterior extremity, and below this an undefined sinus which, expanding, extends to the postero-basal extremity, while a less defined ridge bounds this sinuosity on its anterior side; surface marked by fine irregular concentric striae.

In the casts of this shell there is a strong linear straight clavicle, extending from a point just anterior to the beak two-thirds across the valve. Arisaig.

![Fig. 203. *Modiolopsis rhomboidea*.](image1)

![Fig. 204. *Clidophorus concentricus*.](image2)

![Fig. 205. *Clidophorus erectus*.](image3)

Clidophorus concentricus, n. s. (Fig. 204). Shell sub-equilateral, very broadly oval-ovate, the anterior end the broader; height nearly four-fifths the greatest length; anterior side a little shorter and more broadly rounded at the extremity; a slight depressed sinus on the posterior umbonal slope, which is more anterior than in the preceding species. Surface marked by even band-like concentric striae; shell thin; a linear curving clavicle extends from the cardinal line just anterior to the beak more than half way to the base.

The prominent points of distinction between this and the preceding shell are the nearly central beaks, the band-like striae, and the curving clavicle with the broad and nearly equal extremities of the valve. Arisaig.

Clidophorus erectus, n. s. (Fig. 205). Shell somewhat rhomboid-ovate, the height and length about equal; umbones prominent, beaks nearer the anterior end, somewhat curved and elevated; posterior
cardinal line curving, with a scarcely defined ridge along the umbo; basal margin strongly rounded, sinuate on the postero-basal margin and regularly rounded, with a scarcely defined ridge extending down the slope just anterior to the clavicle. Surface finely striated concentrically, a slightly curving clavicle extending from the cardinal line nearly two-thirds the distance to the anterior basal margin.

This species differs from the preceding in the equal length and breadth, and consequent greater proportional height, in the sinuosity of the postero-basal margin, and more abruptly-rounded basal outline, and the curving forward of the beaks. Arisaig.

Clidophorus elongatus, Hall (Fig. 206). Shell sub-elliptical, length about twice the height, beaks much nearer to the anterior end, which is narrowly rounded; umbones rounded, prominent; a defined gradually widening depression extends from the umbo to the posterior basal margin, causing a straightening or slight sinuosity in the edge of the shell; a defined ridge along the posterior slope between the sinus and the cardinal margin. Surface very finely striated. A slender clavicle extends from the anterior cardinal margin a little more than half-way to the base, and curving slightly forward.

This species differs externally from all the others in the greater proportional length and in the rounded umbones.

The C. cuneatus of the same size is a stronger and proportionally higher shell, having a less defined sinus on the posterior slope, and a much stronger clavicle. Arisaig, coll. J. W. D.

Clidophorus semi-radiatus, Hall. Shell somewhat oval-ovate, length about one-third greater than the height.

Surface marked by fine concentric band-like striae, and the posterior slope by flattened dichotomized radiating striae, the two sets of striae gradually dying out at their junction. A faint line anterior to the beak marks the place of the clavicle. Arisaig, coll. J. W. D.

Clidophorus nuculiformis, Hall. Shell nearly equilateral, sub-ventricose, height and length as seven to nine. Anterior end rounded, basal margin regularly curved; posterior end sub-acute, a slight flattening or depression along the posterior umbo; slope, and between this and the cardinal line a narrow ridge. On the anterior slope there is a depressed line almost parallel to the cardinal line, marking apparently the course of the clavicle. Surface marked by fine concentric striae.

This species resembles in form the C. concentricus in its equilateral form, but the fine unequal concentric striae and the difference in direction of the clavicle are sufficient to distinguish it. Arisaig, coll. J. W. D.
Clidophorus subovatus, Hall. Shell, broadly oval or ovate, moderately and evenly convex; beaks near the anterior end; umbones moderately elevated; a scarcely defined depression extending from the umbo towards the postero-basal extremity; anterior extremity rounded, posterior extremity unknown (? regularly rounded); clavicle extending half way from the anterior cardinal margin to the base of the shell. Surface marked by fine unequal sub-lamellose stria.

This shell is larger and more regularly convex than any of the others here described, and more inequilateral than any except the C. cuneatus. Arisaig, coll. J. W. D.

Nuculites (Orthonota) carinata, Hall (Fig. 207). Shell extremely elongate, nearly three times as long as wide; sides sub-parallel; hinge-line straight, beaks appressed, sub-anterior, the anterior extremity rounded; posterior extremity obliquely truncate, longer on the hinge-line than on the basal margin. Surface marked by a sharp carina which extends from the umbo obliquely to the postero-basal angle; the space anterior to this carina marked by distinct elevated lamellose striae, and intermediate finer ones. The space between this and the cardinal line smooth and slightly depressed. Cardinal line anterior to the beak showing six or seven crenulations. A strong clavicle extends from the anterior cardinal line with a gentle curve nearly to the base of the shell. Arisaig, coll. J. W. D.

This shell presents characters not before observed combined in one species. It has the general form of Orthonta, while the crenulated cardinal line and the anterior clavicle are characters of Nuculites. The shell is readily distinguished from species of either genus heretofore described. The Orthonota, yet known, have the surface marking much less sharply defined.

Tellinomya attenuata, Hall (Fig. 208). Shell elongate, narrow, more than twice as long as high, anterior end short and rounded; beak elevated, situated a little in advance of anterior third, posterior end narrow and abruptly rounded; basal margin slightly curved, and impressed posterior to the centre; posterior cardinal line straight but gradually declining; contour evenly convex. Surface concentrically striated, shell thick.
This shell resembles the *T. machairiformis*, but the anterior end is proportionally longer and more regularly round, the posterior narrower and more attenuated, and the convexity of the shell much greater. It is much smaller and proportionally more elongated than the *T. nasuta* of the Trenton limestone. Arisaig, coll. J. W. D.

Tellinomya angustata, Hall. Shell elongate, narrow elliptical, more than twice as long as wide, beaks fully one-third from the anterior end. The anterior and posterior ends similar and equally rounded; basal margin regularly curved without indentation or sinuosity. Surface evenly convex and very finely concentrically striated. Arisaig, coll. J. W. D.

Leptodomus (Sanguinolites) aratus, Hall. Shell rhomboid-ovate, ventricose, beaks at the anterior third of the valve, incurved and pointed forward, umbones gibbous, a slight depression from the umbo directly to the base of the shell, leaving a slight impression in the central margin; posterior slope sub-angular, the angle not defined; anterior slope with a defined angular ridge which borders a large cordiform lunette; anterior sharply rounded; basal margin nearly parallel with the hinge-line, curving upwards at the posterior extremity, and somewhat obliquely truncated from the cardinal line. Cardinal line straight posteriorly, with a wide and deep ligamental area. Surface marked by strong unequal ridges and furrows parallel to the basal margin, which become obsolete on the posterior cardinal slope.

It is scarcely possible to refer any fossil with satisfaction to the genera *Sanguinolites* or *Leptodomus* of M'Coy, since the grouping of species under these names appears to us to comprise a heterogeneous assemblage in either case. Our shell corresponds in its external features with *Leptodomus costellatus* of M'Coy, so far as the general form, surface markings, ligamental area, etc., and is doubtless generically identical with that shell. Arisaig, coll. J. W. D.

Megambonia (?) cancellata, Hall (Fig. 209). Shell sub-ovate, widening posteriorly; beak anterior, incurved, umbo gibbous, with a gibbous umbonal slope on the posterior side, which is scarcely diverging from the cardinal line; posterior extremity rounded, the basal margin arcuate, with a slight impression anterior to the middle, the anterior end a little gibbous. Surface cancelled by concentric and radiating elevated striae.

It is not possible from the specimen before me to refer the species satisfactorily to any known genus. Arisaig, coll. J. W. D.

Megambonia striata, Hall. Shell somewhat oval, the basal and cardinal lines nearly parallel; beak sub-anterior, small; umbones
convex, scarcely gibbous; umbonial slope regularly convex, below which is a slight depression reaching to the postero-basal margin; posterior end rounded, the longer part of the curve on the basal side. Anterior end short and narrow, somewhat abruptly rounded. Surface marked by regularly radiating rounded striae with faint concentric lines of growth.

This differs from the preceding species in being less gibbous, in the more nearly parallel cardinal and basal lines in the direction of the umbonial ridge, and in the stronger radiating striae. Arisaig, East River, coll. J. W. D.

Avicula Honeymani, Hall (Fig. 210). Left valve: body of the shell obliquely ovate, convex and somewhat gibbous towards the umbo, anterior wing small rounded, posterior wing large triangular, obtuse at the extremity, extending two-thirds the length of the shell. The line between the wing and body of the shell well defined by a slight abrupt depression along the junction. Surface marked by rounded radiating striae which are interrupted by fainter concentric undulations or lines of growth; the wing is marked only by concentric striae.

This species bears some resemblance to A. emacerata of the Niagara and Clinton groups of New York; but its form is slightly more oblique, and the wing is marked only by concentric striae, while in the New York species the radiating lines on this part are stronger than the concentric ones. Arisaig, coll. J. W. D.

Grammysia triangulata, Salter. Arisaig, Dr Honeyman.
Grammysia cingulata, Hisinger. Arisaig, Dr Honeyman.
Pterinea retroflexa. Arisaig, Dr Honeyman.
Goniophora cymbaeformis, Sow. Arisaig, Dr Honeyman. This and the three last shells I give on the authority of Dr Honeyman and Mr Salter.

Theca Forbesii, Sharpe. Collected by Dr Honeyman at Arisaig.
Murchisonia Arisaigensis, Hall. Shell teretely conical, volutions about five, gradually increasing from the apex, rounded with a slight angulation or carina in the middle. The surface is unknown, and the
FOSSILS.

angular band on the volution is the only means of determining its generic relations.

This differs from any of the described species of Murchisonia from American localities. Arisaig, coll. J. W. D.

Murchisonia aciculata, Hall. Shell slender, very gradually tapering, volutions about six or seven, the last ones moderately ventricose, aperture elongate-oval or ovate, rounded at the anterior margin, columella plain; volutions marked by a distinct band along the centre, and a sub-sutural carina marking the upper side of the volutions; surface striated. Arisaig, coll. J. W. D.

Pleurotomaria. A flat species with four turns. Arisaig, Dr Honeyman. Nictaux, J. W. D.

Holopea reversa, Hall (Fig. 211). Shell small, sinistral; spire depressed, volutions about three; the two first small and gradually expanding, the last one rapidly expanding and ventricose; aperture wide expanded; suture impressed. Surface unknown. This shell has the general form of Holopea, but I have seen only a single specimen, which is a cast. It is remarkable and readily recognised from the sinistral spire. Arisaig, coll. J. W. D.

Bucania trilobita, Hall. Arisaig, East River, Nictaux, coll. J. W. D.

Bellerophon expansus (?), Sow. Arisaig, Dr Honeyman.

Bellerophon carinatus, Sow. Arisaig, Dr Honeyman.

Platyschisma helicites, Sow. Arisaig, Dr Honeyman.

Acerosulca helicites, Sow. Arisaig, Dr Honeyman. This and the three last species are from the lists of Dr Honeyman and Mr Salter.

Orthoceras punctostriatum, Hall (Fig. 212). Shell slender, very gradually tapering, almost cylindrical. Septa distant about one-third the diameter. Siphuncle central; section circular. Surface very finely striated with unequal undulating striae, the interstices between which are puncte, which are oblong indentations often becoming confluent.

This species is remarkable for its extremely gently tapering form; the fragment of more than an inch long, showing scarcely a perceptible diminution in diameter. There are twelve and a half cham-
bers in the space of one inch. The surface markings are peculiar, and among the species of the genus known to us constitute a distinctive character. Large specimens nearly two inches in diameter from East River have the characters of this species. Arisaig, coll. J. W. D.

Orthoceras elegantulum, Dawson (Fig. 213). This is a very beautiful species, apparently new, but closely resembling O. perelegans, Salter, of the Lower Ludlow formation. It is cylindrical, but slightly flattened; septa very convex and one-twentieth of an inch apart in a specimen half an inch in diameter; siphuncle central. Surface with slight rounded annulations from one-eighth to one-fourth of an inch apart, and covered with delicate transverse striae, scarcely visible to the naked eye, and about sixteen in a line. Under the microscope the striae appear as thin sharp parallel curved ridges, the spaces between being finely granulated and wider than the ridges. Arisaig, coll. J. W. D.

Orthoceras (?), n. s. East River, coll. J. W. D.
Orthoceras (?), n. s. Nictaux, coll. J. W. D.

Cycloceras, n. s. East River, coll. J. W. D.

Orthoceras exornatum, Dawson. Arisaig, coll. J. W. D. This species, collected by Dr Honeyman at Arisaig, is circular in the cross section, moderately tapering, and straight; with the siphuncle slightly excentric, and septa half a line to a line apart, in a specimen two to four lines in diameter. The surface is slightly annulated, and ornamented with about twenty-four flat longitudinal flutings in the manner of a Doric column. The whole surface is also delicately striated transversely.

Orthoceras nummulare, Sow. Arisaig, Dr Honeyman.
Orthoceras Ibex, Sow. Arisaig, Dr Honeyman.

Orthoceras, like O. bullatum, Sow. Arisaig, Dr Honeyman. This and the two last are given on the authority of Dr Honeyman and Mr Salter, who also mention species of Lituites and Phragmoceras.

Articulata et Incerta sedis.

Cornulites flexuosus, var. gracilis. This fossil resembles the one in the Clinton group of New York, but is somewhat more slender, and the annulations a little more closely arranged. The specimens from the rocks of New York present some variation in form, and the comparative distance of the annulations. None of them, however, are so slender as the Nova Scotia specimens. Arisaig, East River, coll. J. W. D.

Cornulites (?), n. s. East River, coll. J. W. D.

Homalonotus Dawsoni, Hall (Fig. 214). Caudal shield somewhat parabolic, obtuse at the extremity, very convex, width at the anterior
side greater than the length of the axis. Axis wider than the lateral lobes, distinguishable (in casts) from the lobes by a bending of the ribs and a scarcely perceptible depression along that line; annulations abruptly prominent; seven on the lateral lobes and nine on the axis, the anterior ones bending slightly backward at the line of division between the axis and the lateral lobe; each successive one bending more and more abruptly till the last one approaches a rectangular turn; the whole curving gently forward at their extremities, and all terminating abruptly before reaching the margin. Behind the seventh annulation the axis is marked by two more annulations, leaving nearly one-fourth of its length smooth.

This species is described from the casts and impressions of the caudal shield, so that the crustaceous covering is unknown. It is readily distinguished by the broad not prominent axis, the rectangular direction of the annulations on the axis, and their abrupt bending at the lateral furrow. An impression of a few imperfect annulations of the body shows that they are strongly elevated, much more so than in any known American species. Arisaig, coll. J. W. D.

Fig. 214.—Homalonotus Dawsoni, Head and Pygidium.

Fig. 215.—Dolmania Logani, Head and Pygidium.

When Professor Hall described this species, the caudal shield only was known, with some of the segments of the body. Dr Honeyman subsequently found specimens of the head. It has the posterior border nearly straight, the glabella moderately prominent and slightly wider behind than before. It descends abruptly in front, and the frontal margin appears to have risen with equal abruptness in front of the glabella and eyes. The eyes are large and prominent, and advance into a line with the front of the glabella. Some specimens have the head nearly three inches broad.

Calymene Blumenbachii, var. Caudal shield somewhat semicircular, axis very prominent, marked by about seven annulations, lateral lobes marked by five ribs, the four anterior ones bifurcating. Surface granu-
lose. The specimens are not sufficient to make any satisfactory determinations regarding specific differences. Arisaig, East River.

Dalmania Logani, Hall (Fig. 215). The specimens are two or three imperfect cephalic shields, one preserving the palpebral lobes, and others consisting principally of the glabella, with two or three parts of caudal shields. There is a fragment of a cheek which may be of this species. Cephalic shield somewhat semicircular. Glabella ovate, wider in front and truncate behind, depressed convex; occipital ring narrow, prominent; occipital furrow bending a little forward in the middle, and curving gently backward in the middle of each side, and again turning forward; posterior furrows narrow and sharply impressed, each one extending about one-third across the glabella and curving forward at their outer extremities; central furrow linear, obscure, having a direction transverse to the axis; anterior furrow obscure; oblique to the axis, linear extending to the margin of the glabella a little forward of the eye; frontal lobe regularly rounded anteriorly. A fragment of a cheek in the same association is broad, produced posteriorly in a short strong spine, and marked by a broad sub-marginal groove. Caudal shield somewhat semi-elliptical, convex, acute behind, axis very prominent, rounded and marked by about eight annulations, which are gently curved backward at the extremities; lateral lobes with six simple flattened ribs which terminate in a thickened border, and separated from the axis by a strongly defined furrow; extremity abruptly pointed.

The glabella of this species more nearly resembles Phacops in the general form and faintly impressed furrows, of which the posterior one is conspicuous. The form of the palpebral lobe, and the absence of tubercles at the base of the glabella, together with the form of the caudal shield, ally it with Dalmania, and it may be compared with D. Phillipsi of Barrande, but has a more pointed caudal shield, and the cheek, if correctly referred, is prolonged in a posterior spine.* Arisaig, coll. J. W. D.

Proetus Stokesii (?), Edwards. Arisaig, coll. J. W. D.
Homalonotus Knightii, Konig. Arisaig, Dr Honeyman.
Phacops Downingii, Salter. Arisaig, Dr Honeyman. The two last species are given on the authority of Dr Honeyman's and Mr Salter's lists.

Beyrichia pustulosa, Hall (Fig. 216). Valves unequally semi-oval, a little more than once and a half as long as wide; surface marked by three prominent ridges; central, anterior, and posterior. The central one is a single oblong oval tubercle, which is directly

* Attached to a fragment of one of these trilobites is a small Spiorbis. It is dextral, with two to three turns, and rounded concentric wrinkles on the last whorl.—J. W. D.
transverse to the dorsal margin and a little nearer the anterior side. The anterior ridge consists of a single highly elevated, rounded or papillose tubercle near the dorsal margin, and an elongated elliptical tubercle placed obliquely near the antero-ventral margin, and in older specimens sometimes swelling and spreading over the margin. The posterior ridge rises near the dorsal margin, and making a slightly broader curve than the posterior end of the valve approaches the ventral margin at the centre; the ridge is high and angular with a small prominent tubercle at the dorsal extremity, and from four to six smaller spine-like tubercles along its curve. The central ridge or tubercle is separated from the lateral ridge by a distinct furrow, and its continuation from the base of the tubercle passes between the lower ends of the two lateral ridges. Ventral and lateral margins with a narrow thickened rim.

This species resembles very nearly the B. tuberculata of Kloden, as described and figured by Mr T. Rupert Jones. In our specimens the dorsal angles are more rounded; the posterior ridge at its base is never extended beyond the middle of the valve, and is marked on its crest by several small spine-like tubercles. The anterior ridge is usually more extended along the ventral margin in our specimens, and the furrow is better defined, while the tubercles are never flattened above or overhanging the base as shown in the European specimens. Smaller specimens, which appear to be the young of this species, present some slight variations of surface markings, but show less difference than the young of B. tuberculata. Arisaig, coll. J. W. D.

Fig. 216.—Beyrichia postulosa. Fig. 217.—B. equilatera.

Beyrichia equilatera, Hall (Fig. 217). Nearly equilateral, very convex, marked by three smooth or nearly smooth ridges. The central ridge is an oblong tubercle reaching from near the dorsal margin a little more than half way to the ventral margin. The posterior ridge is a little larger, but scarcely differing in form from the anterior one, its ventral extremity terminating beneath or a little in advance of the middle of the central tubercle. The furrow is narrow, but well defined on the two sides of the central tubercle, and becoming shallow in its passage to the marginal furrow; ventral and lateral margins thickened. Arisaig, coll. J. W. D.

Leperditia sinuata, Hall. Minute, sub-ovate, anterior end narrow, dorsal line one-third shorter than the length of the valve; an extremely minute tubercle near the anterior end. Centre extremely convex or
IMAGE EVALUATION
TEST TARGET (MT-3)

6"

Photographic Sciences Corporation
23 WEST MAIN STREET
WEBSTER, N.Y. 14580
(716) 872-4503
ventricose; ventral margin near the posterior end a little sinuous, or indented from the inner side. Surface smooth under an ordinary lens.

Two specimens only of this species have been observed, both of them having the same dimensions. Arisaig, coll. J. W. D.

Tentaculites distans, var. The specimens under examination do not present any important points of difference from those of the Clinton group in New York. In the Nova Scotia specimens there are numerous annulations near the apex, which are not observable in the New York specimens. Arisaig, coll. J. W. D.

Note on the Character of the Metamorphic and Igneous Rocks of the Upper Silurian District.

These rocks introduce us more distinctly than the previously described Devonian series to those changes in sedimentary deposits known to geologists by the term metamorphism, and which, whatever views may be entertained as to the precise causes of such changes in the case of particular rocks, may be stated in general terms to be the results of heat and pressure acting in the presence of moisture at great depths in the interior of the earth. In so far as the Upper Silurian rocks of Nova Scotia and New Brunswick are concerned, the alteration they have undergone and the unstratified masses introduced among them, may be grouped under the following general statements:—

First, Some portions consist of shaly, sandy, and calcareous deposits, considerably hardened and much disturbed, yet retaining abundance of fossil shells and other evidences of a marine origin. In these, with the exception of mere hardening, the changes which have been induced on the sediments are limited to the following:—(1.) The production of slaty structure, by which the rocks are rendered fissile in planes different from those of their true bedding. This is termed slaty structure as distinguished from mere shaly lamination, and is believed to be due principally to mechanical pressure. (2.) In connexion with this, much distortion of the fossils, so that their proportions and general forms cannot be relied on as specific distinctions. (3.) The production, to a greater or less extent, of crystalline structure; for example, in the New Canaan beds fossils occur in rocks which have to a great extent been converted into micaceous schists.

Secondly, Other portions, originally no doubt similar to those now less altered, are highly metamorphosed, and are not only hardened and schistose, but have assumed a crystalline structure, so that instead of the mud, sand, and similar materials of which they were originally composed, we find more or less crystalline aggregates of quartz, mica,
felspar, hornblende, chlorite, and other minerals, which must have been produced by re-arrangement of the substances contained in the sediments, under the influence of chemical agencies. Such fossils as may have existed in these rocks have entirely disappeared, or may in some instances be seen to be replaced by mere nests of calcareous crystals or even by crystals of garnet. In the district now under consideration, these metamorphic rocks may be grouped under the following heads, each of which, however, includes many varieties graduating into each other:—(1.) Quartzite, or a hard silicious rock produced from the alteration of sandstone or arenaceous shale; (2.) Gneiss, a stratified rock composed of quartz, felspar, and hornblende, or quartz, felspar, and mica, and a product of the metamorphism of conglomerates and other mixed sediments; (3.) Micaceous and chloritic slates, consisting of quartz and mica, or quartz and chlorite, and apparently a result of the further alteration of clay slates, into which the micaceous schists graduate; (4.) Diорite or Hornblendic greenstone, a crystalline mixture of the mineral hornblende with felspar, often laminated or rudely stratified. These rocks may be merely altered mud-rocks or shales, but in many cases they may have been originally volcanic tufas or ash-rocks. (6.) Compact Felspar and Felspar porphyry, containing small isolated felspar crystals in a paste of more compact material of similar composition. Many rocks of this character appear to be stratified, and are probably metamorphosed clays. (7.) Crystalline Limestone or Marble, usually white and sometimes with crystals of tremolite and patches of serpentine. Owing to the small amount of calcareous matter in the original sediments, this kind of rock is not largely developed in the Upper Silurian districts.

All of the above are stratified and metamorphic. With these are other rocks in masses or veins either intrusive, and of the nature of volcanic rocks, or "indigenous" products of the fusion of sedimentary rocks in situ. These igneous rocks, as they may be called, though probably of similar origin with the trap of the Triassic and Carboniferous systems, differ somewhat in composition and appearance. They are mostly coarser grained or more crystalline, indicating that they are less superficial, and hence have cooled more slowly. Hornblende usually replaces the Augite of the trap. Felspar, which is the pure white or flesh-coloured part of ordinary granite, exists in greater abundance than in trap. Quartz or uncombined silica is also often present in considerable quantity. Rocks of this class are very variable in their composition and appearance, hence it is difficult to give them accurately distinctive names, and geologists entertain different opinions as to the amount of internal heat, or igneous action proper, involved
in their production, and also as to the question whether they are derived from deep-seated sources under the stratified rocks, or have been produced from the fusion or semi-fusion, with aid of heated water, of portions of the sediments themselves. That in some cases they are at least partially of the latter character is, I think, evident from the manner in which they appear to replace stratified rocks in their line of strike, or to occur in bedded masses among them, and also from their apparent relation in mineral character to the associated igneous rocks. On the other hand, in their frequent intrusion into the fissures of the aqueous rocks, they are certainly in many cases to be regarded as eruptive rocks of unknown and deep-seated origin. Dr Hunt has very fully considered these points in reference to similar rocks in the Reports of the Geological Survey of Canada. In the district now under consideration, the following terms may serve for the designation of the more important rocks of this class:

Unstratified Diorite or _Hornblendic Greenstone_ consists of hornblende and felspar, sometimes in large distinct crystals of black or green hornblende and white felspar, and in every gradation of crystalline texture between this and a gray or greenish rock in which the separate crystals are scarcely distinguishable. When there are large distinct felspar crystals imbedded in the mass, it is named _Porphyritic greenstone._

Unstratified Compact Felspar or _Felsite_ is a rock consisting of the materials of felspar with some quartz, but not distinctly crystalline. It is sometimes fine-grained and flinty in aspect, and in other cases dull and rough in its fracture, approaching to the rocks called _Trachyte_ and _Claystone._ Its colours are usually dull-gray, reddish-brown, and greenish. It often contains scattered distinct crystals of lighter coloured felspar, and is then _Felspar Porphyry._

Granite consists of distinct crystals of quartz, felspar, and mica. Granite is less abundant in this district than in the Lower Silurian area, next to be noticed, and the varieties which occur are often less perfectly crystalline, or have a less resisting felspar, causing them to decompose readily.

Syenite consists of distinct crystals of reddish, gray, or white felspar, with a smaller quantity of dark-coloured hornblende and some quartz—the whole forming a material somewhat similar to granite, with which it is often confounded. We may associate with this rock, or with greenstone and compact felspar, a number of nameless rocks in which crystalline felspar forms the chief ingredient, with or without quartz and hornblende.
whether they are tied rocks, or have aid of heated water, some cases they are
rock, evident from the rocks in their line
them, and also from
associated igneous
fissures into the fissures cases to be regarded.
Dr Hunt has similar rocks in the district now
for the designation
consists of hornblende crystals of black or
crystalline to be regarded Porphyritic
consisting of the
distinctly crystalline.
and in other cases rocks called Trachyte reddish-brown, and
lighter
Felspar, and mica.
The Lower Silurian
are often less causing them to
granite, with
some quartz
CHAPTER XXIV.
THE LOWER SILURIAN PERIOD.

LOWER SILURIAN OF NOVA SCOTIA—GOLD—LOWER SILURIAN OF NEW
BRUNSWICK—"ACADIAN GROUP"—USEFUL MINERALS—PRIMORDIAL
FOSSILS.

To this geological age I have referred, principally on evidence of
an inferential character, the extensive belt of metamorphic sediments
extending along the coast of Nova Scotia from Cape Canseau to Cape
Sable. On similar grounds certain extensive areas of metamorphic
rocks in New Brunswick have been regarded as belonging to this
period; and very recently the discovery of a rich primordial fauna in
some of these beds near St John has confirmed this view in regard
to a portion of these areas; while in Northern New Brunswick
the resemblance of the beds to those of the "Quebec group," and
their relation to the Upper Silurian beds, tend to give similar con-
firmation.

In describing these districts, we shall first sketch the character and
distribution of the Atlantic coast series of Nova Scotia, with the
important discoveries of gold which have given to it so great economic
importance, and shall then proceed to notice the rocks of similar age
in New Brunswick, with the very remarkable fossils—the oldest known
in Acadia—which have recently been discovered in them.

1. Lower Silurian of the Atlantic Coast of Nova Scotia.

This series extends continuously, with prevailing east and west
strike, from Cape Canseau to the middle of the peninsula at Halifax
Harbour; thence it continues with prevailing north-east and south-
west strike to the western extremity of the province. Its most
abundant rocks are coarse clay slate and quartzite in thick beds. In
some districts the slates are represented by mica schist and gneiss, and
interrupted by considerable masses and transverse bands of intrusive
granite. It has afforded no fossils; but it appears to be the continuation
of the older slate series of Mr Jukes in Newfoundland, which has
afforded trilobites of the genus Paradoxides. These fossils would indicate a position in the lower part of the Lower Silurian series, possibly on the horizon of the Potsdam sandstone or Lingula flags. If so, the Lower Silurian limestones are either absent or buried by the unconformable superposition of the next series, or of the carboniferous beds which in some places immediately adjoin these older rocks. It is to be observed, however, that the mineral character of the rocks themselves very closely resembles that of some portions of the "Quebec group" of Sir William Logan. If coeval with this, they would be somewhat higher in the Lower Silurian scale; but I think it may be safely affirmed that no newer group than the Quebec series can claim them with any show of reason. We may therefore in the meantime regard these rocks as probably representative of some portion of the lower part of the Lower Silurian, but without venturing to assign them to any definite horizon, and admitting the possibility that future researches may establish differences sufficient to divide them into distinct formations. More especially in the western part of Nova Scotia, where this band attains to great breadth, I entertain the hope that a continuous sequence may be one day ascertained from the Devonian to the base of the Lower Silurian.

Large though this district is, there is by no means so great a variety in its rocks as in those of the district last described; and most of them are nearly related to each other, being composed of the same materials variously arranged. I shall notice them specially with reference to their differences from those of the Upper Silurian series.

1. **Granite**, as it occurs in this district, is a crystalline mixture of white, or more rarely flesh-coloured, felspar, with smoky or white quartz and gray or black mica. It varies in its texture, and is sometimes porphyritic; that is, it consists of a base of fine-grained granite, with large crystals of felspar forming distinct spots. It often contains altered fragments of the neighbouring slates, and penetrates in veins into the adjoining rocks, which in its vicinity are always more highly metamorphosed than usual.

2. **Gneiss** is a fine-grained granitic rock, arranged in laminae or layers. It is unquestionably here, as in the Upper Silurian district, a product of the metamorphism or "baking" of sedimentary rocks by heat and water, and in this series it almost invariably holds mica and not hornblende.

3. **Mica slate** consists of quartz and plates of mica, forming a highly fissile rock with shining surfaces, and usually of a gray or silvery

* Orthoclase, but with soda as well as potash. The granite of Annapolis, mentioned in last chapter, has in some places reddish quartz.
colour. In the coast metamorphic district of Nova Scotia, it appears in many and beautiful varieties. Talcose, chloritic, and hornblendic slates are comparatively rare in this district.

4. Quartz rock, or Quartzite, consisting of grains of flinty sand fused together, and with occasionally a little mica, occurs in this series in very massive beds.

5. Clay slate, or argillaceous slate, abounds, and is usually in this district of gray and black colours, and varying very much in texture and hardness. It often presents indications of the original bedding in different planes from those of the lamination, the latter being an effect of causes acting at a time posterior to the original deposition, and, as already stated, pressure was probably the most efficient of these causes.

Between these rocks there are many intermediate forms. Granite often passes by imperceptible gradations into gneiss—this into mica slate—this into quartzite—and this into coarse or flinty clay slates. There appears every reason to believe that all these rocks, except the granite, are merely variously metamorphosed forms of common sandstones and clays.

The Lower Silurian rocks form a continuous belt along the Atlantic coast of the province, narrow at its north-eastern extremity, and attaining its greatest development in the western counties. Its southern or coast side has a general direction of S. 68° W.; its inland side, though presenting some broad undulations, has a general direction of about S. 80° W. Its extreme breadth at Cape Canseau, its north-eastern extremity, where it is bounded on one side by the ocean, and on the other by Chedabucto Bay, is only about eight miles. In its extension westward, it gradually increases in width, until at the head of the west branch of the St Mary's River, eighty miles distant from Cape Canseau, it is about thirty miles in breadth. In the western counties it again increases in width, and though its northern boundary is not well ascertained, its breadth can scarcely be less than fifty miles. Its total length is 250 miles.

The general character of the geology of this district may be very shortly stated. It consists of thick bands of slate and quartzite, having a general N.E. and S.W. strike, and highly inclined. In several places large masses of granite project through these rocks, and in their vicinity the quartz rock and clay slate are usually replaced by gneiss and mica slate, or other rocks more highly metamorphosed than usual. Bearing in mind this general character, we may proceed along this district from west to east, noting the more interesting points of its structure as they occur.
The county of Yarmouth presents a succession of low ridges of slate and quartz rock, separated on the coast by narrow inlets, and inland by valleys, often containing lakes and bogs. The prevailing strike appears to approach more nearly to north and south than in other parts of this district. Near the town of Yarmouth it was observed to be N. 20° E., and at Pubnico nearly N. and S. Near the town of Yarmouth there are hornblende and chlorite slates, and inland, in the direction of Carleton, clay slates appear to prevail. Veins of white quartz abound in these rocks. On the east side of the Tusket River quartz rock prevails, and forms a stony country. Toward Pubnico, mica slate and micaceous quartz rock appear, and are traversed by granitic veins, leading us to the massive granite of Shelburne county. Granite is also said to occur inland at Kempt; but I have not visited this place.

On entering Shelburne, we find granite at Wood's and Shag Harbours, and extending inland for some distance. At Barrington there is still abundance of granite and mica slate, with strike N. 23° E. At Port La Tour, the mica slate and gneiss abound in large prismatic crystals of a greenish magnesian mineral, allied to steatite. These crystals, which are perhaps pseudomorphous, project from the weathered surface of the rock. At the town of Shelburne there is abundance of a fine-grained granite of excellent quality, and toward the mouth of the harbour gneiss occurs, with small crystals of garnet; its strike is S.W. Veins of coarse-grained granite penetrate these rocks, and in some places these veins present the singular variety to which the name graphic granite has been applied, from its resemblance to written characters. In this variety of granite, quartz and felspar alone are present, and the quartz in hardening has arranged itself in plates between the felspar crystals, so that when the mass is polished, the sections of these quartzose plates present the appearance of ancient Samaritan on modern phonographic writing. In the graphic granite of Shelburne, the characters are in gray quartz, and the ground is white or flesh-coloured felspar. In surface gravel, near the town of Shelburne, I found pebbles of the beautiful mineral rose-quartz, but did not observe it in place.

At Jordan and Sable Rivers, in the eastern part of this county, gneiss and mica slate appear in many fine varieties, and contain abundance of crystals of Staurolite; and Schiller spar and talc sometimes enter into the composition of these rocks as well as mica.

On entering Queen's County we find granite at Port Joli and Port Mouton, and toward the town of Liverpool these give place to quartz rock, which, with some beds of micaceous slate, here occupies a great
breadth, and produces a very stony and barren country, encumbered with large boulders. This rocky surface, at the distance of about ten miles from the coast, gives place to a fine undulating wooded country, supporting populous agricultural districts, and traversed by the Liverpool and Port Medway, two of the largest rivers in the province, with numerous and large lakes at their sources. The source of the Liverpool River is in the high lands near Annapolis, not more than ten miles from the shores of Annapolis Basin; and the distance in a direct line from its source to its outlet is more than fifty miles. Lake Rosignol, one of the many fine lakes that stud its course, is twelve miles in length, and five in its greatest breadth.

The prevailing rock in this northern district of Queen's County is clay slate, having a general south-west strike, and almost everywhere polished and marked with diluvial striae. This inland slate district appears to be continuous with that of Lunenburg on the east, and that of Yarmouth on the west; so that in this part of the province the granitic rocks appear to be confined to the vicinity of the Atlantic coast, and to the inland hills near the Annapolis Valley, while a fine undulating slate country, diversified with numerous lakes, occupies the interior. In such a situation, more modern rocks than those of the Atlantic coast may be expected to occur. I searched in vain, however, for fossils in the northern district of Queen's, but obtained from a gentleman resident there a fragment of hard quartzose rock, which he believed to have been found in situ, and which contains some fragments of fossil shells, not certainly determinable, but apparently resembling Upper rather than Lower Silurian forms. *

On the eastern side of Queen's County, the quartzite and mica slate are associated with granite, and beyond this they give place to clay slate, which occupies the county of Lunenburg as far as Cape Anson, and inland as far as I have any acquaintance with its structure. The country here has much of the aspect as well as the agricultural value of that of Northern Queen's, and presents in these respects a favourable contrast to most other parts of the Atlantic coast. The slates of this county are usually blue or black, and often charged with iron pyrites, which, when weathered, gives them an intense rusty yellow colour. This appearance is especially prevalent in some places in the western part of the county. Their strike is S.W. and N.E.

It is on the margin of this slate district of Lunenburg, and at the bottom of a deep bay penetrating into it, that the limited tract of Lower Carboniferous rocks, already noticed as occurring at Chester Basin, appears. These Carboniferous beds dip at a moderate angle

* Poole, Report on Gold-fields, 1862, mentions similar fossils, and gives many additional facts as to geological structure.
S.S.E., and give no evidence that this metamorphic district has suffered any considerable disturbance since their deposition. At Mahone Bay, however, I observed a large quantity of fragments of reddish amygdaloidal trap, which cannot be far from their original site, and probably belong to some trappean eruption of the Carboniferous period.

Apatogoe, which is a rocky promontory, about 500 feet in height, separating Mahone from Margaret’s Bay, consists, according to Mr Poole, principally of quartzite and slate with granite, and is apparently at the extremity of a thick dike or ridge of the latter rock, extending to the northward across the stratification of the country. It is the highest land on the Atlantic coast of Nova Scotia.

Margaret’s Bay is another deep indentation, between Apatogoe and a broader but lower tract of granitic rock, extending to the north-west arm of Halifax Harbour. Around Margaret’s Bay, as at Chester, there are small patches of Lower Carboniferous rocks; but these are for the most part concealed under granitic debris drifted from the neighbouring districts.

The granitic district east of Margaret’s Bay, and terminating at Cape Sambro, has a north and south direction. It contains several varieties of common and porphyritic granite, with veins of coarse-grained, and more rarely of graphic granite. Near the north-west arm there are good opportunities of observing its junction with the slates which succeed it to the eastward. The slate is not here converted into mica-slate; but, in the vicinity of the granite, it is hardened and rendered crystalline, and in some places passes into a rock resembling hornblende slate. In other places it appears as a hard flinty slate, filled with slender prismatic crystals apparently of staurolite. In close contact with the granite the slates assume the appearance of gneiss, and are traversed by granite veins, which often contain crystals of schorl and garnet, indicating that these veins received additions of foreign substances, as boracic acid, iron, etc., in passing through the stratified rocks. The granite itself is here porphyritic, and occasionally contains fragments of the rocks through which it has passed, fused into gneiss and mica slate. All these appearances indicate that the intensely heated and molten granite was the cause of the alteration of the slates.

Eastward of Halifax, the whole country as far as Musquodoboit River, and northward to the northern limits of this district, consists principally of alternate thick beds of coarse clay slate, often highly pyritous, and quartzite, granite bosses projecting through it in a few places. The strike of the beds in this part of the province approaches
more nearly to E. and W. than at the places previously described. At many localities, however, it retains its usual S.W. and N.E. direction. Thus, at the tower at Point Pleasant, the strike of the bedding is N. 30° E., and that of the slaty structure N. 75° E. On the shore near the same place, the strike is N. 60° E., and the dip is to the north-west. Nearer the city, the dip of the true bedding is in some places to the south, the strike being nearly E. and W. The cleavage is, however, here much better defined than the bedding, which is indicated principally by lines of different colour, and appears to undulate very much. On the road from Halifax to Windsor, at Dartmouth, and at Musquodoboit River and Harbour, the strike both of the bedding and slaty cleavage approach to E. and W. magnetic.

On the Musquodoboit River, granite reappears, and extends to the eastward as far as the Great Slip Harbour Lake. Beyond this place, as far as the extreme eastern end of the district, quartzite and mica-slate, with masses and bands of granite and gneiss, prevail; but I have scarcely any knowledge of their distribution, except in the vicinity of the St Mary's River, and in the peninsula of Cape Canseau.

The valley of the lower St Mary's River is a rugged and rocky gorge, excavated at right angles to the structure of the country, and affording an outlet for the waters of several streams that, seeking a passage across the hilly barrier of the metamorphic district, form a small lake at the entrance of this common channel. At the mouth of the river, a considerable breadth is occupied by micaceous slates, with bands of quartzite. The strike of these rocks is N.E. and S.W., and in the places where I observed their dip, it is to the S.E. at high angles. Behind the village of Sherbrooke, and two miles eastward of the river, a mass of granite projects through these rocks, but does not occur in the river section. This granite is well seen in the lakes emptying into Indian Harbour. On the river itself, the slates and quartz rock continue with considerable regularity of strike; the latter becoming quite predominant, and rising into considerable eminences as it approaches the "Forks," where it suddenly descends into the Carboniferous valley of the St Mary's.

Eastward of the St Mary's River, this district gradually narrows toward its extremity at Cape Canseau, but still presents on its northern margin a range of abrupt eminences, and on the south a low, rugged, and indented coast. Indeed, the steep rounded swell with which its northern side descends at the head of Chedabucto Bay, and the precipitous headlands beyond Crow Harbour, are the finest appearances in point of scenery which it presents in its whole extent.

A large part of the peninsula terminating at Cape Canseau, is
occupied by white fine-grained gneiss, with veins and masses of granite, sometimes of a reddish colour. There is also much mica slate, and dark-coloured clay slate, filled with crystals of the singular mineral chalcostite or cross-stone. Near the extremity of Cape Canseau specimens of this mineral occur, of a reddish or fawn colour, three or four lines wide, and exhibiting the characteristic black cross in considerable perfection. I have not found this mineral in any other part of Nova Scotia.

Having thus shortly surveyed this large though little explored district, I may notice the probable arrangement of its beds, and the causes of their present condition, the waste it has undergone, and the materials it has contributed to newer formations, its useful minerals, and the peculiarities of its surface and soils.

The beds of the Lower Silurian district present a considerable uniformity of strike, in the direction already mentioned, along the whole coast; a fact which, in addition to the statements above made, is curiously indicated by a table of compass dips and strikes of the rocks on this coast now before me, and for which I am indebted to H. Poole, Esq. In this table, out of eighty-three observations at various places between Halifax and Yarmouth, the strike is between W. and S. in seventy-three instances, and in a great many of these not far from S. 45° W. The dips are, however, very variable, and it is, in many cases, not easy to distinguish them from the slaty structure, which often gives planes much more distinct than those of the bedding. On carefully examining a section, such as, for example, that already referred to at Halifax Harbour and its vicinity, it will be found that the beds undulate in synclinal and anticlinal curves, often of no great magnitude, so that they are frequently repeated within a few miles. This structure has been worked out in some detail by Mr Campbell* in the country between Halifax and Windsor. In other sections, however, as, for example, in that of the St Mary's River, there appears to be an enormous thickness of beds with a uniform dip. Reasoning on these facts, we arrive at the conclusion that the alternations of quartz rock and clay slate constitute one very thick formation having probably a predominance of quartzite below and of slate above; but whether the mica schist and gneiss which occur on the peninsula of Cape Canseau, and also in Queen's County and Shelburne, and the chloritic beds of Yarmouth, are to be regarded as continuations of this series, differently changed by metamorphism, or as portions of other members of the Lower Silurian or of still older deposits, remains uncertain. To settle this question,

masses of detail in the form of singular features of Cape Breton Island, in colour, texture, and structure, appear to be highly characteristic and peculiar in any other part of the province. And it is therefore worth while exploring the nature and origin of these singular features, and the objections which have been urged against them by some of the best mineralogists, prior to proceeding to an examination of the metamorphic districts, in order that a fair and impartial judgment may be made of their comparative value.

The metamorphic rocks of the Atlantic coast of Nova Scotia are generally characterized by a uniformity in their general features, and a diversity in the detail of their stratification. In the Silurian formations of this district, the rocks are generally thin-bedded, and the layers are either parallel or slightly inclined to the horizontal. The Carboniferous rocks, on the other hand, are generally thick-bedded, and the layers are generally inclined to the horizontal. In the Silurian formations, the rocks are generally uniform in texture, and the layers are either parallel or slightly inclined to the horizontal. In the Carboniferous formations, the rocks are generally thick-bedded, and the layers are generally inclined to the horizontal.

It is interesting to note the points of difference between these rocks and the more highly altered portions of the Upper Silurian series, as described in a previous chapter. Quartz rock occurs in both, but it exists in greater abundance and in more massive beds in that last described. Clay-slate also occurs in both, but in the first described it presents much greater variety of colour and texture; it is associated with many coarse beds, which have been usually named graywacke, and graywacke slates, and in many places it approaches to the character of a slate. These inland slates are also highly metallic, abounding in veins of iron ore, and containing at least one great conformable bed of that mineral, while copper ores also occur in a variety of places. They also contain numerous calceous bands and layers of limestone. In all these respects the slates of the Atlantic metamorphic district are strikingly different. They are thick-bedded and uniform in their appearance, destitute of calcareous matter, and with few metallic minerals, except disseminated crystals of iron pyrites, and the veins of auriferous quartz, which are nearly if not altogether peculiar to this formation as compared with the other. They also pass into micaceous slate, which is rarely seen in the other district. These and other differences of detail must prevent any observer acquainted with both districts from supposing their rocks to be geologically equivalent.

The metamorphism of these rocks must have occurred prior to the Carboniferous period, and there can be no doubt that the granitic rocks have been the agents in affecting it, if they are not themselves portions of the stratified beds completely molten and forced by pressure against and into the fissures of the neighbouring unmelted rocks. It will be observed that many of these granitic masses have a north and south direction, whereas the general strike of the beds is N.E. and S.W. This would indicate either that the lines of greatest igneous intensity and intrusion of molten matter had no direct connexion with the elevating and disturbing forces, or that these granitic masses are merely outliers from a great N.E. and S.W. granitic axis, at one time the summit of a line of hills of which only the margin remains visible, the axis itself having sunk again into the bowels of the earth, before the commencement of the Carboniferous period.

The general direction of the strike of this district coincides with that of the Lower Silurian bands of New Brunswick and of the Lower
St Lawrence, and the movements of its beds may have begun in connexion with the disturbances which Logan and others have shown to have occurred at the close of the Lower Silurian period; but the intrusive granite appears to be continuous with that of Devonian age described in a previous chapter.

Whatever view may be taken of the age of the granitic rocks of this group, it is certain that they are strictly hypogene rocks, that is, that they belong to the deep-seated foci of subterranean heat, and are not superficial products of volcanic action. They are substances such as we might expect to find, could we penetrate miles below the surface, beneath modern volcanoes. They were therefore probably at one time buried deeply, and have been brought up by movements of dislocation, and by the removal of their superficial portions by aqueous agents. They have without doubt furnished much of the material that has been employed in building up the more recent formations of the country.

This leads to the question, Can we discover in the subsequent rock formations evidences of such an origin, and can the changes which these derived materials have undergone be satisfactorily explained? This subject, the genealogy of rocks as it may be termed, is of some interest, and I may glance at it in its bearing on the geology of Nova Scotia.

The granite of Nova Scotia and its associated gneiss and mica-slates are among the oldest rocks found in the province, and we may therefore take them and their derived rocks for illustrations. The products of the decomposition of granite are quartz sand, scales of mica, and fine clay which results from the decomposition of felspar. Such materials, when washed down and deposited in water, will form coarse and fine sandstones, micaceous sandstones and flags, arenaceous and argillaceous shales; and these may, by heat and pressure, be converted into quartzite, mica slate, and clay slate. From pure white granite the derived detritus would be colourless or nearly so. But the mica and felspar of many granites contain iron, and the sulphuret of iron is also present in some granites. In these cases the derived sediment will have a yellow or buff colour, from the presence of the yellow oxide of iron; or in some cases the clay may have a red colour, from the peroxide of iron present in red felspar. Of course, when the granites contain hornblende or are syenitic, much more iron may be present in the derived sediment. In nature nearly all soils of granitic origin are more or less coloured in these ways. In this manner, buff, brown, and red clays, and buff and brown sandstones may be produced.
Igneous action may produce still farther changes. The yellow sand which results from the decay of granite is merely stained on the surface by the ferruginous colouring matter, and a very slight degree of heat is sufficient, by expelling the water of the iron rust, to convert this yellow stain into a bright red. This change is superficially produced by forest fires, and might readily occur when decomposing granitic rocks have been subjected to the influence of intensely heated or molten masses, with access of air or water. Red sands and clays produced in this way, and washed into the sea, become red sandstones and shales. Such red deposits are, however, liable to still farther change. If long washed about in the sea, the red coat is worn from the sands and added to the fine clays, so that whitish sandstones may alternate with red shales. If vegetable or animal matter is present, the changes of colour referred to in treating of the marsh mud may take place, and dark-coloured or gray beds may result, or greenish stripes and bands may appear in the mass of red deposits.

Clays and sands thus deposited may be hardened into rock by pressure, by heat, or by cementing matter introduced by the percolation of mineral waters.

It will thus be perceived, that from the granitic rocks it is possible to deduce a variety of yellow, brown, and gray sandstones and shales, quartzites, and slates. Many other rocks, however, beside granite have been decomposed, especially to form the more modern deposits; hence more complicated results than those above stated have been produced. Enough has, however, been said to show how much derived deposits may differ in appearance from those which have furnished their materials; and also the mode in which the waste of the older rocks has been disposed of. These facts also serve to show the enormous waste or denudation which the older rocks must have suffered in order to furnish the materials of the derived formations, for example, of the Carboniferous beds. They farther illustrate the connexion of red sandstones with periods of igneous activity, and the prevalence of gray and dark-coloured sediments at times when deposition has been slow and organic matter abundant.*

With respect to surface and industrial capabilities, the different rocks occurring in this district present very various aspects. The clay slate often has a regular undulating surface, and a considerable depth of shingly or clay soil of fair quality, though usually deficient

in lime. These slate districts, however, often contain beds of quartz rock which form rocky ridges, from which boulders have been scattered abroad, and which, by damming up the surface waters, produce lakes and bogs,—an effect also often produced by the ridged structure of the slate itself, and the impervious subsoil which it affords. Wherever, as for instance in Northern Queen's and Lunenburg, the slate is sufficiently elevated for drainage, and not encumbered with surface stones, it supports fine forests and valuable farms. Where quartz rock prevails, the soil is almost invariably extremely stony and barren. Instances of this occur in Southern Queen's, near Halifax, and in the hills near the St Mary's River. The mica slate is little better, for though it does not furnish fragments to cumber the surface, it scarcely affords any soil.

The granite and gneiss in some places appear in precipitous hills of considerable elevation, and in others form low and uneven tracts. Their decomposed surface affords a sandy quartzose soil, often strewn with large rounded blocks of granite, which in some instances cover the whole surface, so that a granitic hill appears to be merely a huge mound of boulders. This appearance results in most cases from the nodular character of the granite, or from its consisting of great balls of hard resisting rock, united by a material of more perishable character. Where the granite or gneiss is wholly of a resisting character, its surface is sometimes almost entirely bare, or coated only with a layer of peaty vegetable soil. This occurs to a great extent in the peninsula of Cape Canseau. The granitic soils in their natural state often support fine groves of oak and other deciduous trees; but the bare summits, destitute of soil, are clothed only with stunted spruces and various shrubs and mosses. Where the original vegetation has been destroyed by fire, the granite hills often become perfect gardens of flowering and fruit-bearing shrubs. I have collected in a day in August, on a single granitic eminence, sixteen species of edible wild fruits. The alkaline matter afforded by the waste of the granite is especially favourable to the growth of these plants as well as of ferns; fields of which (chiefly the common brake, *Pteris aquilina*) may be seen in the valleys among the granitic hills to attain the height of four feet.

Useful Minerals of the Lower Silurian of Nova Scotia.

Gold.—At the date of the publication of "Acadian Geology" in 1855, no actual discovery of gold in Nova Scotia was known to have been made. At that time I could only indicate the possibility that such discoveries might be made, and the most probable localities;
and even in this I had not the advantage which would have been afforded by the discoveries subsequently made by Sir W. E. Logan as to the true age of the gold-bearing rocks of the Chaudière district in the province of Quebec. At that time I ventured to hint at these probabilities in the following terms:—

"Since the gold discoveries in California and Australia, reports of similar discoveries have locally arisen, at different times in Nova Scotia; but, so far as I am aware, have always proved deceptive. Iron pyrites, or the bright golden scales which occur among the debris of granite containing black ferruginous mica, have usually been mistaken for the precious metal. Quartz veins, however, occur abundantly in some parts of this district, and it would not be wonderful if some of them should be found to be auriferous. It is, however, much more probable that such discoveries may be made in the inland metamorphic district described in last chapter than in that now under consideration, as its rocks bear a much closer resemblance to those of the auriferous districts in other parts of America. Most parts of Nova Scotia have been too well explored to leave much probability that any extensive surface deposits of the precious metal exist, but that it does not occur in small quantities cannot with safety be asserted, until careful trials of the sands and gravels of the streams flowing from the metamorphic districts shall have been made. The gold deposits of the River Chaudière in Lower Canada afford an instance in which, while individual search has proved quite unprofitable, washing operations on a large scale with the aid of machinery have repaid the labour and capital employed. Unless some accidental discovery should indicate a promising locality, it would be unwise for individuals to engage in such trials; but if a public survey should be undertaken, they would form a part of its duties." At that time, as some absurd articles had appeared in the public prints predicting the discovery of gold in very unlikely localities, and some excitement had been caused thereby, I feared even to say this much.

Public attention was first attracted to the existence of gold in Nova Scotia in 1860. Previously to that time, though Mr J. Campbell had found indications at Laurencetown, and accidental discoveries had been made by others, nothing practical resulted. The circumstances and place of the first discovery are thus stated in a Report of the Hon. Joseph Howe:—

"In March this year, a man, stooping to drink at a brook, found a piece of gold shining among the pebbles over which the stream flowed. He picked it up, and searching found more. This was about half a mile to the eastward of the debouchment of Tangier
River, a stream of no great magnitude, taking its rise not very far from the sources of the Musquodoboit, flowing through a chain of lakes which drain, for many miles on either side, a rugged and wilderness country, and falling into the Atlantic about forty miles to the eastward of Halifax. These discoveries were soon followed by others at Musquodoboit, Laurencetown, and the vicinity of Halifax, Lunenburgh and Wine Harbour; and arrangements were made by the Government for the allotment of mining areas, and for surveys of the district by Mr Campbell and Mr Poole.

The principal gold region of Nova Scotia is the long belt of partially metamorphosed rocks extending along the south coast from Yarmouth to Cape Canso, and, on the grounds which I have stated above, believed to be of Lower Silurian age. The sedimentary rocks of this region, as already stated, are slates and quartzites, usually in thick bands, and thrown into a great number of abrupt antilinal and synclinal folds ranging in direction from N.E. and S.W. to nearly east and west; though, where the band becomes narrow eastward of the St Mary's River, it would seem that the whole of these beds are thrown off from one predominant antilinal line. The gold occurs in veins of milky and translucent quartz, contained in the beds of quartzite and slate, and almost invariably running with the strike of the beds. It is associated with several other metallic minerals, to be mentioned in the sequel.

The veins range in thickness from a few inches to eight feet or more, and are not constant in thickness. This is a usual character of such deposits, and arises from their occupying irregular and often shifted or faulted spaces or openings in the beds. The dip of the larger veins usually coincides with that of the bedding, but not unfrequently crosses the slaty structure where this differs from the bedding. It results from this arrangement, that the actual relation of the veins to mining operations is rather that of beds than of veins, and that they dip away from the anticlinals in the same manner with the beds; one case being known where an auriferous quartz vein folds round the crown of an antilinal arch. These peculiar characteristics of the auriferous veins will be illustrated in the sequel. It is not easy from mere inspection of the vein-stone to predicate as to its value, since the gold is usually invisible to the eye. It is found, however, that the milky white and colourless varieties of quartz are the least rich, while that which has a gray or leaden colour, and is associated with metallic sulphures, which in their decomposition cause it to become stained, is the most productive.

* The quartzite or bedded quartz rock is locally known under the name of "whin."
I had an opportunity, in 1866, of examining one of the most extensively worked deposits in Nova Scotia, that of Waverley, near Halifax, in company with my friend, James Thomson, Esq., of Halifax, and shall describe it as a characteristic example of the whole. This district is situated in the vicinity of Lake Thomas, about ten miles distant from Halifax. The ore is extracted from a number of openings along the strike of the vein, worked by horse gins. The deepest pit was 225 feet, on the slope of the vein. On descending this pit, I found the vein to consist of compact grayish-white quartz, varying in thickness from four feet to six inches, but having an ordinary width of about two feet. Its strike is S. 50° W. magnetic, and its dip at an angle of 65° to 70° to the north-west. The lower wall, where I saw it, consists of coarse gray slate, with small cross veins of quartz. The upper wall is hard gray quartzite presenting a waved and crumpled surface, which I have no doubt is an original strata plane, and shows that the vein is strictly in the plane of the bedding (Fig. 218). The quartz of the vein itself has a laminated or banded appearance, and the gold seems to be most abundant near the walls; though visible gold is rare in this vein at present, the greater part being in a minutely disseminated and invisible state. The superintendent of one of the mines informed me that the thicker portions of the vein afforded scarcely more gold than the thinner portions, and that the gold is most abundant near the hanging wall. This vein is known as the Tudor vein, and two smaller veins occur in its vicinity. One
is ten feet to the north of the Tudor "lode" or "lead," the other is 1100 feet to the south. Their course appears to be similar to that of the principal lode.

The quartz from the workings of the "German Mine" at Waverley is crushed in an admirable stamping mill, worked by steam, and at present having sixteen stamps, though capable of being increased to more than double that number. The apparatus for the subsequent amalgamation and distillation necessary to obtain the gold appears to be of a very complete character, though improvements are still being made, more especially in the processes for obtaining gold from the metallic sulphures. There are three other mining properties in the vicinity, and in the line of the same veins, but in these the mining operations are less considerable. The yield of the Waverley mines in 1865 was 18,102 ounces. The number of men employed was 270. Five mills were in operation; four worked by steam and one by water. The yield of gold was rather more than an ounce for each ton of quartz crushed, and the rate of return per man was $895 per annum. In 1866 the yield per man was only $584. This Waverley district was until lately the most important gold-producing area in Nova Scotia.

On one of the claims on the Waverley area a remarkable undulation of the containing beds has affected one of the gold-bearing veins in such a way as to produce the appearance known as "barrel quartz," and which has been described by Professor Silliman, Dr Honeyman, and others. When first uncovered, the quartz vein at this place presented the appearance of a series of arches parallel to each other, and resembling trunks of trees placed horizontally side by side. At the time of my visit these barrels had been removed, but a more simple continuation of the structure could be seen in a shallow adit which was being worked in the course of the vein (Fig. 219), and also in some open excavations. The appearances showed that the barrel arrangement had constituted the crumpled crown of an anticlinal bend or arch—an explanation already given by Professor Silliman, and on one side the vein could be seen following the beds downward on the side of this arch. The arrangement indicates great lateral pressure; and, which is of more importance, proves conclusively that the quartz veins are contemporaneous with the folding of the rock, since they have perfectly followed its folds without fracture. That the auriferous quartz veins are not beds, is evident from the manner in which they send off branches into the neighbouring rock, as well as from their own crystalline structure and the character of the imbedded minerals. They are undoubtedly true veins, but not veins formed by fracture of
the containing rocks when in a hard and metamorphosed state. They have been formed and filled in the very act of the contortion and altering of the strata, and are thus of the nature of segregation veins, gradually formed as the spaces containing them were opened out, by a process so slow and gentle that the containing beds were bent without fracture and with but little crushing. The barrel quartz is most instructive as an illustration of this peculiar mode of formation, which must have often occurred in the disturbance and metamorphism of sediments; though geologists, from the habit of looking exclusively at fissure veins on the one hand, and beds on the other, have often been puzzled by these apparent anomalies which occur in the case of what may be termed contemporaneous veins following the strike of the enclosing beds, and which, while simulating beds, and obviously not filling mere rents or fractures opened in hard rocks, must have been produced by forces acting long after the original deposition of the containing strata.

Fig. 219.—Section of Vein of "Barrel Quartz," Waverley.

(a, a) Quartz vein, with contorted slate below and quartzite above.

The minerals associated with the gold at the Waverley Mines are mispekel (sulph-arsenide of iron), galena (sulphide of lead), blende (sulphide of zinc), and, more rarely, iron pyrites, copper pyrites, and calcareous spar. The visible gold appears in irregular grains and nuggets, included in and attached to the mispekel, galena, blende and quartz, in such a manner as to show that it is in all cases either of contemporaneous or later introduction, and it has probably been segregated from the mass of the quartz when the latter was in a soft or pasty condition, or while it was in process of deposition. This view is confirmed by the fact, that those veins and parts of veins, which contain many "sights" or visible portions of gold, are less rich in
disseminated gold than those which are deficient in visible gold. Some of the richest veins indeed rarely show visible gold, while others which contain nuggets are in other respects very poor. A specimen of calcareous spar from the Waverley vein, given to me by the superintendent, seemed to be of later formation than the quartz, and to have filled a "vug" or cavity; but in a specimen from the Britannia Mine, presented to me by Mr. R. G. Fraser of Halifax, a magnesian and ferruginous calc-spar holding gold occurs near the wall of the vein, and is interlaced with thin veinlets of quartz which are highly auriferous. Gold also occurs occasionally in the slate forming the wall of the vein, occupying minute crevices in the rock, and I observed at the Montagu Mine, near the Waverley, that gold occurs in thin veins of quartz and mispeckel, penetrating the slate to some distance from the main vein. At the Montagu Mine the vein worked is from four to eight inches thick, and is enclosed in gray slate nearly vertical, and with strike W. 5° S. to W. 10° S. Another smaller vein occurs at a distance of fifteen feet; and about five feet from this last the slate gives place to quartzite, which in this vicinity appears to alternate frequently with the slate.

No geologist who examines these veins can, I think, doubt their aqueous origin; but different opinions may be entertained as to the precise mode of introduction of the metallic minerals. The facts already stated, in reference to the structure and mode of occurrence of the veins, and the manner in which the gold is associated with the other minerals present, appear to me to prove conclusively that the veins were formed at the time of the disturbance and alteration of the containing beds, and in consequence of the mechanical and chemical changes then in progress. In this case the gold and other metallic minerals were probably contained in a state of solution in alkaline sulphurets, in the silica-bearing heated waters which penetrated the whole of the beds, and from which, as from a sponge, these silicious and metallic matters have been pressed out in the folding and contortion of the beds. In Nova Scotia it appears that those changes by which the older sediments have been brought into their present state occurred in the latter part of the Devonian period, as I have pointed out in my paper on these rocks in the "Canadian Naturalist and Geologist" already referred to, and in a previous chapter of this work. Accordingly, in one of the gold districts of Nova Scotia, as already explained,* nuggets and grains of gold are found in the Lower Carboniferous conglomerate associated with debris of the quartzose and slaty matrix. This interesting example, first noticed by Mr. Hartt, proves that the gold veins

* See above, under "Carboniferous," p. 277, ante.
were in their present state at the time when this old gravel of the Lower Carboniferous period was being formed.

To sum up our conclusions on this subject:—The rocks containing the auriferous veins of Nova Scotia are of Lower Silurian age. The veins themselves were opened out and filled with the minerals which they now hold at the time when these Lower Silurian rocks were contorted and altered, and this probably occurred in the Devonian period, contemporaneously with the production of intrusive granites, and in connexion with the changes of metamorphism then proceeding. It was certainly completed before the beginning of the Carboniferous period, since which time little change seems to have occurred in the veins.

The "Gold Districts" at present recognised by the Government of Nova Scotia are,—1st, The Ovens and Gold River, in Lunenburgh County; 2d, Renfrew and Mount Uniacke, Hants County; 3d, Oldham, Waverley, Montagu, Laurencetown, and Tangier in Halifax County; 4th, Wine Harbour, Sherbrooke, and Stormont, in Guysborough County; and, 5th, Middle River or Wagamatzook, Victoria County. All of these, except possibly the last mentioned, and the opening in the Lower Carboniferous conglomerate at Gay's River already mentioned, are in Lower Silurian rocks.

In all parts of this district, the conditions under which the precious metal occurs in the rocks are similar to those above described; but at the "Ovens" in Londonderry County we have the remarkable, and, in so far as I am aware, unique spectacle of a modern gold alluvium now actually in process of formation under the denuding action of the waves. The slaty rocks of this coast holding auriferous quartz veins are daily being cut away by the waves of the Atlantic, and the gold is accumulating in the bottom of the shingle produced, and in the crevices of the subjacent rock. The portion of this deposit available at present is only that on the beach; but there can be no doubt that if the bed of the sea were elevated into land, the alluvia exposed would be precisely similar to those of California or Australia. We have thus in Nova Scotia marine gold alluvia of Lower Carboniferous and of modern date, and there are no doubt others of intermediate ages; but their amount, in so far as yet ascertained, does not seem to be great, and the chief supply of gold is likely to be derived, as at present, from the original repositories in the quartz veins.

The annual yield of gold from the Nova Scotia Mines is stated in the Report for 1865 to be 24,867 ounces; that for 1866 is 24,162, that for 1867, 27,583 ounces. These amounts cannot, however, be considered as approaching to the possible productiveness of these
mines in the future. The total area of the gold region may be estimated at about 7000 square miles, and the proclaimed districts do not yet reach a twentieth part of this area. Discoveries are being continually made; but in a country covered with wood and with boulder clay these must be slow and gradual in their progress. The quartz veins, which run in the strike of the beds, seem everywhere to contain gold, and the rocks throughout the whole area, are interlaced with such veins, few of which have been exposed, and of these few have yet been tested. It may therefore be anticipated that the productive gold districts will for some time continue to enlarge and increase in value, and that occasionally a strong stimulus will be given to enterprise by great and unexpected discoveries.

It is also to be observed that the veins at present opened are not yet worked up to their highest point of profit. Even in the larger mines, like those of Waverley, no vertical shafts have been sunk on the vein, nor have the excavations been extended beyond a very moderate depth. The desire to make the work remunerative as it proceeds has induced all the Companies to sink on the slope of the veins, and to conduct the works on the cheapest possible plan. I am convinced, however, from a consideration of the regularity and extent of the veins, that were vertical shafts sunk to a great depth, and regular mining on the Cornish plan pursued, the preliminary outlay would be more than repaid by the increased production. At the depths to which excavations have been carried some of the veins have improved; others appear to have diminished in productiveness; but there is no reason, except the analogy of certain other gold regions, and this is often a very fallacious guide, to doubt that the principal veins opened continue productive to great depths, and that by opening them extensively richer portions might be found to compensate for the poor ground sometimes reached in the present workings. It would, I think, repay the provincial Government to give special privileges to Companies which would expend sufficient capital to open mines on a large scale.

In 1855, I supposed that the probabilities of the occurrence of gold in the inland hills of Upper Silurian age were even greater than those in the older rocks of the coast. This view was based on the then received age of the Canadian auriferous deposits, and on the apparently more metalliferous character of the inland rocks. Experience, however, has hitherto been in favour of the coast series. Gold has, it is true, been found in the inland district, and possibly in the Upper Silurian series. The Middle River district in Cape Breton may be of this age. Gold has been found in the vicinity of Cape Porcupine,
and in a recent paper by Mr. P. S. Hamilton, I find the statement that it has been found near the head waters of the Musquodoboit and Stewiacke Rivers, and also near Five Islands. The same authority also states that gold has been found in quartz occurring in the Triassic Trap of Partridge Island and Cape D'Or. In this last case the metal has possibly been brought up by means of the Trap from its original repositories in the Silurian rocks below. These facts indicate that though the coast series is at present much more productive, important discoveries may yet be made in those rocks of Upper Silurian age which constitute the inland metamorphic hills extending from Annapolis County to the North of Cape Breton, and also constituting the Cobequid range. On the view of the origin of the veins given above, there is no reason why the Upper Silurian series should not be auriferous as well as the Lower; and it is known that gold occurs in both series in the gold district of the province of Quebec, and perhaps more abundantly in the Lower Silurian.

The large areas of altered Lower and Upper Silurian rocks, indicated in the map as occurring in New Brunswick, are also likely to afford gold, more especially as a portion of this area in Northern New Brunswick may be regarded as a continuation of the gold district of Lower Canada. Nor are the metamorphic rocks of the southern part of New Brunswick unlikely to afford the precious metal, more especially those of Lower Silurian age; and recent discoveries in Canada show that this probability may extend even to the still older Laurentian series.

It has been remarked, that it is wonderful that in a district so thickly settled, and so much subjected to the operations of the surveyor, road-maker, and agriculturist, as the south coast of Nova Scotia, so numerous deposits of gold should so long have escaped observation. Geologists also and mineral explorers have repeatedly visited and passed through the district. Still, when it is considered that the country is netted with quartz veins, and that perhaps not more than one in a million of these is appreciably auriferous, the wonder ceases. Ordinary observers do not notice such things. A geologist, not specially looking for useful minerals, soon becomes wearied of breaking up and examining barren veins of white quartz, and certainly cannot spend two years in "prospecting," as the discoverer of the Wine Harbour deposit is said to have done. My own field notes contain the record of many days of hard work among these unpromising rocks, and countless quartz veins have suffered from my hammer without yielding a speck of gold. I believe I have visited
all the localities of the discoveries except Tangier, and in some of them, as at the St Mary's River, Indian Harbour, and Wine Harbour, I have spent days in examining the rocks, not certainly with a special view to the discovery of gold, but often with the assistance of intelligent friends who were good observers. The truth is, that in cases of this kind it is difficult to make the initial discovery; but this once made, it is comparatively easy to trace the productive rocks over considerable districts, if the requisite knowledge of the geological character of these has been obtained.

The conditions under which gold occurs in Nova Scotia are quite similar to those of other auriferous regions. The principal point of difference is the amount of gold found in rock veins, as compared with alluvial washings derived from their waste—a mere accident of the deposits or of the mode of exploration. It is probable that the Nova Scotia deposits are strictly a continuation of those which run along the eastern Appalachian slope as far as Alabama, and which may throughout, as in Canada and the Ural Mountains, occur in altered members of the Silurian series. It is to be anticipated that the connexion with the auriferous deposits of the United States may soon be affected by the discovery of gold in the metamorphic districts of New Brunswick. The quartz veins of Nova Scotia are remarkably rich in gold; and, as already stated, there is no reason that they will be found to diminish in productiveness in following them downward.

There is little room to doubt that gold will be found throughout the coast metamorphic district of Nova Scotia: more especially the slaty rocks of southern Guysborough, Halifax, Lunenburgh, and the northern parts of Queen's, Shelburne, and Yarmouth, may be expected to be auriferous. Careful examination may show that the gold occurs chiefly or entirely in the veins traversing certain bands of the thick beds of slato and quartz rock in these districts; and these may be recognised by their mineral character, especially if defined in their relation to the other rocks by a detailed survey of the productive localities. Still the indications in one locality may not be unerring when applied to another; and in the meantime it would be the best course for explorers to look at all quartz veins, and especially at those occurring in soft dark slaty beds, particularly near the junction of these beds with other rocks. Further, it would seem that the narrower veins, those following the strike of the rocks, and those stained with iron rust, are most likely to be productive. Minute examination should be made, as gold often occurs in a very fine state of division, though sufficiently abundant to pay for extraction. Nor should the
washing of the sands and gravels in the beds of rivers, and of the alluvial deposits on their banks be neglected, for it may happen in many cases that gold may occur in these when the veins originally containing it have had their outcrops worn away or concealed. Exploring for gold in new localities cannot be expected to be remunerative, except in rare cases; but it would be well at least that persons residing in the district above referred to, would embrace such opportunities as may occur of examining the quartz veins in their vicinity. It is to be hoped that in a short time a geological survey will place within their reach greater facilities than those which now exist, for making discoveries, and improving those already made.

The table on the next page, from the Reports of the Commissioner of Mines for 1866 and 1867, will give more precise information as to the present state of gold production in Nova Scotia, and the following remarks relate to districts not mentioned in the table:

The Ovens in Lunenburg County yielded, in 1862, 361 oz. of gold from surface washings. The mine at Laurencetown yielded in 1862 75 oz., and that at County Harbour 40 oz., but operations have been suspended at these places. Mount Uniacke is a new locality recently opened, and yielded in 1867, 947 ounces of gold. Localities in Upper Stewiacke, Musquodoboit, and Sheet Harbour, are also attracting attention.

The "Chester Mining Company" have opened shafts on some of their gold veins on Gold River, which are said to be very promising; one sample tested having given 77 dwt. gold, and 12 oz. silver per ton. Alluvial sand from the banks of Gold River is said to have afforded to Professor How gold at the rate of 14 dwt. 10 grains to the ton. This last fact is of some interest as indicating the possible occurrence of auriferous alluvia which seem to be rare in Nova Scotia; but perhaps might reward more careful search, more especially in the lower part of the boulder clay, and in the bottom of the beds of more recent alluvial sand and gravel. Even poor deposits of this kind might be made to pay by the methods of hydraulic washing on a large scale now in use in California.

The mining of gold for the present eclipses all the other resources of this district of Nova Scotia. It is not known to contain any other metallic minerals of value. Its granite, however, affords an excellent building stone, now used to some extent, more especially in Halifax. Some of the bands of slate have been opened for roofing slates, but I believe not as yet on a large scale; and clays of excellent quality for bricks and coarse pottery occur at Chazzetcook and other places on the Atlantic coast, and are manufactured to some extent.
Statement showing the average daily labour employed, the amount of Quartz crushed, "the yield of Gold per ton of Quartz," the quantities of Gold from Alluvial Mines, the yield of Gold, the maximum yield per ton in each District and in the whole Province, and the value of the average yield of Gold per man employed in Mining for twelve months ending September 30, 1866, with the totals for 1867.

<table>
<thead>
<tr>
<th>Districts</th>
<th>Average men employed</th>
<th>Crushing Mills employed, Sept. 30, 1866</th>
<th>Steam power</th>
<th>Water power</th>
<th>Quartz, Sand, and Gravel crushed</th>
<th>Ytd. per ton</th>
<th>Gold from Alluvial Mines</th>
<th>Total yield of Gold</th>
<th>Maximum yield per ton</th>
<th>Average yield per man for 12 months, at $19.90 per oz.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stormont, Isaac's Harbour</td>
<td>34½</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1956.07</td>
<td>0.10.18</td>
<td>...</td>
<td>1055.07.13</td>
<td>3.00.00</td>
<td>$565.91</td>
</tr>
<tr>
<td>Wine Harbour</td>
<td>35</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>2192.08</td>
<td>0.11.04</td>
<td>...</td>
<td>1224.13.01</td>
<td>8.70.00</td>
<td>647.27</td>
</tr>
<tr>
<td>Sherbrooke</td>
<td>69</td>
<td>4</td>
<td>4</td>
<td>...</td>
<td>2684.01</td>
<td>1.22.09</td>
<td>...</td>
<td>5157.14.17</td>
<td>16.06.16</td>
<td>1382.36</td>
</tr>
<tr>
<td>Tangier</td>
<td>28</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>956.02</td>
<td>0.08.19</td>
<td>11.17.04</td>
<td>420.00.03</td>
<td>4.18.00</td>
<td>277.50</td>
</tr>
<tr>
<td>Montagu</td>
<td>26½</td>
<td>1</td>
<td>1</td>
<td>...</td>
<td>563.05</td>
<td>1.06.00</td>
<td>...</td>
<td>707.01.01</td>
<td>3.12.00</td>
<td>488.95</td>
</tr>
<tr>
<td>Waverley</td>
<td>332</td>
<td>7</td>
<td>6</td>
<td>1</td>
<td>17286.00</td>
<td>0.12.01</td>
<td>...</td>
<td>1048.00.21</td>
<td>3.07.00</td>
<td>584.31</td>
</tr>
<tr>
<td>Oldham</td>
<td>36</td>
<td>7</td>
<td>5</td>
<td>2</td>
<td>964.02</td>
<td>0.16.02</td>
<td>...</td>
<td>776.12.04</td>
<td>6.03.19</td>
<td>399.06</td>
</tr>
<tr>
<td>Renfrew</td>
<td>94</td>
<td>7</td>
<td>5</td>
<td>2</td>
<td>4181.07</td>
<td>0.19.23</td>
<td>...</td>
<td>4176.03.17</td>
<td>9.18.00</td>
<td>821.90</td>
</tr>
<tr>
<td>Unproclaimed and other districts</td>
<td>12½</td>
<td>1</td>
<td>...</td>
<td>1</td>
<td>179.10</td>
<td>0.17.15</td>
<td>24.17.11</td>
<td>158.11.08</td>
<td>12.00.00</td>
<td>234.65</td>
</tr>
<tr>
<td>Totals</td>
<td>667½</td>
<td>38</td>
<td>27</td>
<td>11</td>
<td>30963.02</td>
<td>0.15.14</td>
<td>36.14.15</td>
<td>24162.04.13</td>
<td>87.00.00</td>
<td>$669.41</td>
</tr>
<tr>
<td>Totals for 1867</td>
<td>676</td>
<td>35</td>
<td>27</td>
<td>8</td>
<td>30673.00</td>
<td>0.17.23</td>
<td>49.01.15</td>
<td>27583.06.09</td>
<td>26.13.08</td>
<td>$765.00</td>
</tr>
</tbody>
</table>
2. Lower Silurian of the south shore of New Brunswick.—The Acadian group.

The city of St John stands on the outcropping edges of a thick band of hard slaty rocks underlyng the Devonian beds, which appear at the southern end of the city. These St John rocks were until recently of uncertain age. Believing them to underlie conformably the last-mentioned series, I had supposed them to be Lower Devonian or Upper Silurian, but Mr Matthew has ascertained that they are really unconformable to the overlying formation; and more recently the discovery of fossils by that gentleman and Mr Hartt in the lower part of the series has set the question at rest.

The general character of the formation is thus given by Mr Matthew:—"It consists of a gray clay slate often sandy, the layers of which present glistening surfaces, owing to the abundance of minute spangles of mica. This rock very frequently becomes very fine in lamination and texture, and dark in colour. Four thick bands of this kind occur, the uppermost of which is a black papyraceous shale. The three bands of coarser shale which alternate with them include numerous layers of a fine compact gray sandstone, from a few inches to ten feet or more in thickness; a few are so highly calcareous as to become almost limestones. The surfaces of the layers in the coarser beds are frequently covered with worm-burrows, ripple marks, shrinkage cracks or scratches—apparently made by creatures gliding through the shallow waters in which they were deposited, and other evidences indicating that the slates are in great part of littoral origin."

The following section of the series at St John is given by the same observer:—

1. a. Gray sandstone or quartzite
 b. Coarse gray arenaceous shale.
 (This and the preceding are passage-beds from the Coldbrook or Huronian group.)
 c. Gray argillaceous shale, rich in fossils: Paradoxides, Orthis, Conoccephalites, Oboella.
 d. Black carbonaceous shale, full of fossils: Paradoxides, Conoccephalites, Orthis, Discina, Orthoceras, and a thin subtriangular shell resembling Theca, all much distorted

2. a. Dark-gray shales, with thin seams of gray sandstone
 b. Coarser gray shales, with gray flagstones
 c. Gray sandstone and coarse shales: Lingula, etc.,
 d. Black carbonaceous and dark-gray argillaceous shales more compact than the last

3. a. Dark-gray shales, finely laminated
 b. Black carbonaceous and dark-gray argillaceous shales

4. Shale and slates resembling 2 a and b

Carry forward 2300
Westward of the St John River, the rocks of this series extend through Carlton, but soon diminish in thickness and disappear. To the eastward they are prolonged in a band skirting the older (supposed Huronian rocks) to Loch Lomond, where they disappear along the line of outcrop proceeding from St John, but reappear on the other side of a synclinal, and extend with opposite dips nine miles farther to the eastward. Their whole extension in this district is about thirty miles, with a breadth of about four miles. Farther details will be found in Professor Bailey's Report.

Though thus limited in their distribution, these beds are in the highest degree important in a geological point of view, as their fossils establish for the first time on the American Continent a series of fossiliferous beds older than the Potsdam sandstone, hitherto supposed by American geologists to be our oldest Paleozoic group; and corresponding with the older Lingula flags of Wales, and with Barrande's "Etage C." in Bohemia. These fossils also contribute to affix the same age to the Paradoxides slates of Newfoundland, and of Braintree, Massachusetts. In other words, they add a new formation to the Paleozoic period in America. This formation has as yet been known as the St John group; but I think this name unsuitable, both on account of the number of places known as St John, and on account of the variety of formations occurring near St John in New Brunswick, and would therefore propose for the group now under consideration, characterized by Paradoxides, Conoccephalites, etc., and the oldest known member of the Paleozoic of America, the name _Acadian Group_, by which I hope it will be known to geologists in whatever part of America it may be recognised.

In the northern part of New Brunswick a broad belt of metamorphic rocks with granite bands extends from the south shore of the Bay de Chaleur westward of Bathurst in a south-west direction to the sea-coast of Maine. These rocks were denominated "Cambrian" by Dr Gesner and Dr Robb, but by more recent observers are regarded as Lower Silurian, principally on the ground of difference in mineral character from the Huronian rocks and similarity to those of the
Lower Silurian as developed at St John and in Nova Scotia. The following remarks on their age are from a paper by Mr Matthew, already quoted:

"A provincial collection in the University Museum of the rocks in this quarter closely resembles those of the Lower Silurian slates of St John, and differs essentially from the Upper Silurian and Devonian deposits which have been recognised in this region.

"In the alternations of arenaceous and dark-coloured clay slate with intercalated quartzite, this formation, which is also auriferous, resembles the gold-bearing series of the Atlantic coast of Nova Scotia, long ago recognised as Lower Silurian by Dr Dawson. If both prove to be on the same horizon geologically as the St John series, namely, the lower part of the Lower Silurian, our knowledge of the age and relations of the older metamorphic rocks of Acadia will be placed on a firmer basis than heretofore.

"So far as our knowledge goes, they differ from contemporaneous deposits to the westward in being conformable to the Huronian series; and also in the rarity of calcareous and magnesian sediments, there seeming to be little else than shales of various degrees of fineness, flagstones, and quartzites."

Professor Hind, in his Preliminary Report, regards these rocks as equivalent to the Quebec group, which is now recognised by the Canadian Survey as between the Calciferous and Chazy; but whether this is their real age, or that somewhat lower horizon which is marked by the fossils of the St John group, we have at present no certain means of determining. The rocks above referred to constitute two broad bands flanking a ridge or series of interrupted parallel ridges of granite, believed to be of Devonian age. In the maps of the Province these belts have usually been marked as uniform and regular, with an aggregate width of 35 to 50 miles, but Professor Bailey informs me that many facts known to him render it probable that their limits are more irregular and not well ascertained. I have marked them in the map as nearly as possible in accordance with the views of Professor Bailey and Professor Hind.

A shorter belt of mica schist and other metamorphic rocks associated with granite, which runs parallel to the south-eastern side of the New Brunswick Coal-field, and near the St John River, comes into contact with the supposed Upper Silurian belt of Kars and Havelock, is believed by Professor Bailey, on the evidence of mineral character, to be probably of Lower Silurian age. This belt, extending to the south-west, unites with the others above mentioned in the south-western corner of the province, the greater part of which is
believed to be occupied with altered Lower Silurian rocks; but
the precise distribution of these, and the limits between them and
the older and newer rocks in their vicinity, are very imperfectly
known.

Useful Minerals of the Lower Silurian of New Brunswick.

Gold.—The probability that these rocks in New Brunswick may
be geologically equivalent to the auriferous rocks of Nova Scotia
and of the province of Quebec, would of itself excite hope that
the precious metal might occur in them. In addition to this, drift
gold has, according to Professor Bailey, been found on the head
waters of the Tobique and Miramichi, and at the Grand Falls
of the St John, and it has also been found in situ by the officers of
the Geological Survey of Maine at St Stephens. At this place
it occurs in quartz veins in micaceous schist. Professor Hind also
states that gold has been found in a “black plumbaginous slate”
at St Stephen. These indications are sufficient to warrant the hope
that important discoveries would reward a careful exploration
of this district.

Antimony.—This metal was discovered to exist in the parish of
Prince William, York County, about twenty-five miles from Frederickton in 1863, and subsequent exploration has led to the belief of
the existence of very important deposits. The ore is a pure sulphuret,
capable of yielding about 70 per cent. of metallic antimony, and is
contained in numerous large and well-defined veins of quartz, filling
lines of dislocation in highly tilted argillaceous slates and quartzites.
“These veins are true veins of segregation, showing a distinctly
banded character, and an alternation of materials, the antimony ore
itself frequently forming distinct layers, though often penetrating irregularly the surrounding rocks. Excavations have been made by different
Companies at several points, two of them distant more than three
fourths of a mile from each other, and have in each case proved productive. No very persistent or vigorous operations have, however,
as yet been carried on. 533 cwt. of ore was exported in 1864.”*

Small quantities of silver occur in the antimony ores of this
place.

Lead.—Indications of galena or sulphuret of lead are reported
as having been found on the Tobique and elsewhere; but, as yet,
nothing remunerative.

Copper.—In Professor Hind’s Report, a number of localities of
copper ores are mentioned; but as in all of them the metal appears

* Professor Bailey, MS.
USEFUL MINERALS.

Iron.—The most important deposit at present worked in this district is that at Woodstock. At this place the ores, according to Professor Hind, are in "sedimentary deposits many feet in thickness, interstratified with red and green argillites or with calcareo-magnesian slates of a red and green, or mottled red and green colour. The ores vary in composition, being both red and black. The black is sometimes feebly magnetic, but it derives its colour more from the presence of manganese than from the black magnetic oxide."

One or more furnaces are in constant operation at Woodstock, and others are in process of erection. The iron is of a superior quality. The ore yields 32 per cent. The quantity produced in 1864 was 2750 tons.

Manganese occurs in the Tattagouche River, and has been worked to a small extent.

Nickel, in the form of green silicate, is found in small quantities associated with the antimony ore of Prince William.

Zinc, in the state of blende or sulphuret of zinc, also occurs in small quantity in Prince William.

Fossils of the Primordial or Acadian Group at St John.

These are the oldest organic remains which I can present to the reader from the rocks of New Brunswick or Nova Scotia, and they represent the oldest forms of life known to geologists, with the exception of the far more ancient Eozoon Canadense, and the few other organisms found with it in the Laurentian rocks of Canada. These fossils were originally discovered at Coldbrook by Mr Matthew, and they were subsequently collected by Professor Bailey, Mr Matthew, and Mr Hartt, at Ratcliffe's Millstream and also near the city of St John. The first publication in reference to them was the following notice by Mr Hartt in Professor Bailey's "Observations on the Geology of New Brunswick," 1865.

"My examination of the fossils collected last August, from the St John group, at Ratcliffe's Millstream, by Professor Bailey, Mr George Matthew, and myself, and of a collection made from the same group at Coldbrook, in 1863, by Messrs George and C. R. Matthew, is not yet sufficiently complete to enable me to give an extended description of them here. I shall therefore limit myself at present to a notice

* For the information under the above heading, I am indebted to Professor Hind's Report and the MS. notes communicated by Professor Bailey.
of the genera, and of the aid they afford in the determination of the
ground of the position of the St John group, leaving the descriptions and
figures of the species to be given in a future paper.

"The fossils as yet known to occur in the rocks of the St John group,
are principally Trilobites, which are represented by quite a large
number of species, and Brachiopoda, which last are of more rare
occurrence. All these fossils are preserved as casts or impressions, the
tests of the crustacea and the shells of the Brachiopoda being usually
transformed into oxide of iron.

"All the specimens have suffered more or less from distortion through
pressure and the metamorphosis to which the rocks enclosing them
have been subjected. The Trilobites occur also as detached fragments,
so that their accurate determination is not easy, and more material is
required in order satisfactorily to figure and describe all the species.

"Representatives of four genera of Trilobites have been obtained thus
far from the St John rocks, viz.:—Paradoxides, Conocephalites
Agnostus, and a new genus (?) allied to Conocephalites.

"The number of species in each genus has not yet been satisfactorily
made out; but of Paradoxides there are at least five, of Conocephalites
seven, and of Agnostus and the new genus each one.

"All the species appear to be new. One of the Paradoxides bears
a close resemblance to P. rugulosus, Corda, from the Etage C. of
Barrande, in Bohemia, and one of the Conocephalites is allied to C.
coronatus, Barrande, from the same fauna and horizon, though neither
is identical with the European species.

"There are six species of Brachiopoda, belonging to the genera
Orthis, Discina, Obolella, and Lingula. I have not been able to
identify any of the forms with described species.

"Though all the species from the St John group are apparently new,
yet the occurrence of Paradoxides and Conocephalites, genera confined
entirely to the so-called Primordial fauna of Barrande, and every-
where characteristic of it, together with the strong likeness borne by
the St John species, in their facies, to those of the same genera of the
fauna of the "Primordial" in Europe and America, enable us unhesit-
atingly to assign to the St John group, or at least to that lower part
of it which has afforded Trilobites, a geological position equivalent to
Barrande's Etage C. or to the Lower Potsdam of America.

"Barrande uses the word fauna, in his term primordial fauna,
in a sense equivalent to epoch or horizon. A fauna is strictly a
collection of animals confined within a limited geographical area.
The terms "primordial fauna," "second fauna," are used with
propriety when applied to the groups of fossils characterizing the
The lower part of the St. John group, at Coldbrook, has been divided by Mr. Matthew, on lithological grounds, into three bands, viz.:

1. The lower or arenaceous band, with no determinable fossils, and constituting passage beds from the Coldbrook group.

I have not observed No. 2, at Ratcliffe's Millstream. No. 3, at Coldbrook, corresponds exactly, in its fossil remains, to the bed at the Millstream, from which the Trilobites, etc., were obtained. Nearly, if not all the fossils I have seen from No. 2, at Coldbrook, are entirely distinct from those of No. 3 of the same locality and the Millstream; but more material is required to establish the claim of these two beds to be considered as being characterized by distinct successive faunas. At all events, all the species from both beds are different from those elsewhere occurring, and for at least bed No. 3, we have in the vicinity of St. John a distinct fauna of the Primordial period.

Other engagements have prevented Mr. Hartt from fulfilling his intention of publishing detailed descriptions of the species. In compliance, however, with my desire to place these interesting forms before geologists in this work, he has kindly communicated to me his MS. notes; and I have extracted from these the following descriptions of several of the more common species, with notices of the others:

Eocystites primaevus, Billings, Coll. Hartt (Fig. 220).

![Eocystites](image)

The little plate with radiating sculpture, represented somewhat enlarged in the figure, is regarded by Mr. Billings, to whom the specimens have been submitted, as indicating a new genus of Cystideans.

Mr. Hartt desires me to state his obligations to Professor Agassiz for the opportunity of comparing these fossils with specimens in the Museum of Comparative Zoology, Cambridge, U.S.
Fig. 221. *Lingula Matthewi*, Hartt, MS. (Fig. 221). Dorsal valve, circular in outline or very slightly wider than long, extremely flat, the convexity being scarcely noticeable; shell very thin; on each side a segment such as would be cut off by a chord running from the umbo to the extremity of the transverse diameter, is slightly turned up on the margin.

Inside, a strong mesial ridge, rounded and of moderate width, runs from the umbo to a point a little beyond the middle of the shell; at the umbo this ridge bears a small nail-head-like process or swelling, and there are two minute and extremely short secondary ridges, originating from the head of the primary, and extending obliquely backwards. Inner surface marked with numerous indistinct and irregular concentric striae; outer surface not visible.

I have found one perfect dorsal valve in a piece of slate sent me by Mr. G. F. Matthew from Coldbrook.

Lingula, n.s., Hartt, MS. Differs from the above in being almost straight in front, broadly rounded at the sides and narrowed towards and pointed at the umbo. It was also larger, thicker, and more convex. Ratcliffe’s Millstream, Hartt.

Oboella transversa, Hartt, MS. A very small, transversely oval species, from Coldbrook, St John.

Discina Acadica, Hartt, MS. (Fig. 222). Shell elliptical in outline; sides more or less straight. Conical, but very depressed. Apex apparently central. Surface marked with a number of deep concentric irregular sharp furrows, not always continuous, and often breaking up into smaller grooves; and all these seem at times to be impressed with lighter lines running nearly parallel with them. Of the large furrows, from nine to ten can usually be counted. The whole surface of the shell is marked with a great number of delicate raised lines radiating from the summit to the circumference, and just visible to the naked eye. Rather rare in the Trilobite shale at Ratcliffe’s Mill. The shell appears to have been thin, and is probably much compressed vertically. Collected by N. B. Survey and J. W. Hartt.

Orthis Billingsii, Hartt, MS. (Fig. 223). Shell subquadrate to semicircular, broader than long; greatest width at the hinge-line; moderately convex; greatest thickness at about the middle, depressed in front. Hinge-line straight. Dorsal valve semi-circular or subquadrate, depressed, with a shallow sinus running from the umbo to the front.

Orthis Billingsii. Umbo not elevated above the hinge-area, which is
very narrow, and marked by fine parallel longitudinal striae. Hinge-plate bearing two slight incurved internal processes. Ventral valve more arched than the dorsal, with a narrow flat margin produced in the plane of the valve. Hinge-area triangular, concave, and marked with fine parallel lines. Umbo elevated above hinge-line about one-fourth of length of shell. Foramen triangular and of moderate size. Surface ornamented by about thirty prominent rounded radiating plicae, increasing in width towards the margin, becoming less elevated and slightly curved toward the ears, crossed by a number of distinctly marked, concentric, aquamose lines of growth, and numerous fine concentric striae. The radiating plicae increase by bifurcation, which takes place at about one-third the distance from the umbo to the margin. Rather common in the Trilobite shales, Ratcliffe's Millstream, and St John. Collected by N. B. Survey and J. W. Hartt. The figure does not show the fine concentric lines.

Orthis, n.s. There appears to be a second species in the St John slates; but the material at hand does not at present warrant its description.

Conocephalites Baileyi, Hartt. MS. Head transversely semieliptical, half as long as wide; anterior margin in front more or less straight, posterior margin quite straight; posterior angles of cheeks slightly rounded and unfurnished with spines. Facial suture never visible; anterior margin of shield with a narrow very elevated border, which is widest and most elevated in front, and grows narrower and lower posteriorly, becoming obsolete, or nearly so, at the posterior angle of the shield. This border is separated from the other part of the shield by a deep, rather wide furrow, which is deepest in front but grows shallower as the anterior border loses in height going posteriorly. General form of shield convex, but much depressed. Glabella more depressed than the cheek, sub-triangular, depressed convex, broadly rounded in front, and separated from the cheeks and front by a deep well-marked furrow; width at base equal to length, which last is about 7-10ths that of shield; very much narrowed in front. Lateral bounding furrows inclined to one another at such an angle as would cause them to meet if produced to the middle of the front margin of head. Occipital furrow deep and well marked, slightly arched forward in middle, and curving downwards and forwards, growing narrower at the extremities, and less deeply cut than the bounding furrow of the Glabella. No lateral glabellar furrows, or very slightly marked, never seen on casts. Occipital ring more elevated, and rather wider in the centre; bent forward at the sides; narrow, with a very low spine-like tubercle in the centre. Posterior furrow moderately
deep and wide. Sides of shield bent slightly downwards. Posterior angles flattened. Cheeks sub-triangular, bounded by the straight dorsal furrow, the straight groove which separates them from the glabella, and the curved marginal furrow. They are more convex or gibbous than the glabella, sloping gently towards the marginal furrow, but steeply to the other bounding grooves. In the cast they are marked on the edge of the bounding groove of the glabella at the points where the straight sides of the latter begin to curve around the front by two small, low, but well-marked ocular prominences, from each of which extends a slight ocular ridge, with a more or less outward curve towards the posterior angle of the shield, but usually losing itself at about half the distance in a system of delicate ramifications, which may often be traced to the posterior angles of the cheek lobes. Like ramifications are thrown off for the whole length of the ridge from its anterior side, and these occupy the surface of the cheek-lobes in front of the line. The surface of the cast sometimes appears granular, but the mould is always smooth, and the outer surface of the shield was unfurnished with tubercular or granular ornamentation. The posterior border on each side of glabella is very elevated in the middle, and loses height thence each way. Cephalic shield sometimes an inch and a half in width.

Heads only of this species have been found. They occur in moderate abundance in the primordial shales of the St John group at Ratcliffe's Millstream. Collectors, Professor L. W. Bailey, G. F. Matthew, J. W. Hartt, and C. Fred. Hartt.

Fig. 224.—Conocephalites Matthewi, head.*

Conocephalites Matthewi, Hartt, MS. (Fig. 224). Head, semi-circular to semi-elliptical, more than twice as wide as long; front and lateral margins forming a regular curve; posterior margin nearly straight; posterior angles of shield flattened and rounded without spines; margin with a strong, round, rather narrow fold, which becomes narrower and lower towards the posterior angle of shield, where it disappears. This is separated from the cheek-lobes by a very deep, moderately broad groove. This groove is arched forward in front by a large semi-globose swelling, situated just in advance of

* Owing to the difficulty of drawing from imperfect and distorted specimens, this and the following figures do not adequately represent all the characters of the species as described by Mr Hartt.
the glabella, encroaching upon the marginal fold, causing it to be thickest on each side of this prominence.

The posterior margin is also folded, but the plait is more or less inclined backwards. The fold is narrow near the occipital ring, but grows more prominent, and gains in width towards the posterior angle, but, like the anterior fold, it disappears at that point. Its course is not straight; at about half the distance of the outer angle it bends slightly backwards and downwards, and then forwards slightly, to disappear on the flattened or rounded angle of the shield. This fold is separated from the cheek-lobes by a groove shallower and broader than the marginal one, which it resembles, by expanding gradually into the flattened space of the outer angle. This groove follows a course parallel to the fold which it accompanies. Length from occipital furrow about half that of head.

Glabella sub-conical, longer than wide, strongly rounded in front, and about half as wide anteriorly as posteriorly; length about half that of whole shield, strongly convex, but less elevated than the cheek-lobes, bounded laterally and anteriorly by deep grooves, the anterior being not so deep as the posterior. The sides of the glabella are impressed and divided into lobes by three pairs of deep lateral glabellar furrows. Those of the posterior pair are the longer and more deeply impressed. These furrows begin abruptly at a point somewhat in advance of the middle of the longer diameter of the glabella, and directed backwards at an angle of about 45° to the antero-posterior diameter of the shield, disappear abruptly without gaining the medial line, usually extending a little more than the third of the distance across the glabella. Those of the median pair begin also on the bounding groove very abruptly, only a little in advance of the posterior pair, but they are usually not so oblique, and extend on each side not more than a quarter of the distance across the glabella. The distance between the outer extremity of the median and anterior furrows is somewhat less than between those of the median and posterior, and these but slightly impress the sides of the glabella, and occasionally are scarcely visible. The anterior lobe is about as wide as the one which follows it.

The occipital furrow is deeply cut in the outer third of its length, and strongly directed forwards. In the middle third it is not so deep, and is quite strongly arched forwards. The occipital ring is narrow, strongly convex, and vertically arched, the sides being more or less narrowed, turned downwards and forwards, being projected obliquely more or less across the posterior marginal cheek-groove towards the inner posterior angle of cheek-lobe. The ring projects backwards beyond the margin, but not beyond the posterior lateral angle of shield. The
middle part is produced into a very short conical tubercle-like spine, directed slightly backwards. The cheek-lobes are strongly gibbous, and very regularly arched, the convexity being stronger anteriorly. A narrow distinct wavy ocular ridge begins on the cheek-lobe, just opposite the anterior part of glabella, and, thinning gradually out and arching, at first slightly forwards, curves round and is directed towards the outer angle of cheek-lobe, but it usually varishes before reaching that point. From its anterior outer side it throws off a very numerous set of fine bifurcating raised lines or ridges. These lines are directed outward from the primary line at a rather acute angle, and appear to bifurcate several times. This ocular ridge is thickened at its commencement, but is not so strongly marked at that point as in *C. Baileyi*. It is also more arched forward than in the latter species. The whole outer surface of shield is covered by innumerable, close-set, raised points or granulations just visible to the naked eye, but very distinct under the lens, appearing in the impression of the shield as minute pustules. These appear to be more distinct on the convex portions of the shield. The raised margins, cheek-lobes, glabella, occipital ring, as well as the lobe just in advance of the glabella, bear sparsely sown, minute, short spines, which give to the surface a distinct granular appearance. These are always wanting in the furrows and on the cheek-lobes, and more crowded on the outer halves of the cheek-lobes. They are true spines, but usually appear as granulations on the casts.

In very young specimens, a line in diameter, the shield is semi-circular, the cheek-lobes are extremely gibbous, and very much more convex than the glabella, and the pre-glabellar lobe is very conspicuous.

I take great pleasure in dedicating this the most abundant and prettiest of these Trilobites to its discoverer and my intimate friend and geological companion, Mr G. F. Matthew. Common at Ratcliffe's and St John's. Specimens from Coldbrook show slight differences, probably only varietal.

Conoccephalites Robbii, Hartt, MS. Head without movable cheeks, of moderate size, depressed convex, slightly arched in front, where the width is considerably less than behind. Length about equal to breadth in front.

Glabella, ovate-conical, sides straight, and dorsal furrows so inclined as to meet if produced in middle part of anterior margin; very convex; more elevated in the middle; posterior furrows reaching about one-third of the way across the glabella, directed strongly backwards, and reaching nearly to the base of glabella; middle furrows less distinctly marked, short, not so oblique as first; anterior very short, appearing only as little pits or depressions on the sides of the glabella.
Occipital ring narrow, convex, widest in the middle, narrowing towards sides, which are turned forward, giving to it a crescent shape. Occipital furrow deep and well developed, widest in the middle, where it slightly impresses the base of the glabella; narrow and slightly bent forward at the ends. The ring bears a little short conical tubercle-like spine in the middle, directed slightly backwards.

Fixed cheeks, frontal limb one-third to one-fourth of whole length of head, with a narrow, high, convex border, inside of which is a moderately deep furrow; cheek-lobes depressed, convex, meeting in front, rising abruptly from the deep dorsal furrow, on the borders of which they reach their greatest elevation, which, however, is not equal to that of glabella, and sloping thence roundly towards the sides and front. The posterior limb bears a deep, wide, furrow, which widens somewhat near extremity. The marginal fold is very narrow and of little prominence; and widens a little in the outer half. The posterior margin bends slightly backwards at extremity of limb, which is rounded. Ratcliffe's Millstream.—N. B. Survey and J. W. Hartt.

Conocephalites Orestes, Hartt, MS. (Fig. 225). The head-shield of this species without movable cheeks is of medium size, length about equal to breadth in front, or to two-thirds width behind; margin arched moderately in front, with a rather wide, low border fold, widest in front, narrowing toward the sides, separated from the rest of the head by a shallow groove. Glabella long, ovate, conical, or cylindro-conical, extremely convex, wider behind than in front, where it is rounded. The sides are straight, and so inclined to one another as to meet, if produced, at a distance in advance of margin in front about equal to the distance of that line from glabella. The glabella is flattened on the sides, and never regularly convex.

There are three pairs of furrows, which lightly impress the sides of the glabella, and of which traces are not always distinctly preserved; and they are apt to be seen best in slightly distorted specimens. Dorsal furrow narrow, deep, and sharply cut; occipital ring widest in the middle, narrowed from behind at the sides, separated from glabella by a distinct furrow. Bears in the middle a minute tubercular spine pointing upwards. Fixed cheeks strongly convex, but much less so than the glabella, meeting in front with abrupt slopes toward dorsal and posterior marginal furrows, but with gentle rounded slopes toward sides and anterior groove. Ocular ridges, marked as lightly raised lines, originating at the dorsal furrow some distance behind
the front of the glabella, and rising obliquely upwards and backwards to ocular lobes, which are small and semi-lunar, folded considerably upwards, and are situated just opposite middle of head; width between ocular lobes about equal to width in front. Behind the eye the suture describes a long open sigmoid curve, which is continued inward somewhat so as to give the limb a rounded outline, and make the cheek here about one-third wider than at the eye. Posterior margin of cheeks with a slight fold, more prominent in the middle; outer half of this margin is arched backwards. Whole head arched slightly forward vertically.

This species resembles C. Hallii, Hartt, but differs from it in the shape of the anterior marginal furrow. This same feature and the long and narrow glabella distinguish it from C. Robbi. Rather common in shales at Ratcliffe’s Millstream.—N. B. Survey, 1864, and J. W. Hartt.

Conocephalites elegans, Hartt, MS., Ratcliffe's Millstream. Head or cephalic shield semi-circular or semi-elliptical, more than twice as broad as long, nearly straight behind; anterior border with a very strong fold, separated from the rest of the head by a deep groove. This fold is widest and most elevated just in front of the glabella, where it is sometimes the tenth of an inch in width. At this point the groove bends abruptly and angularly, and arches forward on each side so as to encroach on the marginal fold and cause it to disappear at about half the distance between the middle point in front and the posterior angles of shield. The posterior marginal folds are very thin, most elevated in the middle, and sloping each way towards the occipital ring and posterior angles of shield. The axis of the outward half is more and more inclined backward from the perpendicular towards the posterior angles, which are rounded, more or less flattened, and without backward projecting spines. The grooves separating the posterior fold from the cheeks are very deep, and are slightly directed forward. Length of glabella about six-tenths of antero-posterior diameter of shield, a little wider at base than long, and less than half as wide anteriorly; triangular, with anterior part rather broadly rounded, highly inflated, and bounded by deep grooves, which in front join in with the anterior marginal groove. There are three pairs of glabella furrows. Those of the posterior pair impress deeply the sides of the glabella, are strongly curved backwards, and scarcely reach a third of the distance across each side. The second and third pairs only just impress in like manner the sides of the glabella. Those of the second pair are curved backward, and extend about a quarter of the distance across the glabella. Those of the third pair are very
short, and appear to be parallel with the transverse diameter, but they are not always distinct.

Occipital furrow deep, slightly arched forward in the middle, and with the ends turned in the same direction; occipital ring of moderate width, the middle is produced into a spine often more than a quarter or an inch in length. This spine is more or less strongly directed backwards. The cheek-lobes are very gibbous, more so than the glabella. Their posterior border is so strongly impressed by the posterior furrow that it arches slightly over it. The surface of the convex part of the shield is ornamented by very fine, close-set granulations, distinctly visible to the naked eye, and by a set of delicate little tubercles more sparsely sown.

Rather uncommon at Ratcliffe’s Millstream.—J. W. Hartt, Prof. Bailey, Mr Matthew, C. F. Hartt, and N. B. Survey, 1864. This bears in its granulated surface a strong likeness to *C. Matthewi*, but is distinguished from that species by the thickened, triangular, anterior border, the wider glabella less deeply lobed, and by the long occipital spine. The fine granulations are more distinct, while the coarser are tubercles and not spines. It is larger than *C. Matthewi*. Specimens without anterior border, and with badly preserved surface markings, are apt to be taken at first sight for *C. Baileyi*. The glabellae of these two species are very alike in outline, but *C. Baileyi* wants the glabella furrows, or has them only indistinctly marked.

Conocephalites Ouangondianus, Hartt, MS. Head, without movable cheeks, strongly convex in outline, somewhat sub-angular in front; much narrower in front than behind, where width is greater than the length; width in front very nearly equal to length; anterior margin wide, with a strong fold, whose axis is strongly inclined forwards, so that it presents a short, steep, convex slope forward, and a long concave slope in the inner side, being much less elevated than glabella or fixed cheeks.

Glabella long, ovate-conical, nearly twice as wide posteriorly as in front, very convex, slightly sub-angular at the middle; sides straight, inclined to one another so as to meet in the middle of front margin if produced; rounded in front. Casts sometimes showing three pairs of short, raised, transverse lines on the sides of glabella, occupying the position of the ordinary glabella furrows; of these the two posterior are directed obliquely backwards. In some specimens there seems to be a fourth pair in advance of the other, represented by little tubercle-like processes, situated on the side of the glabella in front, just where the sides curve to the front. Glabella very much more convex than fixed cheek.
Occipital ring strongly arched upward, and separated from glabella by a well-marked groove; middle of posterior margin produced backwards in a short conical spine. Fixed cheeks highest along dorsal furrow, towards which they pressed abrupt round slopes, while their general surface slopes gently and quite evenly towards front or sutures. The dorsal furrows are confluent in front with the flat margin, so that the cheek lobes do not meet in front. They are highest along the straight dorsal furrows, but where they bend to go round the anterior extremity of glabella, the cheek-lobes narrowing and curving towards each other, gradually sink away and disappear in the front flattened space.

The ocular lobes are very well developed, forming sub-semicircular lappet-like lobes, curved strongly upwards, and situated about opposite to the centre of the head. An ocular ridge, low and rounded, but very prominent, runs from anterior margin of ocular lobes, with a curve almost parallel with front margin of shield, but slightly divergent from it to the dorsal furrow, which it gains at a point considerably back of front of glabella, and where the straight part of the dorsal furrow bends to go round the front. Posterior limb short and broadly rounded. Post-marginal furrows less deep than dorsal, wider; marginal fold narrow and moderately prominent; shield strongly arched transversely; surface smooth.

Cephalic shields without fixed cheeks, only part preserved. Rather uncommon in the Trilobite shales of Ratcliffe's Millstream.—N. B. Survey, 1864, and J. W. Hartt.

Conocephalites tener, Hartt, MS. Minute, glabella ovate-conical, truncate at base, rounded in front, where it is about half as wide as at occipital furrow; slightly contracted behind; length about equal to width at occipital furrow; strongly depressed convex, more elevated at base than at front, and higher also than fixed cheeks; aspect varies with state of preservation of specimens; arcuate, rounded, convex, or concave; the middle seems to be inclined to project back slightly over the occipital furrow; slopes abruptly to occipital furrow, which is moderately deep, wide, and narrowed, and slightly inclined forward at the ends, where it terminates abruptly; bounding groove deeper than other grooves in head; occipital ring projecting backward bodily beyond higher margin, with the axis of its fold inclined more or less backward, and produced in the middle into a short conical backward inclined spine; anterior limb regularly arched as if the outlines of the complete head were semi-circular.

Fixed cheeks anterior border broad, flat-concave, rising more or less abruptly to a sharp, thin, marginal fold; width between anterior
extremities of cheek sutures equal to or about twice width of glabella at base. Cheek-lobes but slightly convex, and much more depressed than the glabella. Ocular ridges very distinct, thin, sharp, elevated ridges, that begin about inner edge of cheek-lobes, just behind rounded front of glabella, run outward and backward at an angle of 60°—65° to the antero-posterior diameter. They are at first straight, but soon begin to bend backward more and more abruptly, forming a fragment of a spiral, their extremities being slightly directed inwards. The width between the ocular lobes is about equal to twice the length of the glabella. The ocular ridges are inclined outwards and forwards. Another ridge of the same appearance begins a very short distance behind the origin of the former, and on the very margin of the cheek-lobes, and, diverging from the margin nearly opposite to the base of the glabella, bends off abruptly along the posterior margin of the cheek-lobe, describing a curve, whose convexity is directed backwards. This ridge terminates considerably outside of the ocular lobe at a point distant from the glabella about equal to half the width of the latter at its base. This ridge is usually found inclined in the opposite direction to the former, viz., inward and backward. Posterior margin of fixed cheeks moderately and regularly S-curved, the inner halves curving forwards, the outer halves backwards, with a marginal fold most elevated in the middle, but much less so than the ridges of the cheek-lobe or the anterior fold. This fold becomes double at about the middle, by the appearance of a groove running along its summit, and it appears to run out before reaching the lateral suture. The width between the posterior extremities of cheek-sutures is considerably greater than between the anterior extremities or between the ocular lobes. Glabella without furrows.

This beautiful species I have found only in breaking up some fragments of fine dark shale sent me from Coldbrook by my friend G. F. Matthew. It is associated with Microdiscus Dawsoni, and Paradozoides lamellatus.

Conocephalites Aurora, Hartt, MS. Resembles C. Ouangondianum, but differs in wider head, more depressed, anterior margin more broadly rounded, and border more strongly reflexed and elevated, etc. Rare at Ratcliffe's Mill.—N. B. Survey and C. F. Hartt.

Conocephalites Therites, Hartt, MS. Differs from the last and also from C. Ouangondianum in the front margin being broad and flat, and bordered by a low narrow flattened fold or ridge, etc. Glabella in the cast has three pairs of very short raised lines on the sides. Very rare at Ratcliffe's Mill.—J. W. Hartt.

Conocephalites gemini-spinosus, Hartt, MS. Resembles C. Mat-
The posterior row, i.e. ii. iii. as Conocephalites k. front oblong, fold. etc. with the conical sloping elliptical; somewhat flat; and spines, much them, semi-lunar, much sides, former Mr Occipital glabella 664 Pygidium Dawsoni, Hott, MS. (Fig. 227). Well separated from all the others by its very convex, narrow, and long glabella, ovate, or cylindro-conical; as well as by its strongly rounded sub-angular outline in front, and by its peculiar anterior marginal fold. Not common at Ratcliffe's Mill.—N. B. Survey and J. W. Hartt.

Conocephalites quadratus, Hartt, MS. Head minute, transversely oblong, twice as long, slightly curved in front, straight behind, very flat; a narrow elevated fold, convex in front, concave behind, and somewhat inclined backward, goes round the margin. Very rare at Coldbrook.—Mr Matthew's cabinet.

Conocephalites neglectus, Hartt, MS. Glabella regularly semieliptical; length, exclusive of occipital ring, about two-thirds of width at base, moderately convex. Highest at middle of base and sloping with a regular curve toward the front. Traces of two pairs of glabella furrows on the sides. Occipital furrow deep and concave. Occipital ring with straight parallel margins, narrow with a short conical spine directed upward, etc. Very rare at Coldbrook.—Mr Matthew's cabinet.

Conocephalites formosus, Hartt, MS. Head trapezoidal in outline, the anterior and posterior margins approximately parallel, and the former of less extension than the latter. Glabella as wide at occipital furrow as long, narrowed in front, and broadly rounded, with straight sides,—three transverse furrows dividing it into almost equal parts, etc. Not very common, Ratcliffe's Mill.

Conocephalites, n. s. (?), Hartt, MS. Resembles C. tener, but has much shorter head and glabella, and very high anterior marginal fold. Very rare at Ratcliffe's Mill.

Microdiscus Dawsoni, Hartt, MS. (Fig. 228). Cephalic shield semi-lunar, with thickened borders crossed by numerous grooves running perpendicularly to the circumference. Glabella convex, narrow, rounded in front, conical and pointed behind, projecting beyond posterior border, without furrows or occipital groove. Cheeks convex, no eyes, and no traces of sutures. Posterior angles of shield with backward projecting spines. Pygidium sub-triangular, with curved outlines, rounded in front and behind. Middle lobe distinctly marked, and divided.
olds, cheek-lobes round with minute
holes, cheek-lobes (Fig. 227). Well
convex, narrowly cylinbro-conical;
sub-angular outline, anterior marginal
border, —N. B. Survey
outline, transversely convex, right behind, very
deep and concave. Very rare at
Coldbrook.

Iregularly sem-
parallel, and the
 broaden at posterior marginal

cephalic shield

grooves running
in the glabella convex,
behind, pro-
rows or occipital
rices of sutures.
jecting spines.
rounded in
into six segments. Lateral lobe also divided, furnished with a narrow
border.

This pretty little species I have never detected in the shales from
Ratcliffe's Millstream, but it occurs quite abundantly in the shales
of Coldbrook. All the specimens I have seen were collected while
breaking up some fragments of slate sent me from that locality by
Mr Matthew. I am not aware that it is found in St John; I have
never collected it at that locality. It always occurs broken, the
ccephalic shields and pygidia being separated.

Note.—Mr Hartt had originally described this species under the
new generic name of Dawsonea; but Mr Billings regards it as a
species of Microdiscus of Salter. The surface has a very fine granu-
lation not shown in the figure, and the grooves of the border are also
more distinct.

Agnostus Acadicus, sp. nov. (Fig. 229). Head minute, transversely-
elliptical or sub-circular, breadth and length about equal, convex but
very depressed, outlines in front and on the sides slightly straight-
ened. A narrow flattened and but very slightly elevated border
goes round the front and lateral margins. This is separated from
rest of shield by a narrow, shallow, flat space, or
groove, which, on going posteriorly along the lateral
margins, loses gradually in width toward the posterior
angles of shield, which are rounded. Glabella a little
less than two-thirds the length of shield, long elliptical,
depressed convex, but more elevated than other parts of
the shield, about twice as long as broad, bounded ante-
orily and laterally by a sharp rather deep groove concentric
to the outer one above described. A well-marked trans-
verse furrow arching backwards separates the anterior third of the

glabella as a sub-circular lobe. Posterior part of glabella rounded, but
impressed on each side by a little lobe situated in the angle between

the cheek-lobe and the glabella. These little lobes are about one
quarter the size of the anterior glabellar lobe. Cheeks of the same
width throughout, and uniting in front of the glabella, being bounded
by the two concentric grooves above mentioned. Posteriorly they are
rounded; in width they are rather greater than the glabella. They are
convex, more elevated along their inner margin, but sloping outward,
roundly, and evenly. Glabella with its lobes project considerably
beyond posterior margin. Surface smooth. Pygidium of this
species (?) of about the same outline as cephalic shield. The
posterior and lateral margins have a slight raised border, separated
from lateral lobes by a shallow but well-marked groove running

Fig. 229.
parallel to the margin. This groove widens at the point where it bends to go forward along the sides, in such a way as to encroach on and thin out the marginal fold, and, just before reaching the anterior margin, it narrows itself from the inner side so as to cause the lateral lobes to widen somewhat anteriorly. These are narrow, flattened, about half as wide as the middle lobe, narrowing to a point just behind the middle lobe where they do not unite. The medial lobe is about five-sixths of length of pygidium, shield-shaped, flattened, convex, more elevated than the lateral lobe. Its anterior border is slightly concave in the middle. The lateral angles are rounded, and the lobe is contracted a little anteriorly. It is bounded by two deep and well-marked furrows, which join one another in the middle of the marginal furrow, forming a pointed arch.* Medial lobe projecting farther forwards than the lateral ones. A little spine is situated on its mesial line about one-fourth its length from front. Surface smooth.

The pygidium and cephalic shield, from which the above descriptions were drawn up, were collected by my father and myself at St John, near the residence of W. R. Burtis, Esq., from shales of the lower part of the Acadian group. They were associated with Conocephalites Baileyi and C. Matthewi, Orthis Billingsi, etc. The two parts are separate, and each is represented by but a single specimen. I have little hesitancy in referring the one to the other. The glabella seems to be marked by a broad but faint transverse depression just behind the anterior glabella furrow. There are indistinct traces of an anterior articulating border to the pygidium. Both the specimens figured are casts.

Agnostus similis, Hartt, MS. Differs from the last species in its straight sides, wider marginal groove, and more distinct marginal fold. Cheek-folds narrower in front of glabella. The pygidium shows similar difference of proportion. Ratcliffe's Millstream, somewhat rare.

Paradoxides lamellatus, Hartt, MS. This is a small species distinguished from several others found with it by the presence of a number of sharp perpendicular laminae on the anterior lobe of the glabella.

Fig. 230.—Portions of Heads of Paradoxides.

* More so than in the figure.
Mr Hartt recognises several other species of *Paradoxides*, but has not found time to work out their characters in detail; and this is rendered particularly difficult by the circumstance that the thin crusts of these creatures appear to have suffered even more from distortion than the other fossils imbedded with them.

The descriptions above given, with the fact that some of the layers are perfectly loaded with fragments of Trilobites, will serve to show the exceeding richness of this ancient fauna, and to indicate its relations to Primordial life in other parts of the world. These remarkable fossils deserve, however, much more full and detailed illustration than that which I have been able to give them; and many additional species will no doubt be found.

Restored by Mr Matthew from fragments found at St John, and probably belonging to a species indicated in Mr Hart’s MS. by the name *P. Micmac*.

(Protograph)
CHAPTER XXV.

THE HURONIAN AND LAURENTIAN PERIODS.

INTRODUCTORY REMARKS—THE HURONIAN SYSTEM—THE LAURENTIAN SYSTEM—SUMMARY OF THE GEOLOGICAL HISTORY OF ACADIA—CONCLUSION.

The formations last described carry us far back through the long ages of the earth’s geological history to the beginning of the Paleozoic period; but still older rocks, indicating still earlier periods, are known to geologists. These, until lately, were regarded as azoic, or destitute of remains of life; but the discovery of *Eozoön Canadenæ* now entitles them to the name Eozoic, or those that indicate the morning of that great creative day in which the lower forms of animal life were introduced upon our planet. Formations of this age occupy great breadths in the northern part of the North American continent. All that rocky and hilly region on the north side of the St Lawrence Gulf and River, constituting the Laurentide Hills, reaching from Labrador to Lake Superior, and the extension of it to the south in the Adirondac Mountains of New York, consists of Laurentian rocks, and these are skirted on the south, more particularly on the shores of Lake Huron, by the newer Huronian series, which, however, like the first, underlies all the Silurian formations. The rocks of both these great groups, as might have been anticipated from their vast antiquity, and the vicissitudes which the earth has undergone since their formation, are in a highly metamorphic state. Still there is good evidence that, like the altered Silurian rocks above described, they were originally sedimentary deposits, formed in the sea, and subsequently brought into their present state.

Until a few years ago, we had no evidence of the existence of these old formations in Acadia, or indeed elsewhere on the Atlantic coast south of the Gulf of St Lawrence, other than the vague suspicion that some of the metamorphic rocks of unknown age might possibly be referred to these periods. The discovery of the Primordial fossils
noticed in the last chapter has however, among other important results, enabled Professor Bailey and his able coadjutors to introduce into his "Observations on the Geology of New Brunswick" the two great groups of rocks which stand at the head of this chapter, while Mr Murray has recognised the Laurentian in Newfoundland, and a considerable area on the banks of the Lower Hudson has also been referred to the same period. These discoveries indicate a second long line of outcrop of Laurentian rocks parallel to that previously known, and separated from it by broad areas of Silurian, Devonian, and Carboniferous rocks. They also show that immediately after the Laurentian period, not only the breadth of the American continent in the north was marked out by these rocks, but also the direction of its eastern coast.

Huronian Series (Coldbrook Group).

Under the St John or Acadian series, in the vicinity of St John, and more especially at Coldbrook, there occurs a group of unevenly bedded rocks, evidently marking a period of much disturbance, and consisting, in large part, of conglomerate and of beds which seem to be of the character of volcanic tufs or indurated volcanic ash. In mineral character these beds closely resemble the Huronian of Georgian Bay, and as they underlie the Primordial slates of St John, I think we are fully justified in assigning them to this age. Should this view prove correct, the occurrence of these peculiar beds in New Brunswick, and also in the basin of the great Canadian lakes, will constitute an interesting illustration of the existence of similar physical conditions at the same time in widely separated areas, and will increase our appreciation of the geological importance of that period of physical disturbance which seems to have separated the quiet seas of the Laurentian with their reefs of *Eozoon* from the equally quiet conditions of the Lower Silurian ocean.

Though visible only along a line of outcrop about thirty miles in length, and a few miles wide, these Huronian beds attain in one locality, according to Mr Matthew, a vertical thickness of not less than 7000 feet. In other places, however, their thickness is stated to be only 150 feet. On this difference of thickness, and the composition of the group, Mr Matthew bases the following remarks:

"These figures indicate that the ancient continent, previously elevated above the sea, sank under the accumulated weight of Huronian sediment to the extent of one mile and a half or more in that short distance, and that a coast-line near the position now occupied by the city of St John limited the Huronian sea to the eastward during a great part of this period."
"Its opening, if we may judge by the lowest member known, was marked by the accumulation of littoral sediment. To this succeeded an epoch when igneous eruptions commingled molten matter, scoria, and fragments of rock with the fine mud resulting from the wearing of the Azoic continent. After an interval of time, during which the arenaceous shales of No. 3 were formed, these conditions were again repeated in a still greater accumulation of volcanic ashes, tufa, etc., which, as the pre-existing land sank beneath the waters, spread as a thin deposit further west.

"The whole was eventually covered by the red and purple sediments of the Upper Division, which are more uniformly distributed, and are conformably surmounted by the lowermost strata of the Lower Silurian formation, thus becoming, like the Cambrian of Britain, the 'basement segments of the Silurian system.' And although Professor J. D. Dana classes these fundamental rocks of the Palaeozoic series as Azoic, he remarks, that 'should the Huronian rocks be hereafter found to contain any fossils, they will form the first member of the Silurian.'

"In general characters there is a remarkably close resemblance between this formation and the Huronian of Canada, notwithstanding the wide extent of country which intervenes. Both are largely composed of erupted materials, diorites, tufas, and volcanic mud ; hardness, and obscurity in the lamination of the slates is a feature in common; and here, as in Canada, slate conglomerates may be seen of a texture so compact and uniform that the inclosed masses are distinguishable only by a difference of colour."

The structure and composition of the series are thus given by Mr Matthew, in ascending order:

"Lower Division.

"1. Coarse red conglomerate (with an abundance of quartz pebbles) and red sandy shale.

"2. Dark porphyritic slates and trap, with slate conglomerate, trap-ash, and tufa.

"3. Gray and ferruginous arenaceous shale and sandstone, becoming, when altered, a laminated compact felspar or felspathic quartzite.

"4. Pale-green (weathering gray) slate, stratification very obscure [apparently an indurated volcanic ash], with slate conglomerate, ash-beds, and tufa.

"Upper Division.

"5. Red and gray conglomerate and red shale. Red and purple grit and sandstone.
Of these beds, Nos. 1, 2, and 3 do not extend so far west as St John, and No. 4 diminishes very much in bulk in the rear of the city, where it fills inequalities in the uppermost beds of the Portland (Laurentian) series.

Professor Bailey makes the following remarks on the age of these rocks:

The facts upon which depend the determination of this question have already been given in the remarks on the age of the Portland series, where also a parallelism is suggested between the Coldbrook rocks and those of the Huronian series of Canada. The parallelism is apparent, partly in the fact that the former, like the latter, underlie the rocks of the Potsdam group (of which the St John slates are here the representatives), and partly in their mineral characters and the absence of fossils.

It is impossible to read the description given of the Huronian series in the reports of the Canadian Survey, without being struck by the close resemblance which exists between the members of that series, and what has been termed in New Brunswick the Lower Coldbrook group. In both the prevailing rock is a hard compact slate, almost universally of a dull grayish-green colour, with which are associated pink and white, or greenish-white felspathic quartzites, and at the base of the series, dark gray sandstones and conglomerates. In both, also, diorite or greenstone dykes are common, as well as stratified amygdaloidal traps, the igneous outflows penetrating the rocks as well as lying in regular beds among the strata, in which they have produced excessive alteration. It will thus be seen that the two formations are alike in their general character, as well as in the conditions under which they were produced. Indeed, the resemblance is much stronger than would naturally be expected in series so widely separated.

In passing to the upper member of the Coldbrook group, the task of establishing a parallelism with either of the Canadian series is much more difficult. Unless we regard the red quartzites and jasper conglomerates of the Huronian rocks (Nos. 7 and 8 of the section given in the Canadian Reports, near the Thessalon River), as the equivalents of the red conglomerates and sandstones of the New Brunswick group, no rocks approaching the latter in character are found, with the exception of the red sediments associated with the copper-bearing rocks of Lake Superior. As these, however, have been shown to be the probable equivalents of the Chazy group, which occupies a higher horizon than the Potsdam beds, which here overlie the rocks of Coldbrook, we must, for the present, be content to con-
sider their precise position as uncertain, only remembering that they constitute a series lower than the Primordial rocks, at the base of the Silurian."

The rocks of the lower part of the Coldbrook group being much harder than those of the upper member, and than those of the St John group, present a marked feature in the topography of the country, projecting in a bold and rugged ridge, well marked for some distance to the eastward of St John.

The Huronian of Western Canada is rich in metallic minerals, more especially in copper; but that of New Brunswick has not as yet afforded useful minerals. Indications of copper and lead, however, occur in rocks referred to this age on the Hammond River, near Quaco, and in other localities specular iron has been observed.

It is to be observed that while on Lakes Huron and Superior the lower Silurian rocks of about Chazy age rest unconformably on the Huronian; at St John, the Primordial shales of the Acadian group, which are, however, much older than the Chazy, appear to repose conformably on the Coldbrook series.

Laurentian Series (Portland Group).

Regarding the group of rocks last described as Huronian, there seems no alternative but to assign the great mass of calcareous and gneissose rocks underlying the Coldbrook group to the Laurentian. These rocks form an anticlinal northward of the Coldbrook group, and occupy an area about forty miles in length and from two to eight miles wide. In the immediate vicinity of St John, they are overlaid, apparently conformably, by the Coldbrook group. They may be observed elsewhere to be covered unconformably by rocks of Devonian and Carboniferous age.

When examining these rocks several years ago, I was struck with their resemblance to the Laurentian of Canada; but as nothing was then known with certainty as to the age of the St John rocks, I could not venture to assign them to so ancient a period. Their mineral character, as it then presented itself to me, is described as follows:*

"The oldest rocks seen in the vicinity of St John are the so-called syenites and altered slates in the ridges between the city and the Kennebeckasis River. These rocks are in great part gneissose, and are no doubt altered sediments. They are usually of greenish colours; and in places they contain bands of dark slate and reddish felsite, as well as of gray quartzite. In their upper part they alternate with white and graphitic crystalline limestone, which overlies them in

thick beds at M'Closkeyney’s and Drury’s Coves on the Kennebeckasis, and again, on the St John side of an anticlinal formed by the syenitic or gneissose rocks, at the suburb of Portland. These limestones are also well seen in a railway-cutting five miles to the eastward of St John, and at Lily Lake. Near the Kennebeckasis they are unconformably overlain by the Lower Carboniferous conglomerate, which is coarse and of a red colour, and contains numerous fragments of the limestone.

“At Portland the crystalline limestone appears in a very thick bed, and constitutes the ridge known as Fort Howe Hill. Its colours are white and gray, with dark graphitic laminae; and it contains occasional bands of olive-coloured shale. It dips at a very high angle to the south-east. Three beds of impure graphite appear in its upper portion. The highest is about a foot in thickness, and rests on a sort of underclay. The middle bed is thinner and less perfectly exposed. The lower bed, in which a shaft has been sunk, seems to be three or four feet in thickness. It is very earthy and pyritic. The great bed of limestone is seen to rest on flinty slate and syenitic gneiss, beneath which, however, there appears a minor bed of limestone.”

Their structure is more fully represented in the following section by Mr Matthew. The order is ascending:

1. Gray limestones and dolomites (?) of great thickness, with beds of clay slate, occupying the middle of the peninsula which separates Kennebeckasis Bay from the Bay of Fundy.

2. A mass of syenite and protogene, probably metamorphosed sediment.

3. Gray and white limestones and beds of syenitic gneiss.

5. Graphitic shale and pyritic slate, frequently alternating with gray and white limestones and dolomites (?). The beds thinner, and alternations more frequent, towards the top.”

I have searched in vain, in the specimens in my possession, for indications of the characteristic fossil of the Laurentian; but there are traces of vegetable tissues, probably fucoidal, in the graphite and graphitic shale; and in rocks at Sand Point, referred by Mr Matthew to this group, there are worm-burrows and other markings, probably of organic origin. No representatives of the great deposits of iron ore found in the Laurentian of Canada and New York, have yet been recognised in New Brunswick. Nor do we know of anything corresponding to the interesting auriferous veins of Madoc, in Upper Canada (Ontario). The limestone of Portland, however, and other places,
has long been applied to economic uses; and, in some places, its texture is such that it would afford an excellent marble, the beauty of which is in some cases increased by the intermixture of green serpentine, exactly as in the Laurentian limestones of the Ottawa. Graphite also occurs in large quantity, as already mentioned, and though its quality is coarse and impure, it is possible that by subjecting it to the processes of mechanical purification now in use in other countries, a valuable product might be obtained from it. Its nearness to the city of St John, and to the great water power afforded by the river, constitute inducements for further attempts to render it useful.

Summary of the Geological History of Acadia.

Descending from the Modern period, we have now reached those rocks which constitute the lowest and oldest known foundations of our continents,—rocks which, in the Acadian provinces, have been almost wholly swept away or buried up in the formation of later sediments. That there were rocks older even than these, we know, from the circumstance that some of the beds above described are of a fragmental character. That some forms of animal and vegetable life already existed upon our earth—some of the creeping things of the waters—we also know; but of the old rocks which furnished the material of the Laurentian beds, or the land which may have been composed of them, we know nothing,—perhaps we never shall know anything,—at least from the records of the rocks. Here, then, we may turn from our descent into the bowels of the earth, and, retracing our steps, emerge once more into the light of day. In doing so we may lightly glance, in the historic or ascending order, at the several formations which we have described in detail in the opposite or descending method.

Beginning with Laurentian Acadia, we have before us an ocean of whose shores we know nothing; but in whose depths sandy and argillaceous sediments are being deposited, and animals and plants of the simplest structure are building up coral-like reefs, and accumulating masses of fetid muddy vegetable matter,—the whole to be, in process of time, converted by the magical alchemy of mother earth into crystalline gneiss, marble, and graphite. As ages roll on, and carry us into the Huronian period, the bed of this quiet sea is broken up, rocky ridges are exposed to the destructive action of the waves, volcanoes belch forth their lavas, and discharge their showers of ashes and scoriæ.

Another geologic age rolls by; and we see stretched out before us the northern nucleus of the American continent extending westward
from Labrador, a rocky, lifeless continent, in so far as we know. Along its shores are spread out muddy bottoms swarming with strange forms of crustaceans and shell-fish; and, in its more profound depths, are being slowly produced the great coral reefs which are to form the Lower Silurian limestones. In the area representing the Acadian provinces, shallow waters, invaded by muddy and sandy detritus, appear to have prevailed, with gradual subsidence of the bottom of the sea.

The Upper Silurian period would seem to have been introduced by new and extensive physical changes, which had the effect of producing greater inequalities of the sea-bottom, and ultimately a deeper sea, though perhaps more limited in area. At this time, also, extensive processes of elevation and disturbance were in progress along the Appalachian chain, and must have tended to separate more completely the Acadian area from that of the central part of North America. These movements were further connected with an entire change of the animal life of the region—a change, however, not sudden but gradual—and in the course of which, it would appear that many species which had long previously existed in other parts of North America, extended themselves over the Acadian area.

As the Upper Silurian period approached its close, and the seabottom had been loaded with many hundreds of feet of arenaceous, argillaceous, calcareous, and ferruginous sediment, another series of physical changes supervened. New lands were thrown up, and—still more wonderful change—these lands were clothed with a rich vegetation; and the oldest known land animals, delicate and beautiful insects—water-born but air-dwellers—flitted through its shades. With these changes came another and even more thorough revolution among the living things of the seas.

But while the Devonian rocks were being built up, the older sediments, buried under these newer beds, had been subjected to the intense action of the earth’s pent-up igneous agencies; and, at the close of the period, it would seem as if the solid crust had given way, slowly and gradually, to the superincumbent weight, along certain lines; while in others the edges of the beds were tilted up, and the whole surface of Acadia was thrown into a series of abrupt folds,—great masses of plastic granite matter invading every opening in the shattered masses. This period surpasses every other, in the geological history of the eastern slope of the American continent, in its evidences of fracture of the earth’s crust. To this period we must refer the greater part of the intrusive granites of Eastern America, and to it also is referable the greater part of the metamor-
phian of the Silurian rocks, and the origin of the numerous metallic veins by which these are traversed.

This great earth-storm of the later Devonian left the surface of Acadia with its grand features marked out as they are at present; and the wide wooded swamps of the Carboniferous, and the sea areas in which its beds of shells and corals were depicted, occupied the present valleys of the country, and were limited by the same ridges of folded Silurian and Devonian rocks, which form the highest hills at present. So close is this correspondence, that the limits of the older formations on the map must very nearly mark the coast-lines of Carboniferous Acadia at the epoch of the Carboniferous limestone. For the present interests of Acadia, the great Devonian disturbances which charged the older formations with metallic minerals, and tilted up to the surface the great beds of iron ore, and the succeeding growth of the coal accumulations of the Carboniferous period, were the most important of all its geological changes, as being the sources of its great mineral wealth. Yet these momentous eras are not to be taken by themselves, but as links in a great chain of processes, with all the parts of which they are more or less closely connected.

Here we may pause for a moment to glance at the map, and to observe the three broad bands of Lower Silurian rock, portions of which appear on it, all of them running in a north-east and south-west direction. The most northern of these is seen only on a corner of the map, skirting the south side of the St Lawrence; but it is the most important of the whole, extending far to the south-west through Canada and the United States, constituting, with the exception of the Laurentian already mentioned, the oldest portion of the great Appalachian breast-bone of North America. The second is that extending across New Brunswick into Maine, and thence southward along the coast-line of the United States. The third is the coast series of Nova Scotia, extending to the north-east into Newfoundland, but disappearing to the south-west under the Atlantic. All these are auriferous and otherwise metalliferous, and they constitute three great lines of upheaval or ridging up of the earth's crust, in the troughs between which lie the Upper Silurian, Devonian, and Carboniferous areas of Acadia.

Of no geological period is the history better recorded in the Acadian provinces than the Carboniferous, in regard to which they may even be considered as a typical region, presenting the formations of that period in the greatest possible thickness and variety, and exhibiting in a very perfect manner, and with features not as yet paralleled in
other regions, the terrestrial life of that very interesting era. The
wonderful history of the Carboniferous period has, however, been so
fully detailed above, and is in itself so ample, that I shrink from any
tempt to sum it up here.

We now reach a blank in the geological history of Acadia—a
blank represented only by certain elevations and disturbances of the
Carboniferous beds, which occurred during the period occupied in
some other regions in the deposition of the Permian rocks. This was
succeeded by the local but important volcanic outbursts which accom-
panied the probably rapid deposition of the Triassic red sandstone, an
association of volcanic phenomena with the hasty deposit of coarse
sediment stained with oxide of iron, which had occurred before in the
Lower Carboniferous, in the Lower Devonian, and in the far earlier
Huronian.

The Trias of Prince Edward Island alone gives us, in the bones of
Bathygnathus, a single glimpse of the reptilian life of the Mesozoic
“age of reptiles,” so richly exhibited in some other countries.

A blank in this monumental history of enormous length succeeds
the Triassic period, and Acadia with the neighbouring parts of North
America was probably, during these long Mesozoic and Tertiary ages,
a part of an extensive continental area, in which animals and plants,
characteristic of those periods, no doubt flourished, but have, so far
as we know, left no traces of their existence.

The next vicissitude of which we have any record is that mysterious
glacial period, which I am inclined to regard as one of subsidence
under an ice-laden sea, in so far at least as Acadia is concerned.
Certain it is that no deposit similar to the boulder clay had occurred
previously in Acadia, unless indeed we may regard some of the
coarser conglomerates of the Carboniferous period, as evidence that
ice was grounding on the coasts on which the vegetation of the coal
formation was flourishing. Probably at this period Nova Scotia and
New Brunswick were in circumstances very nearly the same with that
of the great Newfoundland banks at present. Under any view,
nothing is more remarkable in the geological history of the earth than
the almost universal subsidence and glaciation which seem to have
affected the Northern Hemisphere at this period, geologically so
recent. Little by little, terrace after terrace, the land rose from the
glacial submergence; and, as if rose, it began to be peopled with a
gigantic race of quadrupeds which gradually gave place to those now
existing; the extinction of the Mammoth and Mastodon having pro-
bably had relation to the gradual increase of the surface of the
land, and its warmer and drier summers. Had these creatures
finally disappeared before the advent of the Micmac and Maliseet? We know not; but in so far as negative evidence is entitled to weight, we may suppose that they had; and that the human occupation of Acadia may not be of older date than the origin of the historic nations of the old world. The Red man still survives, with the remnant of the wild animals which fed his forefathers, and of the forests which sheltered them; but now the towns and cities of civilized man grow up on the borders of our rivers and bays, his fields spread over the land, his sails dot the surface of the waters, his mines penetrate the deeply hidden stores of subterranean wealth, while his ever active mind studies with penetrating insight the monuments of that strange series of creative processes by which in the counsels of Almighty wisdom its present destiny was worked out. What next? Geology cannot answer the question; and the geologist, as he lays down his hammer and his pen, can only utter the prayer that in the future history of this old world, in whatever of new development and higher glory its Maker may have in store for it, Acadia and its sons and daughters may bear a worthy and a happy part.

Conclusion.

In the preceding pages, I have neither sought nor avoided the discussion of those questions on which geologists are at present divided in opinion, in so far as these questions are raised by the history of the formations developed in the Acadian Provinces. I have, however, made such discussions subordinate to the statement of the facts immediately under consideration; and, for this reason, they will be found scattered in various places throughout the work. I may now shortly sum up my conclusions with reference to a few of the more important of these disputed points.

The hard-fought field of glacial denudation, striation, and boulder drift, I have traversed in the Chapter on the Post-pliocene, and have endeavoured to show that the phenomena of the boulder clay and drift in Eastern America are to be accounted for not by a universal glacier; but by local glaciers, drift ice, and the agency of cold northern currents, in transporting materials and eroding the surface of a partially submerged continent.

On the modern notion of "homotaxis," as distinguished from actual contemporaneity of formations on the same geological horizons, I have fully stated my views in introducing the history of the Carboniferous period, and have shown reason for believing that the formations of this great period in America are exactly, and even in their subdivisions, synchronous with those known by the same names in Europe.
Miemac and Mali-...
inasmuch as they pass into each other by indefinite gradations; but I cannot regard such varietal forms as true species.

The relations of the Carboniferous to the Devonian flora appear to militate in a positive manner against the theory of transmutation. The Devonian flora of Eastern America, of which there are now known nearly one hundred species, affords all the principal generic forms of the Carboniferous. A few of its species are identical, but the greater part are distinct; and this distinctness is even more marked in the Lower Carboniferous than in the Coal formation. While, therefore, a few species continued unchanged through all the vast time of the Devonian and Carboniferous, others disappeared at the close of the Devonian and were replaced by distinct species in the Carboniferous, and all this without any material improvement or elevation of type.

It may be added, that in New York and Ohio, where no physical break separates the Devonian and Carboniferous, the change of flora takes place in the same manner, and that the floras of the Devonian and Carboniferous are now too well known, and that over too large an area to allow us to explain this by "imperfection of the record."

Again, if we turn to the Primordial fauna of St John, we find there, as in similar horizons in Europe, several distinct types of animal existence already well defined, and none of them pointing by any character to the primitive Eozoon of the Laurentian rocks, which stands out as distinctly by itself as the two little land-shells of the Coal measures.

On the great question at issue between the "Uniformitarians" and "Catastrophists," I desire to occupy that middle ground to which I am glad to see that Lyell and Murchison, the two great leaders of geological opinion in Great Britain, tend in their later works. While the doctrine of the absolute uniformity of natural laws cannot be too strongly held, we must admit that periods of more and less energetic action of the great causes of geological change have alternated with each other over regions so extensive as practically to affect the whole world, and that the period of human observation has been probably too limited to enable us fully to appreciate the extremes of these oscillations. In other words, the long-continued operation of uniform causes, whether geological or astronomical, may lead to an accumulation of effects in certain directions, terminating in a change, cataclysmal in its character, and initiating a new train of causes perhaps under very different conditions. It is true that such a cataclysm may, in a broader view, be regarded as a part of the uniform order, just as a thunderstorm or an earthquake may be regarded as an effect of regular natural laws, as much as a tide or a current. Still we should beware
of limiting the intensity or extent of such phenomena by our own short experience. Nor must we fail to consider that all successions have implied progress, that every oscillation of the piston-rod, every turn of the wheels, urges the machine forward. Nothing can be more evident than the continued progress and development of both unorganized and organized nature on the surface of our planet, from the earliest periods of geological time to the present day. But our experience of existing causes has been too short to enable us fully to realize this, or to harmonize it with our notions of uniformity or cataclysms or creative intervention. We are but infants in knowledge, and we have been passengers in the ship of nature for so short a time that the oscillations of the piston-rod may appear to us cataclysms irreconcilable with the steady motion of the wheels, and that we may yet be unable clearly to discriminate between the action of the lifeless machinery and that of the unseen hand and mind which regulate and guide; and while we may readily discover motion and progress, the port of departure and that of destination are alike invisible in the distance. Patient observation and thought may enable us in time better to comprehend these mysteries; and I think we may be much aided in this by cultivating an acquaintance with the Maker and Ruler of the machine as well as with His work.
APPENDIX.

(A.)—MICMAC LANGUAGE AND SUPERSTITIONS.

I referred in Chapter IV. to the fact that, in the judgment of my friend Mr Rand, there are strong points of resemblance between the Micmac and Maliseet languages and some of the older languages of Europe, and that these may still be traced in many root words. He has furnished me with a number of these which have occurred to him in translating the New Testament; stating that he merely presents them as genuine resemblances occurring in primitive aboriginal words, and the precise value of which he leaves to be estimated by philologists. They are undoubtedly too numerous and important to be purely accidental; though they may be accounted for either by supposing that the Algonquin languages, of which the Micmac is merely a branch, actually retain traces of roots derived from the Eastern Continent, or by supposing that in the formation of the language similar ideas as to onomatopoeia occurred to the mind of the American Indian and his contemporaries in the Old World. In either case, the similarity indicates the claim of the American to kinship with the European; and the following list of words will illustrate a fact of some interest, whatever its value in philology. I have given merely a few of the examples communicated to me by Mr Rand, and have left out a great number in which the resemblances are obscured by change of consonants, such as the substitution of other sounds for ":r," which does not occur in Micmac. The vowel a is sounded as in "father," except when marked short (§), when it sounds as in "man." The other vowels are long, except where marked as short.

Pâle, a pigeon. Cf. στέλλα.
Agê or ahge, earth. Cf. Heb. arêtz, γη.
Padoos, a boy. Cf. παῖς.
Pegoon, a feather. Cf. πτερων.
Oo-làkèn, a dish. Cf. λεκές.
Oktan, the main sea. Cf. εἶκος.
Alasoomk, I beseech. Cf. λεησωμα.
Agoutk, it is in the water. Cf. aqua.
Eò-aggett, it lies in the water; the Micmac name of Prince Edward Island.
Atose, in the sunshine. Cf. aëtus.
Jún, a child. Cf. juvenis, jüng, young.
Ancane, ancient.
Këkoo-nûm, I have it. Cf. iχω.
Tùbagùn, a vehicle. Cf. wagon.
Taboo, two. Seeet, three.
Wùgùlik, to bark. Cf. ñlaxtsun.
Quëetim, I seek. Cf. quero, quœstus.
Cùmë, a harbour. Cf. ñuµu.
Epaùt, warmed. Epaù, I heat it. Cf. i-φω.
Cùbylikum, a cradle-board. Cf. cubile.
Nëko, a spear. Cf. âkωxν.
Ankee, I think earnestly. Cf. ango, âγγα.
Ekëi, I come. Cf. ñxω.
Cheënun, a man. Cf. γινεσ.
Oo-dun, a town. Cf. dun and dune.
Ai, he says. Cf. ait.
Well-ake, he is well. This root well occurs in many compounds.
'M-ðigû, a thumb. Cf. digitus.
'M-poì, the back. The prefix 'm appears to be a remnant of an indefinite article.
Ooîk, a ship. Cf. hulk, õkaxaç.
Këloos, good. Cf. kalaç.
Këloos-oodee, goodness. Oodee in Micmac has the force with the English postfix hood, in childhood, etc.
Oonäka, a wing. Cf. ñoç.
Wëjum (oikom), house. Cf. ouxos (Oikos), vicus.
Wëkë, his home. Cf. ouxos.
Tem-sùm, I cut it. Cf. τιμω.
Mïlïk-ñch, milk. A word which is one of the most primitive, and contained in most languages.
Moo, no. Cf. μη.
Këwë, a son. Cf. uòç.
Nëphë, he is dead. Cf. uξαος.
Këwa, hail. Cf. ñaixë.
Kaxëkak, it fails. Cf. xaxiw.
Tëkoo, then. τοι.
Këwëkuw, an earthquake. Cf. quake, quatio.
Aled, to go. Cf. ñe, alter, etc.
Ejikuladoo, I cast away. Cf. ejicio.
Wëj, prefix signifying with.
Tar, when. Cf. ñrav.

To these examples I may add an illustration from Mr Rand’s Micmac version of St John, xix. 24, where the leading words in one of the clauses are very similar in Greek and Micmac.

Μη σκιασμαι, λαχαμαι.
Moo skwiska lakade-nêcch.

We shall not rend, but cast lots for it.

The superstitions, traditions, and astronomical notions of the primitive Micmacs also present points of similarity with those of other nations, and
Mr Rand's knowledge of their language has enabled him to collect many of these.

They believe in fairies, whom they call "Wiggul-laddum moochikik," very little people. They are supposed to be superhuman, immortal, living in caves and underground, and, like the fairies of other lands, coming out to dance, and disappearing in the day-time.

They also have a tradition of a primitive race of giants, "kookwës" (cf. γύγαξ), of great size, and cannibals.

By the term "Chinook," which is the actual name of a tribe of Western "flat-head" Indians, in historic times far removed from the Micmacs, they denote a northern people with hearts of ice, and so terrible that their very war-whoop was fatal.

They know of fauns or demi-gods, "Migumoo Kesoo," which haunt the woods, and sing and play exquisitely, seeking to entice unwary travellers. They have also seen mermaids of the true mythological type.

The ancient Micmacs had names for the principal constellations, but their degenerate descendants have lost most of these. They still know "Moojin," the Bear, or Ursa Major; and it is characteristic, that as Micmacs know that bears have not long tails, the stars of the tail of the Bear are called the "Hunters." Each of these has his name. The nearest is Piläs, Pigeon; the next is Chigugick, Chickadee or Titmouse; the third is Chipchüwët, Robin. These words are curious illustrations of the prevalent onomatopoeia in the names of animals. A small star near one of the Hunters is his "Kettle," and Berenice's Hair is the "Bear's Den." The Evening Star they call Nęgumoo, the leader of the host. The Morning Star is Oottä dë bë̄n, the herald of morning. The Belt of Orion they call the "Fishermen," and his sword the "Kings." Four stars in the form of a cross in the thigh of Antinous are called the "Loon." The Pleiades are named Ajalchëch, the meaning of which is not known.

Lastly, they have a great traditional immortal patriarch, benevolent and powerful, "Glooseap," of whom they have many legends, and who has left his children, the Micmacs, because of their sins, but who will one day return when they are sufficiently humbled and penitent.

(B)—PEAT AS FUEL.

It is not to be expected that, in the vicinity of the coal-fields, peat can be profitably manufactured for fuel; but in those parts of Nova Scotia and New Brunswick remote from the coal districts, there exist important deposits of this substance which may become economically useful. The principal disadvantage of peat as compared with coal is the large quantity of water which it contains, amounting to about 90 per cent. of the whole in the crude material, and even in the dried peat to from 20 to 35 per cent. This difficulty is partially obviated by thorough drying in the air, and more completely by pulverizing and compressing the peat, or by charring it, as is done in France. The only locality in Canada where peat is at present extensively worked is on the property of Mr Hodges, in Bulstrode, P. Q. The process employed is that of excavating the peat, reducing it to pulp, cutting it into square portions like bricks, and thoroughly drying it. The machinery employed
is placed in a barge, which excavates a canal, in which it floats as the work proceeds. Pressure is not employed. Peat prepared in this way is sold at 4 dols. per ton in Montreal, and has been used advantageously for the production of steam and in domestic fires. In Ireland and in Scotland attempts have been made on a large scale to use peat as a source of tar, coal-oil, and other products. In some cases the results have been profitable, in others the reverse. This appears to have depended partly on the processes employed, and partly on the quality of the material. Persons desirous of making further inquiry on this subject will find additional details in Sir W. E. Logan's Report on the Geology of Canada, 1863, and in a paper by Dr Hunt in the Canadian Naturalist for December 1864.

(C.)—CONE-IN-CONE CONCRETIONS.

Every field-geologist is familiar with various forms of concretions, as of clay-ironstone, flint or chert and carbonate of lime, which occur in clays and similar beds, or in limestones. They are in general attributed to the mutual attraction of particles diffused through masses of sediment, and aggregating themselves around solid bodies as nuclei, or flowing into cavities of fossils and other places of least resistance. Such nodular arrangements are especially abundant in the underclays and other clay beds of the Coal measures, where the carbonate of iron formed by the action of decaying vegetable substances on the oxide of iron present in the sediment, has shown a singular aptitude for assuming such structures, and the nodules and nodular sheets of ironstone often contain fossils of much interest. In these nodular layers also, as well as in certain layers of hard argillaceous matter, we often find the remarkable structure to which this note relates. It consists of series of conical forms often running together into rows and ridges, and consisting of a series of concentric coats, whence the name "Cone-in-cone," given by the miners. The surfaces of the coats are also curiously marked with transverse ridges, giving a wrinkled appearance, so much resembling some organic structures as to deceive some persons into
the belief that these curious forms may be fossils. The figure represents a somewhat perfect example, selected from a series of specimens kindly sent to me by H. Poole, Esq., from the beds overlying one of the Coal-seams at Glace Bay, Cape Breton. Previously to the receipt of these specimens, I had thought little as to the origin of these forms, but a careful study of Mr Poole's specimens led me at the time, in exhibiting them to the Natural History Society of Montreal, to state my belief that they are produced by "concretionary action proceeding from the surface of a bed or layer, and modified by the gradual compression of the material." Subsequently, at the Meeting of the American Association at Burlington, Professor Marsh of Yale College, in the course of an able dissertation on the origin of the so-called "Lignilites or Epsomites," incidentally referred to the "Cone-in-cone," and attributed it to the same cause, though unaware at the time that this explanation had occurred to any other person.

Taking this view of the origin, these concretions serve as an interesting illustration of the curious imitative forms sometimes assumed by concretions, and also of the twofold movement of particles of matter in sediments undergoing consolidation under the double influence of mutual attraction and of mechanical compression. Farther examples of the effects of these forces may be found in the formation of ordinary nodules, the infiltration of the cavities of fossils, the slickensiding of underclays and other beds full of vegetable matter, by the giving way of the latter under pressure, and the curious crushing of erect jointed stems of Calamites into rows of disc-like bodies, representing the firm nodes, while the intermediate portions have collapsed (see figs. at pp. 150 and 406). The remarkable distortion of fossils by pressure already referred to (p. 499), the nodular changes, and curious minute crumplings which have taken place in the production of slaty structures, are also illustrations of that mobility of particles in consolidating rocks, which must be invoked to explain the Cone-in-cone.

Cone-in-cone is found in the Coal-formation rocks of other countries than Nova Scotia, being not infrequent in the clay ironstones of England. It is noticed by Professor Rogers and Professor Hall as occurring in the Devonian of Pennsylvania and New York, and I have observed it in one of the layers of fine laminated shale in the primordial strata of St. John, New Brunswick.
(D.) **Tabular View of the Lower Coal Measures.**

<table>
<thead>
<tr>
<th>Upper Coal-measures</th>
<th>Horton</th>
<th>Mill-Brook, Windsor</th>
<th>Hillsborough, N. Brunswick</th>
<th>Plaister Cove, C. Breton</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>shales of South Joggins.</td>
<td></td>
</tr>
<tr>
<td>Middle Coal-</td>
<td></td>
<td></td>
<td>Coal measures of Joggins,</td>
<td></td>
</tr>
<tr>
<td>measures.</td>
<td></td>
<td></td>
<td>and Millstone-grit, or</td>
<td>Coal measures of Caribou</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lower Coal measures of</td>
<td>Cove, River Inhabitants,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dorchester, etc.</td>
<td>and Ship Harbour.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sandstones of Strait of</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Canso.</td>
</tr>
<tr>
<td>Lower Carboniferous</td>
<td>Limestone, marl, red sandstone, and gypsum of Halfway River and Windsor.</td>
<td>Same as last column.</td>
<td>Limestones, gypsum, and conglomerate of Dorchester and Petticoatie R.</td>
<td>Limestone, gypsum, and marls of Plaister Cove.</td>
</tr>
<tr>
<td>Marine Limestones.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dark clay shale and calcereous shale, with laminated limestone, dark micaceous flags, gray and white sandstone, and in the lower part some red sandstone.</td>
<td>Thick white sandstone (debris of white granite), in places with quartz pebbles, fragments of plants. Dark micaceous flags and shales, obscure footprints, carbonaceous impressions, an underclay, a thin brownstone, gray coarse sandstone and conglomerate, white sandstone, carbonaceous shale, and black underclay.</td>
<td>Fine calcereous and highly bituminous shales, with thin beds of sandstone. Abundance of remains of fishes, seen at Petticoatie River, above Dorchester, Albert Mine, and other localities westward of that place. (Paper by author, Geol. Journ., vol. vi. p. 885.)</td>
<td>Hard sandstones and shales of gray and black colours, with obscure fragments of plants, resting on coarse gray conglomerate of great thickness. (Paper by author, Geol. Journ., vol. ix. p. 107.)</td>
</tr>
<tr>
<td>Lower Coal-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>measures.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

APPENDIX.

(E.)—GRAND MANAN.

This isolated portion of New Brunswick has hitherto been a blank in the geological map, and for this reason I insert here a note kindly communicated to me by Professor A. E. Verrill of New Haven, who, though he visited the island for zoological rather than geological objects, has given some attention to its structure.

"The stratified rocks of the island appear to represent at least two formations which are unconformable.

"The one, which is apparently the oldest, occupies the belt of low land and the shore cliffs from Whale Cove and Northern Head, along the whole eastern side of the island, to Grand Harbour, about the middle of the island, beyond which I have also seen outcrops of it in several places, but have not examined the whole extent. The same rocks compose Long Island, Duck Islands, Rosse’s Island, Whitehead Island (in part at least), and nearly all the other small islands off the east side of Grand Manan. Inner Wood Island is, however, partly composed of conglomerate and fine-grained dark-red sandstone, with an easterly dip, which may belong to a higher formation; and Gannet Rock, upon which there is a lighthouse, was described to me as composed of conglomerates. The Three Islands, which are the most eastern, are in the main composed of rocks similar to the eastern shore of the main island, but upon the outer one I found also a bed of white crystalline limestone.

"The series of rocks alluded to are highly altered, much distorted and broken, and cut through by numerous immense dykes and masses of trap, and consist of talcose and clay slates, mostly grayish, but sometimes black, calcareous grits, altered gray sandstones, in one case with vegetable traces, but sometimes so indurated as to become quartzites, or, when impure, approaching a syenitic character. Included in these gray sandstones and slates near Pettee’s Cove, there is a bed of black carbonaceous shale, very fissile, as if it ought to yield plant-remains, but I could find none. Included in similar rocks near the same place are several true veins of heavy-spar, mostly massive and pure, but in one case carrying some galena, copper, pyrites, etc. On Rosse’s Island, inclosed in black slates, probably of the same age, there are enormous masses of white quartz, conspicuous above the general surface, some of them 100 feet or more across, and from 10 to 40 high. The dip of these rocks is so variable and irregular that no general statement can be made. Where least altered, it was often to the N.N.E. 45°, but at other times they were nearly vertical or even inclined to the S.W., varying in short distances.

"The second series of rocks occupy the northern end of the island to the west of Whale Cove. Commencing at this Cove and going west, we find first regularly columnar trap for a short distance, and then, apparently resting upon it, thick-bedded, regularly stratified massive rocks of various composition, but mostly amygdaloidal, trap-ash, and compact quartzose rocks in beds 10 feet or more thick. These occupy the shore for about two miles, forming cliffs from 100 to 200 feet high. They are at times nearly horizontal, in other places dipping to the W. or S.W. about 10° to 20°. The amygdaloidal cavities contain calcites, stibites, apophyllites,
etc., but seldom affording good specimens. Beyond these rocks, at the N.W. extremity of the island, the cliffs are very high, consisting of trap, often columnar, which continues for several miles; but I have been told that a stratified sandstone again appears for a short distance on the western side, north of Duck Harbour, where I have not been; but, from Duck Harbour to the southern end of the island, I found the cliffs to consist of trap, from 200 to 400 feet high (by estimate).

"Concerning the age of these massive stratified rocks, I can only offer the conjecture that they are Devonian from their appearance alone.

"Whether the red-sandstone of Inner Wood Island and conglomerate of Gannet Rock are of the same age is very uncertain."

On careful consideration of the above observations of Mr Verrill, in connexion with the structure of the neighbouring coast, I think it probable that the outer and older series above mentioned is either the equivalent of the Acadian or St John series or of the Kingston series, and that the traps with the associated sandstones may be Devonian or Upper Silurian. The colouring on the map represents one of these conjectures.

(F.)—New Minerals from Nova Scotia.

"Professor How announced in Silliman's Journal, Sept. 1857, the discovery, in the great bed of gypsum quarried at Windsor, of the rare boracic-acid mineral, *Natro-boro-calcite*, hitherto found only at Iquique in Peru. Its formula, according to Professor How, is—

\[
\text{Na}_2\text{O} \cdot 2\text{BO}_3 + 2\text{CaO}, 3\text{BO}_3 + 15\text{HO}.
\]

With respect to the geological conditions of its occurrence, Professor How quotes from Professor Anderson of Glasgow the statement that, in Peru, the mineral is found in a district supposed to be volcanic, and embedded in the nitrate of soda deposits. He then remarks that, with a very few exceptions, boracic acid is found "either in directly volcanic regions, most abundantly as such, or as borax; and a well-marked case of actual sublimation of the acid from a volcano in the island of Vulcano, near Sicily, has been studied by Warrington; or in smaller amount, in minerals the products of recent or extinct volcanoes, as Humboldtite from ejected blocks of Vesuvius, and zeolites and datholite from trap of Salisbury Crags, New Jersey, and other places; or in minerals of purely plutonic or metamorphic rocks, as tournelins, the rhodolite of Roze, and axinite—the species which contain it at all being few in number. It may be noticed also, that traces of this acid have lately been met with in the Koehbrumen of Wiesbaden and in the waters of Aachen."

"If we may reason from the character of the majority of its situations, we may almost consider the volcanic or at least igneous origin of boracic acid so well established as to lead us, by its occurrence in the gypsiferous strata, to seek for some volcanic agency as the cause of their production. Such an origin has, I find, already been assigned to the gypsum of Nova Scotia by Dr Dawson. This formation has been shown to be a member of the Lower Carboniferous series, and is assumed to have arisen from the action of rivers of sulphuric acid more or less dilute, such as are known
to exist in various parts of the world, issuing from then active volcanoes and flowing over the calcareous reefs and bed of the sea."

The same able chemist, in 1861 (Silliman's Journal and Edin. New Phil. Journal), described a second boracic acid mineral, which he has named Cryptomorphite. It is, like the former, a borate of lime and soda, and its probable formula is stated to be:

$$\text{Na}_3, 3\text{CaO}, 9\text{BO}_3 + 12\text{HO}.$$

Still more recently Professor How has kindly communicated to me a notice, shortly to be published, of a third mineral, found under similar conditions at Brookville and Newport, near Windsor, and which he proposes to name Silico-boro-calcite. It contains a large proportion of silica, and its formula is given as:

$$2\text{CaO}\text{SiO}_2 + 2(\text{CaO}\text{2BO}_3\text{HO}) + \text{BO}_3, 3\text{HO}.$$

These minerals occur in small nodular masses in the gypsum and anhydrite, and are associated with clasaer salt, and they have now been found by Professor How in several localities, and in some of those in considerable abundance. The natro-boro-calcite is said to occur in the ordinary gypsum only, while the silico-boro-calcite is found in anhydrite as well.

Professor How has also detected both the carbonate and sulphate of magnesia in the gypsum and associated rocks, though apparently not in large quantity.

Professor How has also recognised the mineral Pickeringite or magnesia-alum occurring as an efflorescence on the surface of slate at Newport. It is curious that this mineral, like natro-boro-calcite, had previously been found only at Iquique in Peru. It is also curious that it was found to be associated with small quantities of nickel and cobalt. The former metal had not previously been found in Nova Scotia, though not infrequent in the Lower Silurian, Huronian, and Laurentian, of Canada.

Professor O. C. Marsh, of Yale College, has communicated to Silliman's Journal (Nov. 1867) a notice of the mineral Ledererite, found by Jackson and Alger at Cape Blomidon. Professor Marsh regards this mineral as identical with Gmelinite, and attributes its peculiarities to the accidental presence of phosphoric acid and of minute crystals of quartz embedded in the specimens.

(G.) MINING LAWS AND REGULATIONS.

In Nova Scotia the mines and minerals are under the general supervision of the Commissioner of Mines, from whom all necessary information and guidance can be obtained; and the laws relating to mines and minerals are of such a character as to afford all the encouragement that can be desired to legitimate enterprise.

In the case of Gold, "prospecting licences" are issued for periods of three months, and for areas not to exceed 100 acres. The fee is 50 cents per acre up to 10 acres, and beyond this 25 cents. Such licences may be renewed at half the above rates. On discoveries being made, the discoverer
is entitled to a lease for 21 years, under a royalty of three per cent. on the gross amount of gold obtained. Licences are also given for crushing mills. All the details as to rights of proprietors of land, and conditions of licences and leases, are carefully provided for by the law.

In the case of Coal and Other Minerals, licences to explore on tracts of five square miles in extent are granted for 20 dollars. These, however, are for twelve months, and may be renewed on application thirty days before they expire, and on payment of 20 dollars. The holder of an exploratory licence may select an area of one square mile, and secure the right of mining thereon on application and payment of 50 dollars to the Commissioner of Mines. Licences to work are for a term of two years, within which term the holder must commence effective mining operations, and continue the same in good faith. On expiry of the licence, the holder may obtain a lease, in the case of coal, until 25th August 1886; in the case of other minerals, for 21 years, subject to a royalty of five per cent. in the case of all minerals, except gold, coal, and iron. The royalty on coal is ten cents per ton of 2240 lbs. and on iron eight cents per ton. Larger areas than one mile may be granted by the Governor in Council in special cases. A variety of provisions as to details will be found in the law.

(H.)—Additional Information relating to Mines in Nova Scotia.

Coal.—According to the Report of the Chief Commissioner of Mines for 1867, the total yield of coal in Nova Scotia has fallen off from 601,302 tons in 1866, to 482,078 tons in 1867. This diminution is attributed solely to the derangement of trade relations with the United States, consequent on the abrogation of the reciprocity treaty. Unless these relations shall be re-established, other markets must be found, or manufactures must be established capable of consuming the coal within the colony. It is much to be desired that the attention of British capitalists should be directed to the openings for profitable investment in mining and manufacturing industry in Nova Scotia. Under any probable contingency as to the future political relations of the colony, such investments would be safe, and would probably increase in value.

1. The "Drummond Mine" of the Inter-colonial Company, East River of Picton.—The explorations recently made by Mr Barnes, for the tracing of the outcrop of the main seam, have proved the undisturbed extension of the outcrop for more than half a mile to the south-west of the original opening, with every prospect of its still further continuation. According to Mr Barnes, there is now immediately available on this property an area of 480 acres of this great seam, having a vertical thickness of sixteen feet of the best quality of coal, and of course a similar or larger area of the underlying seams. The Company are now vigorously pushing forward the construction of a railway and the opening of the mine by two slopes driven from the outcrop, with the view of shipping on a large scale.

2. General Mining Association, East River of Picton.—One of the two new shafts sunk by this company to the dip of the eastern part of their workings, is stated to have reached the main coal at a depth of 840 feet.
APPENDIX.

683

This is the deepest shaft in Nova Scotia. The coal penetrated by it is stated to be of good quality, so that in a short time it may be anticipated that the already extensive workings and large produce of this mine will be greatly increased.

3. Mabou Coal-field.—Professor Hind has recently reported on the areas of Coal formation rocks between Mabou Harbour and Cape Mabou, referred to at p. 404, supra. I am informed by the proprietors of the mine that the Report shows the existence of the ends of two troughs or basins of coal-rocks, exhibiting four groups of beds, in two of which the thickest beds are three feet in thickness respectively. In the third there is a bed thirteen feet in thickness, and in the fourth a bed eight feet in thickness. There is also a layer of cannel coal supposed to be valuable. These, with the Coal measures of Port Hood on the south, and Chimney Corner on the north, show the extension of productive Coal measures at intervals along the western coast of Cape Breton, while it still remains to be ascertained whether other valuable areas do not exist further inland between the shore and the south-west branch of the Margarie River. One peculiarity of the Mabou Coal beds appears to be that their outcrops are unusually near to those of the Lower Carboniferous gypsum.

4. Morinovish Coal Company, Pictou.—Reports made by Mr Rutherford, Mr Barnes, and Mr Robb, upon the property of this company to the eastward of the East River of Pictou, show that several workable seams of coal overlie the main seam in this locality: a fact not apparent on the west side of the river. Mr Robb mentions as occurring at a distance of about one-third of a mile horizontally from what is regarded as the outcrop of the main seam, two beds of the thickness of five feet six inches and four feet respectively, and about fifty feet apart vertically. Two other outcrops of the thickness of four feet two inches and three feet six inches, occurring on these areas, are supposed to be a still higher level, though they may possibly be the same. They are associated with a bed of oil-coal or earthy bitumen. The exact thickness of measures thus overlying the main seam is not certainly known, but the facts ascertained would seem to imply an important upward extension of the productive Coal measures, which may greatly add to the value of the areas east of the East River, and, as will appear under the following head, may have a bearing on the probable value of the coal beds lying to the north of the great conglomerate.

5. Prospects north of New Glasgow.—The facts above stated for the first time enable me to suggest the probability that valuable discoveries of coal may be made in the extensive district lying between the New Glasgow conglomerate and the Harbour of Pictou. If the upper beds above mentioned can be identified with any of those north of New Glasgow, then it is possible that these upper measures may there overlap the lower and more valuable beds, or that the outcrops of these latter may be concealed by faulting and denudation along the line of the conglomerate. The facts at present in my possession are not sufficient to warrant any confident statements on this point; and while it is possible that very limited explorations might suffice to settle the question, it is also possible that great difficulties may be opposed to its satisfactory solution, by the nature of the ground and the relations of the beds. The subject is, however, one deserving of attention, in view of
the new light cast upon it by recent discoveries. I may add, that on the
supposition of such northern extension of the productive Coal measures,
it may be anticipated that, in accordance with the ideal sections on p. 325,
the beds north of the conglomerate will be less massive than those in
the southern trough. It must also be observed in connexion with this,
that the dips in the northern part of the section (Fig. 136) are somewhat
exaggerated.

6. Victoria Mine, Low Point, Cape Breton.—This mine, on the south side
of Sydney Harbour, presents the first instance in Nova Scotia of coal-mining
in areas below the sea; though in the North Sydney Colliery, the main
seam has been pursued for some distance below the Harbour. The suc-
cessful working of this new mine on a large scale will be an interesting
feature in our coal-mining, and may lead to other adventures of similar
character.

7. Gold.—The Report of the Commissioner of Mines shows a total yield
for the year ending September 1867 of 27,583 ounces. This amount gives
an average of not less than £2 4s., or about 9s. 0d. sterling per day, for
each man employed. It is to be observed in connexion with this, that the
methods of extracting the gold, especially when associated with compounds
of sulphur and arsenic, are by no means perfect, and that the economy of
labour is not so great as it might be in workings on a larger scale. These
facts, with the numerous new discoveries reported, confirm the opinion
expressed in the text, that the gold-mining of Nova Scotia is capable of
profitable extension far beyond its present limits.

In the past year, the Renfrew and Sherbrooke districts have been the
first in point of production; and among new localities likely to be of
importance, are mentioned, Musquodoboit, the Middle and East Rivers
of Sheet Harbour, Mosher's River, Scraggy Lake, Ship Harbour, Upper
Stewiacke, and Gold River.

(1.) STRUCTURE OF NORTHERN CAPE BRETON.

I inadvertently omitted in the text to give a summary of the facts in
regard to this district ascertained by Mr Campbell in his exploration in
1862, and now quote his general description of the region, which presents
several points of interest not previously known.

"To the Gulf of St Lawrence, on its north-west side, it presents a bold
front of rounded or conical mountains, united at their base, and appearing
like buttresses supporting the table lands of the interior on their flanks.
They attain, at some points, an elevation of fifteen hundred feet above the
sea level; and their general outline is softened and the landscape rendered
beautiful by a dense covering of hardwood forest, by which they are clothed
from their base to their summits.

"The greater part of the district is encircled by a rampart of similar
mountains, more or less rounded in their contour; and where they hap-
pened to be stripped of their covering of forest, by the ravages of fire, they
appear as naked cones of crumbly red feldspar rock, which is the prevailing
igneous rock of the district, and that from which the principal part of the
soil is derived. Hence, no doubt, its extraordinary fertility."
"Viewed from the interior, these mountains appear but little elevated above the general level of the country, which in its main aspects appears comparatively level, although cut by deep valleys and narrow defiles along all its water-courses.

"Wherever bottom-lands or intervale occurs in the valleys, the soil is remarkably rich. This is evident from the heavy growth of healthy-looking timber they produce, consisting principally of maple, birch, beech, and elm, with occasional oak-trees of large size, and well adapted for staves or ship-timber.

"I observed some elm trees as much as four feet diameter, and as straight and tall as any I ever saw in the forests of Canada or the South-western States.

"Most of the steep slopes are also heavily timbered; but on the table-lands the forest is much lighter, and chiefly composed of spruce, fir, and hardwood mixed. The soil generally appears to be good, and comparatively free from stones.

"Considerable tracts of the higher or table-lands are occupied by peat bogs, which will, no doubt, some time hereafter, prove of great value, as they are capable of yielding an unlimited supply of that description of fuel, of the finest quality.

"The surface of these peat-bogs presents the appearance of gently-sloping planes of elliptic form, having deep circular basins at their highest points, full to their brim of clear, icy cold water. These basins are no doubt fed by springs from below, and they appear indispensable to the accumulation of any great depth of peat free from earthy matter.

"The geology of this district bears a very close resemblance to that of the Cobequid Mountains; but the brown feldspar rock, or syenite, which is here the predominant intrusive rock, differs from the syenite in the Cobequid Mountains, in having much less quartz and hornblende in its composition, and it is of a more crumbly and perishable nature. On this account the soil of the district is chiefly composed of it.

"The other intrusive rocks are occasional dikes of porphyry and trap; true granite being very scarce if at all present. The prevailing stratified rocks are the newer clay-slate, or Upper Silurian rocks, and Devonian, or Lower Carboniferous rocks—all metamorphosed to a higher degree, and much more disturbed by igneous masses and dikes, than is observed in any other section of the Province.

"To make out the geological structure of the district on the large scale is not, however, a very difficult task, because extensive sections of the rocks are exposed along the seashore, and in the channels of some of the rivers. The same general arrangement of the strata in parallel folds appears to be the most important feature of its structure; but the strike of the rock inclines more to the northward and southward than I observed anywhere else—being N. 20° E., S. 20° W.; as a general rule the greatest amount of inclination I observed was, N. 15° E., S. 15° W. This brings the strata obliquely to the Gulf Coast line, which has a general course of about N. 40° E., S. 40° W., affording an excellent opportunity for observing the phenomena presented by the different groups along their lines of contact."
(K.)—Fossils of the Palæozoic Rocks.

Classification of Fossil Ferns.—In the text I have not departed from the ordinary arrangement, based on form and venation, though I have studied with much interest the arrangement of Goeppelet and of other German Palæobotanists, based on the fructification as far as known. Since I could not, however, apply this system throughout, I have thought it better not to attempt to do so in part; and have merely referred to any traces of fructification observed. I had hoped, before publishing the lists contained in this work, to have had the benefit of Schimper’s revision of the species in his forthcoming “Traité de Palæontologie Végétale;” but this work has not reached me up to the time of writing these lines.

Carboniferous Shells.—Since writing the paragraphs on these, I have seen Geinitz’s “Memoir on the Carboniferous and Permian of Nebraska” (Nov., Acta, 1867). Among several identical species and closely allied forms in that distant region, I observed a shell referred to Arca striata, Schloof, which closely resembles the young of my Macrodon Hardingi, though probably distinct. Mr. Meek, however, in a recent criticism of Professor Geinitz’s paper, identifies this and others of his species with forms described by American authors.

Silurian Land Plants.—The oldest land plants as yet found in British North America are the Rhizomes of Psilophyton, referred to in the text as occurring in the Upper Silurian (Lower Helderberg) of Gaspé. I observe, however, that Professor Geinitz announces the discovery in Germany of a Lepidodendron and a Sternbergia, or plants resembling these, in rocks believed to be Lower Silurian; and mentions that Barrande has made a similar discovery in Bohemia. The specimens would appear not to be of a very decided character; but the discovery, if confirmed, is very important, and would modify the statements in the text as to the oldest land Flora.

Fossils from Northern Queen’s County.

At page 617, I have mentioned the occurrence of fossils in this district, and the probability that rocks newer than the Lower Silurian occur in it. I have recently been enabled, by the kindness of Mr. Poole and of Mr. Kelly of the Department of Mines, Halifax, to examine a small collection of fossils procured by the former gentleman in Brookfield from loose masses. Both in mineral character and in the contained fossils, which are, however, very obscure, these specimens resemble the Lower Devonian rocks of Nictaux; and unless they have been drifted from the northward, would tend to confirm my conjecture of 1855, that “more modern rocks than those of the Atlantic coast may be expected to occur” in this district, and, consequently, that the distribution of the formations in this little known region in the western part of Nova Scotia, may be considerably different from that indicated on the map.

(L.) Huronian of New Brunswick.

Mr. G. F. Matthew has communicated to me some observations on these
rocks near Quaco, showing that the lower part of this series in that region consists of red syenite, felsite, and granulite, not heretofore recognised as sedimentary rocks, and that the full series will be as follows, in descending order:

1. Red sediments of comparatively small thickness (No. 5 of Mr Matthew’s paper on these rocks).

2. Dark-coloured trap-slate rocks of great thickness, parted about midway by a rusty-coloured calcareo-arenaceous band charged with iron and manganese (Nos. 2, 3, 4, of paper cited).

3. Red felspathic rocks of great thickness resting on the Laurantian series.

Mr Matthew suggests the possibility that the red felspathic rocks in the great Lower Silurian band of Northern New Brunswick, marked on the map as eruptive rocks, may be really representatives of these Huronian beds rising from below the Silurian.

Mr Matthew has also recognised in the Huronian of New Brunswick concretions similar to the bodies from the “Lower Taconic” of North Carolina, described by Emmons under the name of *Paleotrochus*.

(M.) **LOWER CARBONIFEROUS OF SOUTHERN NEW BRUNSWICK.**

Mr G. F. Matthew has communicated to me the following sectional list of the lower Carboniferous beds in Eastern King's County, New Brunswick, in descending order:

1. Basal conglomerate.
2. Break in section (probably shales).
3. Lower conglomerate, hard and massive beds.
4. Conglomerate, limestone, gypsum, and dark gray shales (bituminous), *Cyclopterus Acadica* and *Lepidodendron corrugatum*.
5. Gray sandstones, flags, and dark gray shales (bituminous), *Cyclopterus Acadica*, etc., *Cyclopteris Acadica*, *Lepidodendron corrugatum*.
6. Bright red sandstone and brownish-red shales and sandstones (brine springs rise from these beds).
7. Upper conglomerate (Kennebeckasis conglomerate), hard and massive beds.
8. Reddish-brown arenaceous shales and red sandstone.

These beds vary considerably in tracing their line of outcrop. More especially the lower members thin out toward the west, where the Lower Carboniferous bay terminates between the spurs of older rocks, while in the same part of the area the upper members become increased in thickness. Toward the wider Carboniferous area on the east, some of these upper members are reduced or change in character.
<table>
<thead>
<tr>
<th>GENERAL INDEX.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACADIA, origin of the name, 1.</td>
</tr>
<tr>
<td>Acadia Coal Company, 338.</td>
</tr>
<tr>
<td>Acroplepis, 254.</td>
</tr>
<tr>
<td>Actinoceras, 314.</td>
</tr>
<tr>
<td>Agate, 114.</td>
</tr>
<tr>
<td>Aguaetos, 335.</td>
</tr>
<tr>
<td>Albert Mine, 231.</td>
</tr>
<tr>
<td>Albertite, 231, 247.</td>
</tr>
<tr>
<td>Albion Mines, 318.</td>
</tr>
<tr>
<td>Alum, 249.</td>
</tr>
<tr>
<td>Ammonys, 114.</td>
</tr>
<tr>
<td>Amphipeltis, 523.</td>
</tr>
<tr>
<td>Amygdaloid, 67.</td>
</tr>
<tr>
<td>Anaclime, 115.</td>
</tr>
<tr>
<td>Analysis of Marsh Soil, 23.</td>
</tr>
<tr>
<td>Anhydrite, 249, 263.</td>
</tr>
<tr>
<td>Ankerite, 583.</td>
</tr>
<tr>
<td>Annapolis, 95, 563.</td>
</tr>
<tr>
<td>Annularia, 444, 540.</td>
</tr>
<tr>
<td>Antigonish, 346.</td>
</tr>
<tr>
<td>Mountains, 559.</td>
</tr>
<tr>
<td>Anthimony, 640.</td>
</tr>
<tr>
<td>Anthothites, 459, 460, 477.</td>
</tr>
<tr>
<td>Anthracomya, 203.</td>
</tr>
<tr>
<td>Anthracoptera, 203.</td>
</tr>
<tr>
<td>Anthracosia, 314.</td>
</tr>
<tr>
<td>Apophyllum, 115.</td>
</tr>
<tr>
<td>Apple River, 155.</td>
</tr>
<tr>
<td>Araucarites, 474.</td>
</tr>
<tr>
<td>Area, 304.</td>
</tr>
<tr>
<td>Archibald, C. D., 582.</td>
</tr>
<tr>
<td>Archimularia, 398.</td>
</tr>
<tr>
<td>Arisiag, 573.</td>
</tr>
<tr>
<td>Aspatogoen, 618.</td>
</tr>
<tr>
<td>Assays of Coal, 221, 333, 339, 396, 411, 419.</td>
</tr>
<tr>
<td>Astrophyllites, 443, 537.</td>
</tr>
<tr>
<td>Athyria, 290.</td>
</tr>
<tr>
<td>Avicula, 604.</td>
</tr>
<tr>
<td>Aviculopedon, 305.</td>
</tr>
<tr>
<td>BAILEY, Professor L. W., 7, 108, 227, 245, 503, 523, 573, 602, 638, 640.</td>
</tr>
<tr>
<td>Bairdia, 206.</td>
</tr>
<tr>
<td>Bakevellia, 301.</td>
</tr>
<tr>
<td>Baphetes Planiceps, 328, 359.</td>
</tr>
<tr>
<td>Barnes, Mr. J., 310, 314, 320, 340.</td>
</tr>
<tr>
<td>Barrel Quartz, 629.</td>
</tr>
<tr>
<td>Barrens, 50.</td>
</tr>
<tr>
<td>Barytes, 276, 345, 592, 594.</td>
</tr>
<tr>
<td>Basalt, 94, 96.</td>
</tr>
<tr>
<td>Bass Creek, 90.</td>
</tr>
<tr>
<td>Baygynathus Borealis, 119.</td>
</tr>
<tr>
<td>Beinertia, 449, 485.</td>
</tr>
<tr>
<td>Bellerophon, 308.</td>
</tr>
<tr>
<td>Beyrichia, 396, 312, 608.</td>
</tr>
<tr>
<td>Bibliography, Geological, 7.</td>
</tr>
<tr>
<td>Billings, Mr. F. G. S., 11, 278, 566, 569, 581, 594.</td>
</tr>
<tr>
<td>Bitumen, Earthy, 248, 339.</td>
</tr>
<tr>
<td>Bituminous Shale, 248.</td>
</tr>
<tr>
<td>Blomdon, 90.</td>
</tr>
<tr>
<td>Boar's Back, 83.</td>
</tr>
<tr>
<td>Bogs, 35.</td>
</tr>
<tr>
<td>Boulter Formation, 61.</td>
</tr>
<tr>
<td>Brant Island, 91.</td>
</tr>
<tr>
<td>Brachiopoda, 278, 280, 280, 642.</td>
</tr>
<tr>
<td>Briar Island, 90.</td>
</tr>
<tr>
<td>Brine Springs, 248, 276, 349.</td>
</tr>
<tr>
<td>Brown, Mr. J., 7, 337, 402, 406.</td>
</tr>
<tr>
<td>CALAMITE, 194, 441, 536.</td>
</tr>
<tr>
<td>Calamodendron, 440, 476.</td>
</tr>
<tr>
<td>Calcareous Spar, 115.</td>
</tr>
<tr>
<td>Calymene, 607.</td>
</tr>
<tr>
<td>Cameroophoria, 293.</td>
</tr>
<tr>
<td>Campbell, Mr. J., 319, 322, 340, 625.</td>
</tr>
<tr>
<td>Canseau, Cape, 619.</td>
</tr>
<tr>
<td>Cape Breton, General description of, 14.</td>
</tr>
<tr>
<td>Metamorphic Rocks of, 572.</td>
</tr>
<tr>
<td>County, Coal formation of, 404.</td>
</tr>
<tr>
<td>Cape d'Or, 107.</td>
</tr>
<tr>
<td>John, 327.</td>
</tr>
<tr>
<td>Dauphin, 402.</td>
</tr>
<tr>
<td>Porcupine, 559.</td>
</tr>
<tr>
<td>Split, 94.</td>
</tr>
<tr>
<td>Carboniferous District of Cumberland, 150.</td>
</tr>
<tr>
<td>New Brunswick, 227, 397.</td>
</tr>
<tr>
<td>Colchester, etc., 251.</td>
</tr>
<tr>
<td>Pictou, 315.</td>
</tr>
</tbody>
</table>
Carboniferous District of Antigonish, 346.

Carboniferous System, General description, 128, 156.
Carbonera, 459, 491.
Cardinia, 304.
Cardiomorpha, 304.
Carpenter, Dr J., 385.
Carribou, 397.
Carribou Cove, 396.
Caulopteris, 449, 486.
Cement Water, 351.
Centronella, 300.
Chabazite, 114.
Chaetetes, 288.
Chester Basin, 351.
Chia, 620.
Chiononoto Mine, 219.
Chonetes, 304.
Chorele, 563.
Clarke's Head, 105, 265.
Clays, 275, 345, 635.
Cleophorus, 600.
Climate of Post-pliocene, 77.
Clyde River, 82.
Coal Formation, Upper, 129.
Lower, 131.

Carboniferous District of Antigonish, 346.

Carboniferous Limestones, Subdivisions of, 147, 281.
Carboniferous System, General description, 128, 156.

INDEX.

Carboniferous District of Antigonish, 346.

Carboniferous System, General description, 128, 156.
Carbonera, 459, 491.
Cardinia, 304.
Cardiomorpha, 304.
Carpenter, Dr J., 385.
Carribou, 397.
Carribou Cove, 396.
Caulopteris, 449, 486.
Cement Water, 351.
Centronella, 300.
Chabazite, 114.
Chaetetes, 288.
Chester Basin, 351.
Chia, 620.
Chiononoto Mine, 219.
Chonetes, 304.
Chorele, 563.
Clarke's Head, 105, 265.
Clays, 275, 345, 635.
Cleophorus, 600.
Climate of Post-pliocene, 77.
Clyde River, 82.
Coal Formation, Upper, 129.
Lower, 131.

GENERAL INDEX.

Carboniferous District of Antigonish, 346.

Carboniferous System, General description, 128, 156.
Carbonera, 459, 491.
Cardinia, 304.
Cardiomorpha, 304.
Carpenter, Dr J., 385.
Carribou, 397.
Carribou Cove, 396.
Caulopteris, 449, 486.
Cement Water, 351.
Centronella, 300.
Chabazite, 114.
Chaetetes, 288.
Chester Basin, 351.
Chia, 620.
Chiononoto Mine, 219.
Chonetes, 304.
Chorele, 563.
Clarke's Head, 105, 265.
Clays, 275, 345, 635.
Cleophorus, 600.
Climate of Post-pliocene, 77.
Clyde River, 82.
Coal Formation, Upper, 129.
Lower, 131.

INDEX.

Carboniferous District of Antigonish, 346.
Erect Fossil-trees at Port Hood, 400. at Sydney, 406.

Estreria, 256.
Evomphalus, 308.
Euryperus, 288, 523.

FAMOSITE, 115.
Fauna, 642.
Felspar compact, 612.
Fenestella, 288.
Fern Ledges, Section at, 513.
Fiske Island, 28.
 Fires in Forests, 47.
Fishes of the Coal formation, 209.
Flora of the Coal formation, 421.
... of the Devonian, 531.
Folly River, 100, 263.
Footprints, Recent, 25.
... in Coal Measures, 333, 356, 358.
Forest Fires, 47.
Forests, Submarine, 36.
Formations, Tabular View of, 18.
Fort Lawrence, 28.
Fossils of Lower Carboniferous, 285.
... Post-pliocene, 74.
... Trias, 119.
... Devonian, 499.
... Upper Silurian, 594.
... Lower Silurian, 641.
Fossil Plants of Coal Formation, 241, 421, 473.
... Lower Coal Formation, 253.
... Devonian, 534.
... Reptiles of Carboniferous, 353.
Fraser, Mr. D., 155, 588.
Fraser, Mr. J. D., 331.
Freestone, 229, 249, 344, 321, 404.
Frost, Action of, 64.
Fundy, Tides in Bay of, 21.
... Marshes of, 22.

GALENA, 275.
Gallows Point, 117.
Ganoid Fishes, 209, 281, 284.
Gelnitz, Professor, 148.
General Mining Association, 329.
Gerriath Mountain, 101.
Gesner, Mr. J. 2, 32.
Gilpin, Dr., on Sable Island, 38.
Glacial Period, 64, 65.
... Striae, 62.
Glaciers, 63, 66, 70.
Gneiss, 614
Gold in Lower Carboniferous, 277.
... in Lower Silurian, 624.
... Mining, 627, and Appendix.
... Produce of, 636.
... Alluvial, 631, 635.
... of New Brunswick, 410.
Grand Passage, 97.
Granite, 499, 614, 614, 635.
... Graphic, 616.
Graphite, 664.
Granville, 95.
Gravel, Superficial, 81.
Great Village River, 100.

Greenstone, 612.
Grindstone, 284, 292, 249.
Guyborough, 350.
Gypseum of Pugwash, 222.
... Wallace, 222.
... Windsor, 239.
... Plants, etc., 271.
 ... New Brunswick, 249.
 ... Shubenacadie, 237, 271.
 ... East River, 345.
 ... Antigonish, 347.
 ... Picton, 316, 345.
 ... Plaster Cove, 391.
 ... Richmond, 399.
 ... Mines, 401.
 ... Cape Breton, 419.
 ... Inverness and Victoria, 403.
Gyacona, Origin of Beds of, 261, 391.
... Veins of, 266.

Gyroceras, 311.
Gyrile, 115.

HALIFAX, 618.
Hall, Professor, 602, 607.
Hallock, Mr. R., 583.
Hanta County, 251.
Haplophlebus, 356.
Harding, Dr. E. F., 264, 356.
Harrington River, 102.
Hart, Mr. C. P., 7, 227, 241, 421, 278, 513, 528,
... 632, 641, 644.
Haut Island, 108.
Hayes, Mr. A. L., 589.
Hebert River, 82.
Heurlande, 106.
Hillsborough, 231.
Hind, Professor, 639, 641.
Hitchcock, Professor C. H., 577.
Holopheus, 605.
Homalonotus, 607.
Homotheretes, 595.
Honeyman, Dr., F.G.S., 241, 346, 565, 602.
Horton, 92, 252.
 ... Bluff, 252.
How, Professor, D.C.L., 11, 278, 635.
Howe, Hon. J., 625.
Hoyt, Mr. C. A., 338.
Hudson, Mr. M., 314.
Hunt, Dr. F. P., 431, 431, 393, 137, 262, 576.
Huronian Series, 659, and Appendix.
Hylonomus, 380.
Hymenophyllites, 440, 518.
Hymenoderus, 370, 376, 378.
Ice, Ravine at Annapolis, 39.
 ... Transplanting Power of, 84.
Indian Point, 101.
Insects, Fossil, 586, 593.
Intercolonial Coal Company, 340.
Intervales, 33.
Inverness, 390, 399.
Iron Ores, 345, 353, 583, 584, 390.
Iron Ore, Magnetic, 113.
Iron Ore, Specular, 113.

..... Hematite, 272, 584, 591.
..... of Joggins, 222.
..... of Shubenacadie, 271.
..... of Picton, 344, 591.
..... of Cobeguid Mountains, 582.
..... of Cape Breton, 419.
..... of Nictaux, 596.
..... of West Beach, N.B., 526.
..... of Woodstock, 641.
Ironstone, 222.

Jackson, Dr., 7.
Jasper, 114.
Joggins, Coal Measures at, 143.
..... Detailed Section at, 156.
..... Coal Mine, 219.
Jones, Mr., F.L.S., 356.
Jukes, Mr., F.R.S., 497.

Kentville, 92.
Khorria, 490.

Lake, Deposits in, 31.
..... Margins of, 35.
Land Shells in the Coal Measures, 182.
Laumont, 114.
Laurentian System, 602.
Lawrence Mine, 219.
Lea, 256.
Lead, 325, 531, 640.
Leidy, Dr., 119.
Leperditia, 256, 609.
Lepidodendron, 185, 253, 450, 486, 541.
Lepidophloios, 189, 456, 489.
Lepidophyllium, 181, 489.
Leptocoele, 598.
Lesley, Professor, 141, 414.
Leptodonus, 603.
Life in Coal Lagoons and Estuaries, 202.
..... in Carboniferous Sea, 254, 285.
Limestone, Bituminous of Joggins, 181, 222.
..... of Minadie and Napan, etc., 151, 152.
..... of Pugwash, 213.
..... of Windsor, 258, 271.
..... of New Brunswick, 249.
..... of Shubenacadie, 266.
..... of West River, Picton, 315.
..... of East River, Picton, 345.
..... of Antigonish, 347.
..... of Guysborough, 351.
..... of Plaister Cove, 391.
..... of Mabou, 403.
..... of Long Island, 413.
..... of St John, 693.
Lingula, 569, 644.
Lithostrotion, 525.
Lower Carboniferous Series, 130.
Lower Silurian of Nova Scotia, 613.
..... New Brunswick, 637.
Lunenburg, 617.
GENERAL INDEX

<table>
<thead>
<tr>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>693</td>
<td>New Brunswick, Lower Silurian of, 637.</td>
</tr>
<tr>
<td></td>
<td>Huronian of, 659.</td>
</tr>
<tr>
<td></td>
<td>Lower Cambrian of, 662.</td>
</tr>
<tr>
<td>578</td>
<td>New Canaan.</td>
</tr>
<tr>
<td>321</td>
<td>New Glasgow.</td>
</tr>
<tr>
<td>342</td>
<td>New Red Mountain.</td>
</tr>
<tr>
<td>340</td>
<td>Nova Scotia, General Description of, 14.</td>
</tr>
<tr>
<td>614</td>
<td>OaK Island.</td>
</tr>
<tr>
<td>447</td>
<td>Odonopteris, 447, 482.</td>
</tr>
<tr>
<td>275</td>
<td>Onslow Mountain.</td>
</tr>
<tr>
<td>400</td>
<td>Oolite Limestone.</td>
</tr>
<tr>
<td>114</td>
<td>Opal, 114.</td>
</tr>
<tr>
<td>644</td>
<td>Orthoceras, 644.</td>
</tr>
<tr>
<td>605</td>
<td>Oswell Point, 117.</td>
</tr>
<tr>
<td>635</td>
<td>Owen, The, 631, 635.</td>
</tr>
<tr>
<td>354</td>
<td>Owen, Professor, F.R.S., 354.</td>
</tr>
<tr>
<td>85</td>
<td>Packard, Mr, 85.</td>
</tr>
<tr>
<td>594</td>
<td>Paleaster, 594.</td>
</tr>
<tr>
<td>231</td>
<td>Palaeonicusis, 231.</td>
</tr>
<tr>
<td>449</td>
<td>Palaeopteris, 449, 483.</td>
</tr>
<tr>
<td>566</td>
<td>Paradoxides, 566, 567.</td>
</tr>
<tr>
<td>106</td>
<td>Partridge Island.</td>
</tr>
<tr>
<td>60</td>
<td>Peat under Boulder Clay, 60.</td>
</tr>
<tr>
<td>534</td>
<td>Pecopteris, 485, 494, 534.</td>
</tr>
<tr>
<td>51</td>
<td>Persea River, 51.</td>
</tr>
<tr>
<td>125</td>
<td>Permian Period, 125.</td>
</tr>
<tr>
<td>47</td>
<td>Petite Passage, 97.</td>
</tr>
<tr>
<td>89</td>
<td>River, 89.</td>
</tr>
<tr>
<td>313</td>
<td>Philippia, 313.</td>
</tr>
<tr>
<td>315</td>
<td>Picton, Carboniferous District of, 315.</td>
</tr>
<tr>
<td>568</td>
<td>Upper Silurian of, 568.</td>
</tr>
<tr>
<td>117</td>
<td>Pine, Fossil, of Prince Edward Island, 117.</td>
</tr>
<tr>
<td>214</td>
<td>of Malagash, 214.</td>
</tr>
<tr>
<td>534</td>
<td>of St John, 534.</td>
</tr>
<tr>
<td>541</td>
<td>Pinnularia, 445, 541.</td>
</tr>
<tr>
<td>291</td>
<td>Plaister Gove, 291.</td>
</tr>
<tr>
<td>269</td>
<td>Plaster Plots, Origin of, 269, 293.</td>
</tr>
<tr>
<td>524</td>
<td>Platephera, 524.</td>
</tr>
<tr>
<td>309</td>
<td>Platycheles, 309.</td>
</tr>
<tr>
<td>310</td>
<td>Pleurotomaria, 310.</td>
</tr>
<tr>
<td>320</td>
<td>Poole, Mr H., 11, 320, 324, 415, 620, 625.</td>
</tr>
<tr>
<td>278</td>
<td>Poole, Mr II., jun., 278.</td>
</tr>
<tr>
<td>348</td>
<td>Pommet, 348.</td>
</tr>
<tr>
<td>593</td>
<td>Porphyry, 593, 612.</td>
</tr>
<tr>
<td>100</td>
<td>Portage River, 100.</td>
</tr>
<tr>
<td>662</td>
<td>Portland, 662.</td>
</tr>
<tr>
<td>56</td>
<td>Post-pliocene, 56.</td>
</tr>
<tr>
<td>74</td>
<td>Fossils of, 74.</td>
</tr>
<tr>
<td>41</td>
<td>Pre-historic Man, 41.</td>
</tr>
<tr>
<td>41</td>
<td>Time, 41.</td>
</tr>
<tr>
<td>115</td>
<td>Primordial of St John, 115.</td>
</tr>
<tr>
<td>119</td>
<td>Fossil Reptile in, 119.</td>
</tr>
<tr>
<td>123</td>
<td>Possible occurrence of Coal in, 123.</td>
</tr>
<tr>
<td>296</td>
<td>Productus, 296.</td>
</tr>
<tr>
<td>209</td>
<td>Psammomus, 209.</td>
</tr>
<tr>
<td>486</td>
<td>Psaronius, 486.</td>
</tr>
<tr>
<td>543</td>
<td>Pulophyton, 543.</td>
</tr>
<tr>
<td>203</td>
<td>Pugwash, 203.</td>
</tr>
<tr>
<td>383</td>
<td>Fulmonates, 383.</td>
</tr>
<tr>
<td>384</td>
<td>Pupa vetusta, 384.</td>
</tr>
<tr>
<td>113</td>
<td>Quartz, 113.</td>
</tr>
<tr>
<td>593</td>
<td>Smoky, 593.</td>
</tr>
<tr>
<td>616</td>
<td>Rose, 616.</td>
</tr>
<tr>
<td>627</td>
<td>Auriferous, 627.</td>
</tr>
<tr>
<td>615</td>
<td>Quartzite, 615.</td>
</tr>
<tr>
<td>616</td>
<td>Queen’s County, 616.</td>
</tr>
<tr>
<td>26</td>
<td>Rain-Marks, Recent, 26.</td>
</tr>
<tr>
<td>119</td>
<td>Trias, 119.</td>
</tr>
<tr>
<td>42</td>
<td>Retains, 42.</td>
</tr>
<tr>
<td>478</td>
<td>Rhabdodacrus, 459, 478.</td>
</tr>
<tr>
<td>254</td>
<td>Rhizodius, 301, 254.</td>
</tr>
<tr>
<td>598</td>
<td>Rhynchoneilla, 294, 298, 598.</td>
</tr>
<tr>
<td>597</td>
<td>Rhynconia, 597.</td>
</tr>
<tr>
<td>390</td>
<td>Richmond, 390.</td>
</tr>
<tr>
<td>250</td>
<td>Kill-marks, 250.</td>
</tr>
<tr>
<td>340</td>
<td>Robb, Mr C., 227, 340.</td>
</tr>
<tr>
<td>502</td>
<td>Raschchnites, 257, 410.</td>
</tr>
<tr>
<td>341</td>
<td>Rutherford, Mr, 219, 329, 341.</td>
</tr>
<tr>
<td>36</td>
<td>Sable Island, 36.</td>
</tr>
<tr>
<td>88</td>
<td>Salmon River, 88.</td>
</tr>
<tr>
<td>349</td>
<td>Salt Springs, 248, 276, 349.</td>
</tr>
<tr>
<td>88</td>
<td>Saltair’s Head, 88.</td>
</tr>
<tr>
<td>39</td>
<td>Sand Hills or Dunes, 36, 39.</td>
</tr>
<tr>
<td>86</td>
<td>Sandstone, Colours of, 153, 623.</td>
</tr>
<tr>
<td>66</td>
<td>Sandstone, New Red, 66.</td>
</tr>
<tr>
<td>55</td>
<td>Sandy Cove, 55.</td>
</tr>
<tr>
<td>358</td>
<td>Saururus, 358.</td>
</tr>
<tr>
<td>32</td>
<td>Savannahs, 32.</td>
</tr>
<tr>
<td>114</td>
<td>Scalenite, 114.</td>
</tr>
<tr>
<td>387</td>
<td>Sclerboris, 387.</td>
</tr>
<tr>
<td>49</td>
<td>Second-Growth Woods, 49.</td>
</tr>
<tr>
<td>623</td>
<td>Sediments, 24, 623.</td>
</tr>
<tr>
<td>312</td>
<td>Serpulites, 312.</td>
</tr>
<tr>
<td>248</td>
<td>Shale, 248.</td>
</tr>
<tr>
<td>106</td>
<td>Sharp Cape, 106.</td>
</tr>
<tr>
<td>616</td>
<td>Shetburne, 616.</td>
</tr>
<tr>
<td>155</td>
<td>Shoulie River, 155.</td>
</tr>
<tr>
<td>26</td>
<td>Shrinkage-Cracks, 26.</td>
</tr>
<tr>
<td>88</td>
<td>Shubenacadie, 88, 266.</td>
</tr>
</tbody>
</table>

Note: The provided text is a page from a book, possibly a scientific or geological reference, containing various entries related to geological locations, fossil descriptions, and species names. The entries are organized in a table format with page numbers for further reference.
GENERAL INDEX.

Sigillaria, 180, 188, 430, 474, 536.
Silver, 640.
Slate, 593, 615.
... Artifical, 590.
Smith, Mr T., 48.
Soils, Alluvial, 21, 33, 112, 123.
... Peaty, 35.
Soils of the Carboniferous, 223.
...... Metamorphic Districts, 593, 613.
...... Trias, 112, 123.
Solenites, 492.
Split, Cape, 92.
Sphenopteris, 243, 447, 483.
Sphenophyllus, 444, 480, 540.
Spirifera, 251, 298, 499, 596.
Spirorbis, 205, 310.
Sporangites, 459, 491.
St. Croix River, 263.
St. John, N.B., 503, 637, 696.
St. John River, Falls of, 31.
St. Mary's River, 619.
Staurotide, 616.
Steenstrup, Dr, 55.
Steno[)ora, 287.
Sternbergia, 424, 491.
STIISTBITE, U4.
Stone Age, 42.
Striae, Glacial, 59, 69.
... of Drift-wood, 199.
Strophomena, 295, 499.
"Sub-Carboniferous," 131.
Submarine Forests, 28.
Subsidence, Modern, 31.
Swan Creek, 104.
Sydney, Cape Breton, 406.
Sycamite, 612.
Syringodendron, 475.
TANOIE, 631.
Tatamagouche, 217.
Tellinomya, 602.
Terebratula, 293.
Thomsonite, 115.
Tides of the Bay of Fundy, 21.
Tormentin, Cape, 124.
Trap, Mode of Formation, 87.
...... Varieties of, 87.
...... Blomidon, etc., 90.
Traps, erect, 191, 198, 200.
Trematoarpir, 597.
Trias, 86.
Triassic, 459, 477, 481.
Truro, 88.
Tufa, 87.
Turbo, 309.
Ulodendron, 189.
Umber, 351.
Unconformability, 98.
Underclays, 173.
Upper Silurian, 411, 557, 572.
..... of Nova Scotia, 558.
..... of New Brunswick, 573.
Verrill, Professor, Appendix.
Victoria County, 403.
..... Mine, 219.
WALLACE, 214.
Walton, 89, 258.
Waverley Mine, 627.
Webster, Dr, 25, 34, 571.
Westport, 97.
West River of Picton, 315.
Williamson, Professor, 424.
Wilson, Professor, 57.
Windsor, 258, 279.
Wolfville, 92.
Worm-burrows, 256, 410.
Xenoneura, 525.
Xylobius, 385, 465.
Yarmouth, 616.
Zaphrentis, 286, 499.
Zic, 641.
Zonites, 385.

THE END.
JUNCTION OF INTRUSIVE GRANITE AND QUARTZITE IN CLIFF NEAR INDIAN HARBOUR LAKE. (P. 84.)
SUPPLEMENT
TO THE
SECOND EDITION OF

ACADIAN GEOLOGY,
CONTAINING ADDITIONAL FACTS AS TO THE GEOLOGICAL STRUCTURE,
FOSSIL REMAINS, AND MINERAL RESOURCES OF

NOVA SCOTIA, NEW BRUNSWICK, AND
PRINCE EDWARD ISLAND.

BY

JOHN WILLIAM DAWSON, M.A., LL.D., F.R.S., F.G.S., Etc.,
PRINCIPAL AND VICE-CHANCELLOR OF M'GILL UNIVERSITY, MONTREAL.

London:
MACMILLAN AND CO.
EDINBURGH: OLIVER & BOYD, TWEEDDALE COURT.
HALIFAX: A. & W. MACKINLAY. MONTREAL: DAWSON BROTHERS.
NEW YORK: VAN NOSTRAND.

1878.
EDINBURGH: PRINTED BY OLIVER AND BOYD.
CONTENTS.

INTRODUCTORY .. 7
CORRECTIONS OF GEOLOGICAL MAP .. 9
THE MODERN PERIOD—Changes of Level—The Acadian Bay—Oyster-Beds—Sand Dunes—Shore Ridges—Micmac Remains .. 13
THE TRIAS—New Facts as to Prince Edward Island—Fossils of the Trias ... 28
THE PERMO-CARBONIFEROUS—Development and Fossils in Nova Scotia and Prince Edward Island .. 30
THE CARBONIFEROUS—Recent Discoveries in Different Coal-fields—Lower Members of the Carboniferous—Their Arrangement and Equivalents—Manganiferous Limestone—New Carboniferous Fossils—Origin of Coal ... 39
THE DEVONIAN—Its Development in Acadia and North America generally—Its Flora ... 69
THE LOWER SILURIAN—Largely Represented by Volcanic Beds—The Cobqueuil Series and its Equivalents—Lower Silurian of Cape Breton .. 78
THE CAMBRIAN—The Acadian Series—The Quartzite and Slate Series of the Atlantic Coast—Intrusive Granite and Metamorphism—Fossils—Age of Gold Veins .. 81
THE HURONIAN—In New Brunswick—Supposed Equivalents in Nova Scotia ... 87
THE LAURENTIAN—New Facts as to New Brunswick—Supposed Laurentian of Nova Scotia .. 88
COMPARISONS of PALEOZOIC Rocks with those of other Countries 90
MINERAL RESOURCES—Coal—Iron—Copper—Antimony—Gold—Manganese—Lead—Building and Ornamental Stones—Gritstones—Gypsum, &c., .. 92
NOTES AND ADDENDA .. 99
CLASSIFIED INDEX to the Palaeontology of the Third Edition of Acadian Geology 103
IMAGE EVALUATION
TEST TARGET (MT-3)

Photographic Sciences Corporation
23 WEST MAIN STREET
WEBSTER, N.Y. 14580
(716) 872-4503
LIST OF ILLUSTRATIONS.

Junction of Granite and Quartzite (Frontispiece) .. 19
Mieniac Harpoon, ... 31
Sections of Prince Edward Island, ... 52
Sigillaria Lorwayana, .. 53
Blattina Bretonensis, .. 53
B. — Heeri, .. 54
B. — sepulta, ... 55
Libellula carbonaria, ... 56
Markings on Rocks, ... 57
Anthracopalemon Hillianum, ... 57
Carboniferous Myriapods, .. 58
Psilophyton princeps, .. 71
Section on East River, Pictou, .. 72
Homalonotus Dawsoni, ... 77
Section of Coalequid Range, .. 80
Eozoon Canadense, ... 89
Canal system of do., .. 90
Paleoniscus modulus, ... 100
SUPPLEMENT TO ACADIAN GEOLOGY.

1. INTRODUCTORY.

When in 1868 it became necessary to prepare a second edition of my Acadian Geology, I was surprised to find that the new material on the subject had increased to such an extent as to swell the work to thrice its original bulk, in spite of all my attempts at condensation, and of the omission of many details accumulated in my notes. Now, after the lapse of nine years, in writing a supplementary section to bring the book up to the present state of knowledge, I find myself troubled with a similar superabundance of matter.

It is so far gratifying to me that I have little to retract in the department of theoretical geology. That position of moderate uniformitarianism, with due allowance for intermittent actions which may well be termed cataclysmic, which I have attempted to define in the concluding paragraphs of my book, and which pervades its general tone and the treatment of the varied subjects discussed, may now be considered as the attitude of the great majority of geologists. The battle of the glacialists is perhaps hardly as yet decided, but victory evidently leans to the side of that eclectic doctrine of marine submergence and ice-drift with local land glaciation, which I maintained in 1868, as I had previously done in 1855. The questions relating to the origin of coal and the land conditions of the Carboniferous age, presented in 1868, were answered by the collection of facts shown perhaps more clearly in Nova Scotia than in any other part of the world, and the force of which is now felt everywhere, and supported by evidence abundantly obtained in other countries. The reality and extent of the Devonian flora, though belief in them is still resisted with a pertinacity almost personal by some European botanists, are now generally accepted by geologists. The extension downward of the Palaeozoic fauna in America, as far as the Lower Cambrian, and the distinctness of this older fauna from
those which are properly Silurian, due mainly to the labours of Matthew and Hartt, but first brought prominently forward in the second edition of this work, has been greatly extended in its geographical range; and American text-books no longer terminate Palaeozoic life on the horizon of the Potsdam. The still greater fact of the extension of animal life backward into the Eozoic age, though still denied by some, is steadily advancing in acceptance.

My own work in the geology of the Acadian Provinces, since 1868, has necessarily been limited by distance and by other occupations. It includes—(1.) A geological reconnaissance of Prince Edward Island,* in which I was assisted by Dr B. J. Harrington, and by which the subdivisions of the Trias in that island and the existence and distribution in it of rocks of the Upper Coal formation were first ascertained; (2.) A detailed Report on the Flora of the Upper Silurian and Devonian Rocks, published by the Geological Survey of Canada in 1871, in which the fossil plants of the New Brunswick Devonian were first adequately figured and described, and their geological relations discussed; (3.) A similar Report on the Fossil Plants of the Lower Carboniferous and Millstone-grit, in which these plants and the beds containing them were correlated with those in other parts of America and in Europe; (4.) A Revision of the Post-pliocene Geology, in my "Notes on the Post-pliocene of Canada;"† (5.) Memoirs on the Relation of the Upper Coal Measures of Nova Scotia to the Permian; ‡ On the Impressions and Footprints of Animals in the Carboniferous Rocks; § On Sigillaria, Calamites, and Lepidodendron; ¶ On New Carboniferous Batrachians;¶ and on the Geological Relations of the Iron Ore Deposits.** I have besides given assistance in the determination of fossils and in other ways to most of the other workers who have been in the field, so that my connection with Acadian geology has been continuously maintained. I may add, that, in connection with the preparation of this supplement, I have twice visited Nova Scotia, and re-examined districts of special interest, and that I have in many instances been delighted to find how much, previously inaccessible or obscure, had been disclosed by new lines of railway, mining operations, and other changes.

The extension of the Geological Survey of the Dominion to the Acadian Provinces has brought into the field a host of workers, armed with those advantages of ample time and public funds which

† Journal, Geol. Society, Aug. 1874.
‡ Journal, Geol. Soc., May 1873.
** Proceedings Am. Association, 1874.
are not accorded to those who labour for the mere love of science, and thus an immense amount of details not previously accessible have been accumulated. In this Supplement I shall have to summarise or refer to Reports by Sir W. E. Logan, Mr Selwyn, Dr Hunt, Professor Bailey, Mr Matthew, Mr Robb, Mr M’Owat, Mr Hartley, Mr Scott Barlow, Mr Fletcher, and Mr Ells, embracing in all a volume of matter much greater than that of my book. In addition to this, local geologists and collectors have not been idle, and more especially a number of important papers and reports have been published by Mr Poole, Professor Ilind, Dr Honeyman, Mr Matthew, Mr Gilpin, Professor How, Professor Chapman, Mr Paisley, and others.

In dealing with this great mass of matter, I shall first notice the modifications required in the Geological Map, and shall then refer to the several formations in succession, limiting myself under each to those points which seem most important either in local or general geology.

Finding by experience that the general arrangement of my book, whereby the notices of fossils and of useful minerals were distributed under the heads of the districts in which they principally occur, has caused some difficulty in reference, and has perhaps led to the overlooking of important facts by readers, I shall add a classified table of contents which may remove this inconvenience.

2. THE GEOLOGICAL MAP.

In the second edition of this work it was stated that the map, though greatly improved, “is to be regarded as merely a rude approximation to the truth;” and though more detailed and accurate maps of certain districts have since been published, so much remains to be done, and so much uncertainty exists, that I have thought it best not to alter the colouring in this edition, but merely to note the changes which up to the present time would seem to be indicated by new facts.

In the map, the limits of the Triassic and Carboniferous formations, as they could be broadly indicated by tracing these formations on a number of lines of section up to their borders, were taken as the dominant boundaries, and little attempt was made to indicate the subdivisions of the older Metamorphic series. Even this much involved a large amount of labour, in time snatched from the intervals of other employments, and was necessarily very imperfectly done, yet these general limits, as fixed by me in 1868, may be said still to remain, the principal exceptions being the extension of the Upper Coal formation along the N.-W. coast of Prince Edward Island,
and to Governor's Island and Gallas Point in Hillsborough Bay; an error of the colourist, whereby the tint of the Lower Silurian was extended over a part of the Carboniferous near Bathurst, in New Brunswick, and some local corrections in Antigonish County and Cape Breton.

The older formations of Nova Scotia and New Brunswick have all along been liable to the same difficulties which have made the similar rocks of New England the stumbling-block of geologists. Originally very different from the sediments of equivalent age in that "New York Series" which has been usually regarded as typical, intermixed with anomalous and irregular volcanic beds, much disturbed and profoundly changed by metamorphic action, and for the most part covered with soil or buried in forests, they presented difficulties altogether insuperable in 1863, and which even yet have been very partially removed. I was, however, able, with the aid of the New Brunswick geologists, roughly to arrange them under six distinct colours. These were, with their respective numbers, (4.) Devonian; (5.) Upper Silurian; (6.) Lower Silurian, including Cambrian; (7.) Huronian; (8.) Laurentian; (10.) Granite, Syenite, etc.

In Nova Scotia, the only district coloured as Devonian is that on the south side of the Annapolis Valley, or the Nictaux and Bear River formation. The fossils of this are of Oriskany age, and would now, by some geologists, be regarded as Upper Silurian rather than as Lower Devonian. The only other area which I could indicate in that province is a small patch of quartzose rock, holding obscure fossil plants, which projects through the Carboniferous between the East and Middle Rivers of Pictou, and which is delineated on Sir William Logan's detailed map of that district, but is too small to appear in my map. In New Brunswick the Devonian area requires to be diminished by the removal of the large patch between Quaco and Shepody Bay, which consists of altered rocks of much older date; a remark which also applies to the smaller areas indicated on the map immediately west of St John. On the other hand, considerable portions of the hard, slaty, and arenaceous rocks rising from beneath the Carboniferous on its south-western border, and mapped as Lower Silurian, have been ascertained by Messrs Bailey and Matthew to be Devonian.

Mr R. Chalmers, who is engaged in preparing a geological map of Restigouche County, reminds me that a limited exposure of sandstone and conglomerate near Dalhousie, holding obscure fossil plants, and referred by the Geological Survey to the Gaspé sandstones,* has

* Report of Progress, 1863.
been omitted on my map. I have also found that these Devonian rocks, represented by red and gray sandstones with characteristic fossils, come in, in great force, near Casapencal, on the east side of the Metapedia, and just on the northern limit of the map.

Rocks characterized by fossils of Upper Silurian age skirt the southern side of the great crystalline belt extending south-westward from Bathurst in New Brunswick, and doubling round the south-west end of the Carboniferous area of that province. They are coloured in the map as Lower Silurian, and by an error of the colourist are extended over a part of the Carboniferous area near Bathurst. On the other hand, a portion of the Upper Silurian area near the lower part of the St John River, and constituting the Kingston group, is regarded as in part least occupied with older rocks. In Nova Scotia, rocks of Upper Silurian age skirt the Cobiquid Hills from Wentworth to New Annapolis and Earlton, and reappear on the East River of Picton, extending thence to Arisaig and Lochaber Lake. To the westward they reappear and cover considerable areas at New Canaan and elsewhere in King's County, and also in Northern Queen's County. All these districts are indicated in my map by the proper colour, but I have included with them large areas occupied by non-fossiliferous rocks of various mineral characters, and which subsequent observers have been disposed to assign to a much older date. The reasons of this will be discussed farther on.*

In the meantime, I may state that there are some grounds for the belief that considerable areas marked as Upper Silurian in Nova Scotia and Cape Breton may prove to be Lower Silurian, or even older, and that if we confine the colour to those areas in which fossils of Upper Silurian age have been actually recognised, its breadth will be restricted, both in the east and west, to certain narrow bands in the districts so coloured on the present maps.

Unfortunately, with one possible exception in Cape Breton, no distinct fauna of the typical Lower Silurian age has yet been recognised in the Acadian Provinces. A few Graptolites found by Mr. Robb in the great belt north of the crystalline area already referred to in New Brunswick, would seem to indicate equivalents of the Quebec group. In Nova Scotia there are stratigraphical reasons to suppose that portions, at least, of the remarkable semi-volcanic or ash rocks, which underlie the beds with Upper Silurian fossils, may be of this age.

With reference to the great belt of Lower Silurian constituting the Gold series on the coast of Nova Scotia, its age was held by me in

* Under headings "Lower Silurian" and "Cambrian."
1868 to be properly Cambrian, though in deference to the classification of Murchison—then almost universally adopted—it was mapped as Silurian. Such fossils as have since been found in it by Selwyn, Hind, and myself, and those of its extensions in Newfoundland and New England, would seem to confirm this conclusion. Mr Selwyn has, however, found that in the west the granite and gneissose areas should be much extended, and Prof. Hind proposes to separate portions of the gneissose rocks as Laurentian and Huronian. These points also will be discussed in the sequel.

The above corrections in the Upper and Lower Silurian districts of the map may be summarised as follows:—If the reader will consider the blue tint indicating Upper Silurian to cover Lower Silurian as well, and the purple tint representing Lower Silurian to indicate Cambrian, the map will be approximately correct, with the exceptions already referred to in New Brunswick, and some areas in Northern Cape Breton and the western part of Nova Scotia, to be subsequently referred to.

The Huronian rocks of New Brunswick, as marked on the map, are still recognised as such; but it has been proposed to join to them several other groups, on the ground of mineral character principally. As this conclusion is still under discussion, I defer its consideration till farther on.

Messrs Bailey and Matthew have introduced several new areas of Laurentian rocks in their recent maps of Southern New Brunswick; and large areas in Southern and Eastern Nova Scotia and Cape Breton have been referred to this age by local geologists and officers of the Survey, whose views on this subject, however, I do not regard as established by my own observations. They will be referred to on subsequent pages.

The little island of Grand Manan, at the mouth of the Bay of Fundy, has fared very badly in my map. I have not myself visited it, and it seems that the information accessible to me in 1868, and given in the appendix to my book, had led to very incorrect inferences on my part. From recent reports by Prof. Bailey and Mr Matthew, and by Prof. Chapman, it seems that the western half of the island consists of Triassic trap resting on tufa and red sandstone, the eastern half of old crystalline rocks, possibly Laurentian.

The Magdalen Islands, though politically connected with the Province of Quebec, fall within the map of Acadia. They are represented as Carboniferous; and I can now confirm this from the inspection of an interesting series of specimens collected by the Hon. Judge M'Cord. These show that the rocks of these islands belong
to the Lower Carboniferous or Gysiferous series, and they no doubt form a portion of a rim of these rocks, limiting the Carboniferous area of the Acadian Bay, and extending from Northern Cape Breton toward the Baie des Chaleurs.

The south-western corner of Newfoundland, extending into the map, includes part of the Coal-field of St George's Bay, and of a Laurentian area which bounds it on the east. These formations have recently been described by Murray in his Reports on the Geology of Newfoundland, and have been represented on his beautiful map of the island. Specimens in my possession show that the Carboniferous limestone of Newfoundland includes abundance of the characteristic fossils of that formation, and that its fossil plants are principally such as in Nova Scotia occur in the Millstone-grit.*

3. THE MODERN PERIOD.

Changes of Level.—In the surveys for the Baie Verte Canal, made by Mr Page under authority of the Dominion Government, I find it stated in the Report of Mr Baillarge, that between the Missaquash River and Cumberland Creek, to the north of the point where I observed the submarine forest of Fort Lawrence,† stumps of trees were seen rooted in earth for more than half a mile along the shore, and extending from low-water mark to the bank. They are stated to be from 32.8 feet to 22.3 feet below the level of the highest tides. The surveyors recognised spruce, beech, pine, and tamarac, all in a fair state of preservation, and rooted in a vegetable mould underlaid by a sandy subsoil. In my Report on Prince Edward Island I have noticed evidence of similar modern subsidence, though to a less amount. These facts place themselves in connection with the probability that in America, as in Europe, a period of continental elevation succeeded the great Post-pliocene subsidence, and has been followed by a depression in more modern times. This consideration seems to account for some otherwise anomalous facts in connexion with the distribution of modern marine animals. I referred to these points in my annual address to the Natural History Society of Montreal in 1874, and may here repeat the substance of what was then said.

The Acadian Bay in relation to Modern Subsidence.—If we draw a straight line from the northern end of Cape Breton through the Magdalen Islands to the mouth of the Bay des Chaleurs, we have

* Report on Fossil Plants of L. Carboniferous and Millstone-grit, 1873.
† Ac. Geol., p. 29.
to the southward an extensive semicircular bay, 200 miles in
diameter, which we may call the great Acadian Bay, and on the
north the larger and deeper triangular area of the Gulf of St Law-
rence. This Acadian Bay is a sort of gigantic warm-water aquarium,
sheltered, except in a few isolated banks which have been pointed
out by Mr Whiteaves, from the cold waters of the gulf, and which
the bather feels quite warm in comparison with the frigid and often
not very limpid liquid with which we are fam to be content in the
Lower St Lawrence. It also affords to the more delicate marine
animals a more congenial habitat than they can find in the Bay of
Fundy, or even on the coast of Maine, unless in a few sheltered
spots, some of which have been explored by Professor Verrill. It
is true that in winter the whole Acadian Bay is enumbered with
floating ice, partly produced on its own shores and partly drifted from
the north; but in summer the action of the sun upon its surface, the
warm air flowing over it from the neighbouring land, and the ocean
water brought in by the Strait of Cansué, rapidly raise its tem-
perature, and it retains this elevated temperature till late in autumn.
Hence the character of its fauna, which is indicated by the fact, that
many species of molluscs whose head quarters are south of Cape Cod
flourish and abound in its waters. Among these are the common
oyster, which is especially abundant on the coasts of Prince Edward
Island and Northern New Brunswick, the Quahog or Wampum shell,
the Petricola pholadiformis, which, along with Zirkea crispata,
burrows everywhere in the soft sandstones and shales; the beautiful
Modiola plicata forming dense mussel-banks in the sheltered coves
and estuaries; Cytherea (Callista) convexa; Cochlosoma leana and
Cummingia tellinoides; Crepidula fornicata, the slipper-limpet, and
its variety unguiformis, swarming especially in the oyster-beds;
Nassa obsoleta and Buccinum cinereum, with many others of similar
southern distribution. Nor is the fauna so very meagre as might be
supposed. My own collections from Northumberland Strait in-
clude about fifty species of molluscs, and some not possessed by me
have been found by Mr Whiteaves. Some of these, it is true, are
northern forms, but the majority are of New England species.

The causes of this exceptional condition of things in the Acadian
Bay carry us far back in geological time. The area now consti-
tuting the Gulf of St Lawrence seems to have been exempt from the
great movement of plication and elevation which produced the hilly
and metamorphic ridges of the east coast of America. These all die
out and disappear as they approach its southern shore. The tran-
quill and gradual passage from the Lower to the Upper Silurian
in the Acadian Bay, 200 miles in
Bay, and on the
go south, the Gulf of St Law-
rm-water aquarium, and
have been pointed
the gulf, and which
are frigid and often
be content in the
delicate marine
and in the Bay of
a few sheltered
Pessor Verrill. It
encumbered with
partly drifted from
on its surface, the
land, and the ocean
ally raise its tem-
late in autumn.
by the fact, that
mouth of Cape Cod
are the common
of Prince Edward
for Wampum shell,
Zirfae crispata,
shells; the beautiful
sheltered coves
desma leanea and
upper-limpet, and
the oyster-beds;
towners of similar
neagre as might
overland Strait in-
possessed by me.
ese, it is true, are
species.
the Acadian
sea now consi-
empt from the
duced the hilly
These all die
here. The trans-
Upper Silurian
ascertained by Billings in the rocks of Anticosti, and unique in
North America, furnishes an excellent illustration of this. In
the Carboniferous period the Gulf of St Lawrence was a sea
area as now, but with wider limits, and at that time its southern
part was much filled up with sandy and muddy detritus, and its margins
were invaded by beds and dykes of trapane rocks. In the Triassic
age the red sandstones of that period were extensively deposited in
the Acadian Bay, and in part have been raised out of the water in
Prince Edward Island, while the whole bay was shallowed and
partially separated from the remainder of the gulf by the elevation of
ridges of Lower Carboniferous rocks across its mouth. In the Post-
pliocene period, that which immediately precedes our own modern
age, as I have elsewhere shown,* there was great subsidence of this
region, accompanied by a cold climate, and boulders of Laurentian
rocks were drifted from Labrador and deposited on Prince Edward
Island and Nova Scotia, while the southern currents flowing up what
is now the Bay of Fundy, drifted stones from the hills of New
Brunswick to Prince Edward Island. At this time the Acadian
Bay enjoyed no exemption from the general cold, for at Campbell-
ton, in Prince Edward Island, and near Bathurst, in New Brunswick,
we find in the clays and gravels the northern shells generally chara-
ceristic of the Post-pliocene,—though perhaps the lists given by Mr
Matthew for St John, and by Mr Paisley for the vicinity of Bathurst,
may be held to show some slight mitigation of the Arctic conditions as
compared with the typical deposits in the St Lawrence valley. Since
that time the land has gradually been raised out of the waters, and
with this elevation the southern or Acadian fauna has crept north-
ward and established itself around Prince Edward Island, as the
Acadian Bay attained its present form and conditions. But how
is it that this fauna is now isolated, and that intervening colder waters
separate it from that of Southern New England? Verrill regards this
colony of the Acadian Bay as indicating a warmer climate intervening
between the cold Post-pliocene period and the present, and he seems
to think that this may either have been coincident with a lower
level of the land sufficient to establish a shallow-water channel con-
necting the Bay of Fundy with the Gulf, or with a higher level raising
many of the banks on the coast of Nova Scotia out of water. Geo-
logical facts, which I have illustrated in Acadian Geology, indicate
the latter as the probable cause. We know that the eastern coast
of America has in modern times been gradually subsiding. Further,
the remarkable submarine forests in the Bay of Fundy show that

* Notes on Post-pliocene of Canada, Canadian Naturalist, 1879.
within a time not sufficient to produce the decay of pine wood, this
depression has taken place to the extent of at least 40 feet, and
probably to 60 feet or more. We have thus direct geological
evidence of a former higher condition of the land, which may, when
at its maximum, have greatly exceeded that above indicated, since
we cannot trace the submarine forests as far below the sea-level as
they actually extend. The effect of such an elevation of the land
would be not only a general shallowing of the water in the Bay of
Fundy and the Acadian Bay, and an elevation of its temperature
both by this and by the greater amount of neighbouring land, but, as
Professor Verrill well states, it would also raise the banks of the
Nova Scotia coast, and extending south from Newfoundland, so as to
throw the Arctic current further from the shore and warm the water
along the coasts of Nova Scotia and Northern New England. In
these circumstances the marine animals of Southern New England
might readily extend themselves all around the coasts of Nova Scotia
and Cape Breton, and occupy the Acadian Bay. The modern sub-
sidence of the land would produce a relapse towards the Glacial age,
the Arctic currents would be allowed to cleave more closely to the
cost, and the inhabitants of the Acadian Bay would gradually
become isolated, while the northern animals of Labrador would work
their way southward.

Various modern indications point to the same conclusions. Verrill
has described little colonies of southern species still surviving on the
cost of Maine. There are also dead shells of these species in mud-
banks, in places where they are now extinct. He also states that the
remains in shell-heaps left by the Indians indicate that even within
the period of their occupancy some of these species existed in places
where they are not now found. Willis has catalogued some of these
species from the deep bays and inlets on the Atlantic coast of Nova
Scotia, and has shown that some of them still exist on the Sable
Island banks.*

Whiteaves finds in the Bradelle and Orphan bank littoral species
remote from the present shores, and indicating a time when these
banks were islands, which have been submerged by subsidence,
aided no doubt by the action of the waves.

It would thus appear that the colonization of the Acadian Bay
with southern forms belongs to the modern period, but that it has
already passed its culmination; and the recent subsidence of the coast
has no doubt limited the range of these animals, and is probably still
favouring the gradual inroads of the Arctic fauna from the north,

* Ac. Geol., chap. iii. p. 37.
pine wood, this subsidence, lasting 40 feet, and of which the direct geological evidence is, which may, when the upheaval is indicated, since the fall of the sea-level as the elevation of the land continues, particularly in the Bay of Fundy, which its temperature has been in a rising land, but, as the more banks of the mainland, so as to warm the water of England. In New England to Nova Scotia the modern submergence of the Glacial age, being closely to the north, would gradually with the northerly wind work these conclusions. Verrill states that the mussel is not even within its range, established in places on the coast of Nova Scotia on the Sable Island. Some of these littoral species depredate when those below by subsidence, which, should this subsidence go on, will creep slowly back to recoup the ground which it once held in the Post-pliocene time.

Such peculiarities of distribution serve to show the effects of even comparatively small changes of level and climate, and upon the distribution of life, and to confirm the same lesson of caution in our interpretation of local diversities of life, which geologists have been lately learning from the distribution of cold and warm currents in the Atlantic. Another lesson which they teach is the wonderful fixity of species. Continents rise and sink, climates change, islands are devoured by the sea or restored again from its depths, marine animals are locally exterminated, and are enabled in the course of long ages to regain their lost abodes, yet they remain ever the same, and even in their varietal forms perfectly those remote ancestors which are separated from them by a vast lapse of ages and by many physical revolutions. This truth, which I have already deduced from the Post-pliocene fauna of the St Lawrence Valley, is equally taught by the molluscs of the Acadian Bay, and by their Arctic relatives returning after long absence to claim their old homes.

Oyster-beds or Mussel-beds.—In the bays and estuaries of Prince Edward Island, and of the northern coast of Nova Scotia, vast accumulations of the shells of the American oyster, Ostrea Virginiana, and those of the mussel, Mytilus edulis, have taken place, and must be deposits of the modern period succeeding the Post-pliocene. I have been informed by Mr W. H. Pope, who has given much attention to this subject, that some of these beds are fifteen feet or more in thickness. They consist of dead shells, and in many places no living shells occur even at the surface, the animals having been killed by the gradual approach of the beds to the surface of the water, exposing them to the action of the frost and ice and to invasion of sandy sediment. These beds of dead oyster and mussel shells, with the mud filling the interstices, constitute one of the most valuable deposits on the island. Under the name of "Mussel Mud" this material is taken up in great quantity by ingenious dredging machines, worked from rafts in summer or from the ice in winter, and is applied as a manure to the soil with the most excellent effects. It supplies lime and organic matter, besides small quantities of phosphates and alkalies.

The shells in these old beds are all of the long narrow form (O. Virginiana), and Mr Pope informs me that the round form (O. borealis) occurs at the surface in many places where the long narrow form is found only a few inches below. It also appears that the modern oysters procured in the upper parts of the rivers and on
muddy bottom tend to the long form, while those in more salt water and on hard bottom are round.

Sand-Hills or Dunes of Prince Edward Island. — These mounds of drifted sand are extensively developed along the outer or north-west shore, where they stretch in long lines across the bays and parallel to the coast. In all they extend in length about 45 miles, and are sometimes more than 40 feet high. Though usually held together by the roots of coarse grasses, they are liable to frequent changes, which are much promoted by the cropping of the grass by the cattle, or by any artificial or accidental breaking of the surface. At St Peter's I saw an old entrance, used in the early French times, quite filled up with the blown sand; and I was told that a hill, 40 feet high, had been removed within a few years, and had disclosed the remains of an old blacksmith's forge under its base. The sand in these hills is derived from the waste of the red sandstones; and, when left dry by the tide, is blown up by the wind. The attrition to which it has been subjected has removed the coating of red oxide of iron from the siliceous grains of sand, so that, though derived from red rocks, these sands are nearly white. Where the sand-hills run along the coast, a long narrow channel often occurs between them and the shore, and they often block up streams, forming lagoons, in which deposits very different from those of the open gulf are produced.

Shore Ridges in Prince Edward Island. — Mr Pope kindly pointed out to me, on a creek near Grand River and on Ives Creek, the mounds known locally as "shooting dykes," in allusion to their use by sportsmen as a shelter in duck-shooting. These are somewhat regular banks or dykes of soil fringing the creeks, and having almost the appearance of artificial earthworks, which they have indeed been supposed to be. Some of them are 6 feet in height and 10 feet wide at base. I believe them to be of the same nature with the Lake Ridges of Nova Scotia described in Chapter III., p. 35, and that they have been produced by the expansion or driftage of the ice which forms in the creeks in winter. They constitute a sort of "moraine" deposit, which, on a larger scale and in a more hilly country, might readily be mistaken for the work of glaciers. Those that we saw were entirely composed of soil intermixed with vegetable matter. Some of them showed evidence of formation by successive increments of material. Their steepest sides were next the land, and they were highest opposite the most exposed and widest portions of the creeks.

Micmac Remains. — Since the publication of Acadian Geology, some attention has been given by Dr Gilpin, Mr Gossip, Dr Patterson, and others to the prehistoric antiquities of Nova Scotia, and
several interesting papers have appeared in the Transactions of the Nova Scotia Institute. The numerous "Kjøkkemædding" or piles of culinary debris occurring on the coast have been in part explored, and have been found to contain shells of most of the edible molluscs of the coast and bones of the ordinary modern mammals, birds, and fishes, with stone implements and fragments of rude pottery. All these remains are probably referable to the Miemaes; and nothing definite seems to have been discovered as to any previous race, though Miema tradition, according to Mr Rand, points to a previous people, probably of the Timné or Chippewyan stock, and allied to the Red Indians of Newfoundland.

Chips of stone found at old arrow-making places in Lunenburg, Pictou, and Prince Edward Island, show that the Miemaes had ransacked all sorts of repositories of useful stones, and were in the habit of availing themselves of a great variety of agates, jaspers, quartzites, and hard slates in the manufacture of chipped weapons, while diorite and hard quartzose slate were favourite materials for polished tools. A bone fish-spear or harpoon, found by Dr Patterson at Merigomish, is the only implement of this kind I have seen (Fig. 1). It is ingeniously barbed, much after the manner of the modern Esquimaux harpoons, or some of those belonging to prehistoric Europe. All the earthenware that I have seen is of rude manufacture, and the patterns less tasteful than in those of the inland agricultural nations. The few tobacco-pipes found are similar to those of the other Algonquin tribes. Tobacco, according to Lescarbot, was used by the Miemaes, but they did not cultivate it, obtaining their supplies from tribes further to the south, and in default of such supplies, using, like other northern tribes, native narcotic herbs. The modern Miemaes sometimes extemporize a tobacco-pipe in the form of an ingeniously twisted cone of birch bark. If this habit existed among their ancestors, it would account for the comparative paucity of stone pipes.

4. THE POST-PLIOCENE.

Climate.—At p. 78, Chap. V., I have remarked on the fact that while the climate of Western Europe in the Pleistocene period, as

Fig. 1.

Miamae Bone Harpoon.
indicated by fossil shells, was much more severe than at present, comparatively little change has occurred in our American seas. I have more fully illustrated this difference in my Notes on the Post-pliocene Geology of Canada, and have shown that it is to be explained principally by the distribution of the marine currents. Crosskey and others have recently directed attention to it in England, but it receives less attention than it deserves, in consequence of the tendency to seek for causes of an extreme and general glaciation of the northern hemisphere. It should, however, be regarded as of the utmost importance as indicating the value of that different distribution of land and water so much insisted on by Sir C. Lyell as a cause of change of climate, and to which I still think, as in 1868, that the cold of the glacial period is mainly referable.

In any case, I still fail to find, either in the Acadian Provinces or in Canada proper, any indication of a great continental glacier. What I do find is the evidence of great depression of the land, accompanied with a reduction of the mean temperature to such an extent that the hills remaining above water were occupied with local glaciers, and formed areas of denudation, while the lower lands, traversed by northern currents of ice-cold water, bore floating ice throughout the year, and this was steadily pushed by the lower currents from the north-east; while in periods of extreme submergence there was a drift, perhaps caused by prevailing winds, from the north-west. In these circumstances the boulder clay and the lower part of the Leda clay were formed, and are consequently non-fossiliferous, or hold only a few Arctic shells. Re-elevation brought shallowness, and consequently warmer water, and eventually land surfaces, and introduced the modern climate.

Whatever the cause of this submergence, the fact of its occurrence is proved by the marine clays and the high-level sea-beaches. Mr Richardson of the Geological Survey has found these terraces 1225 feet above the sea on the coast of Newfoundland, and the evidence of travelled stones would take the sea to the tops of the highest hills in Eastern America, 6000 feet above the sea. The drift phenomena of the western plains and the Rocky Mountains imply subsidence there to the extent of at least 4400 ft.* Now, the existing climates of the North Atlantic, as compared with those of the Post-pliocene, point precisely to the natural effects of such a submergence, while the action of local glaciers, of pack and pan ice, and of drifting bergs, as now actually observed, would, if intensified, as they must have been by the causes supposed, give all the observed effects of glaciation. There is there-

* G. M. Dawson, Report on 49th Parallel.
fore no geological necessity to appeal to the varying eccentricity of the earth's orbit and the precession of the equinoxes, or to an imagined change of the earth's axis of rotation, or of the obliquity of the ecliptic, or of the energy of the sun's radiation. If these, or any of them, can be proved on other grounds, geologists may fairly be called on to allow for their influence; but there is no geological necessity for them, other than the exigencies of an imaginary period or succession of periods of continental glaciation, of which unquestionably there is no geological evidence in Eastern America. For facts in support of this view, I may refer not only to the chapter on Acadian Geology on this subject, but to my subsequently published Notes on the Post-pliocene of Canada. It would occupy too much space to repeat them here, except in so far as they may come up under subsequent heads.

Boulder Clay and Glacial Erosion.—From the views as to these subjects, given fully in Chapter V., I have seen as yet no cause to recede. Since they were published, the doctrine of continental glaciers has waxed and waned, and the greater number of the ablest workers in this field are now not very remote from the position which I occupied in 1868. Quite recently, the discovery by the "Challenger" soundings that a deposit of stones and mud is now rapidly forming in the South Pacific by the melting of ice, the observations on the action of pack ice by the recent Arctic Expedition, and the exposition of the action of pack ice on the coast of Newfoundland, given by Professor Milne in the Geological Magazine for 1876, have strengthened very much the position of those who hold that the glacial drift and striation have been mainly due to floating sheets and bergs, at a time when the northern seas were much more extensively occupied with them than at present.* I have very fully discussed this subject in my Notes on the Post-pliocene Geology of Canada, already referred to, and shall merely quote here a passage on a subject referred to in Chapter V., and on which more complete information has since been obtained. I refer to the erosion of the basins of the great American lakes:

"These have been cut out of the softer members of the Silurian and Devonian formations; but the mode of this excavation has been regarded as very mysterious; and, like other mysteries, has been referred to glaciers. Its real cause was obviously the flowing of cold currents over the American land during its submergence. The lake-basins are thus of the same nature with the deep hollows intervening

* See also Professor Hind's paper in the Canadian Naturalist, 1877, referred to further on.
between the banks cast up by the Arctic currents of the present American coast, and like those deep channels of the Arctic current in the Atlantic recently explored by Dr Carpenter. Their arrangement geographically, as well as their geological relations, correspond with this view."

"Another consideration with regard to the great lakes deserves notice. Dr Hunt and Dr Newberry have collected many facts to show that the lake basins are connected with one another and with the sea by deep channels now filled up with drift deposits. It is therefore possible that much of the erosion of these basins may have occurred before the advent of the glacial period, in the Pliocene age, when the American continent was at a higher level than at present. Dr Newberry has given in the Report of the Geology of Ohio a large collection of facts ascertained by boring or otherwise, which go far to show, that were the old channels cleared of drift and the continent slightly elevated, the great lakes would be drained into each other and into the ocean by the valleys of the Hudson and the Mississippi without any rock-cutting, and if the barrier of the Thousand Islands were then somewhat higher, the St Lawrence valley might have been cut off from the basin of the great lakes."

"It would thus appear that in the Pliocene period the basin of the lakes may have been a great plain with free drainage to the sea. Instead of being afterwards occupied by a glacier, this plain and its channels leading to the ocean were filled with clay at the beginning of the Post-pliocene subsidence; and at a later date the mud was again swept out from those places where the Arctic current could most powerfully act on it."

In Chapter V. I have illustrated the power of coast ice in moving boulders. Since this was written I have had the opportunity of witnessing similar effects on a much grander scale in the estuary of the River St Lawrence, and Professor Hind has described these effects, as well as extensive polishing, on the coast of Labrador. He says,* with reference to the great sheets of "pan ice:"—

"'Pan' ice is derived from bay ice, floes, and coast ice, varying from 5 to 10 or 12 feet in thickness, all of which are broken up during spring storms. When the disruption of the ice sheet which seals the fiords, the island zone, and the sea itself for many miles outside, continuously, is effected in June, the resulting 'pans,' as the fishermen term them, vary in size from a few square yards to many acres in extent. The uniform and unbroken mass of ice in the winter

*Paper read before the Natural History Society of Montreal, 1877, Canada Naturalist, vol. viii.
months has no lateral motion; it rises and falls with the tide, but is unaffected by winds until the warmth of spring softens its hold on the islands to which it is keyed. When the pans are pressed on the coast by winds, they accommodate themselves to all the sinuosities of the shore line, and being pushed by the unfailling Arctic current, which brings down a constant supply of floe ice, the pans rise over all the low-lying parts of the islands, grinding and polishing exposed shores, and rasping those that are steep-to. The pans are shoved over the flat surfaces of the islands, and remove with irresistible force every obstacle which opposes their thrust, for the attacks are constantly renewed by the ceaseless ice-stream from the north-west, and this goes on uninterruptedly for a month or more. Sometimes a change in the wind brings the endless sheet back again, and it is the middle of July before some of the fiords are clear of ice. Hence boulders, shingle, and beaches are rarely seen except in sheltered nooks and coves, and the masses, pushed or torn from those surfaces where cleavage offers a chance of disruption, are urged into the sea and rounded into boulder form by the rasping and polishing pans."

"Here too goes on the process, subsequently referred to, of manufacturing boulder clay, for the deep hollows and ravines at present under the sea—the records of former glacial work—are being filled with clay, sand, unworn and worn rock fragments, producing a counterpart of some varieties of boulder clay."

"But this is not all of the work of pan ice. The bottom of the sea, to the depth of 12 or 15 feet, and at all lesser depths, is smoothed and planed by the drifting masses when they pile one on the other, and at depths less than 8 feet when the pans are driven before the wind or carried by the currents. In sailing from Aillik to Nain or to Cape Mugford, the fishermen send a man aloft to look out for 'White Rocks.' These are prominences or swells in the general level of the sea-bottom among the islands, from which every particle of sea-weed has been removed by pan ice."

"During a period of subsidence, the blocks of stone, boulders, mud, and sand, pushed to and fro on the shallow sea-bottom by pan ice, ultimately accumulate in hollows and ravines below its action; and when the debris is pushed into profound submarine valleys, such as exist on the Labrador coast (being probably due to former glacial action), the mass will resemble boulder clays, and in a sinking marine area it will accumulate to a great thickness; in a rising area it would be liable to be remodelled by the action of the waves except in the ease of very deep valleys. There are not many known narrow and profound submarine valleys on the north-eastern coast of Labra-
The seaward extension of Uksuktak Fiord, which lies a little to the south of Hopedale, affords an apt illustration. Commander Maxwell's soundings show a profound submarine ravine between clusters of islands for upwards of eight miles, in which the depth reaches 124, 126, 123, 106, and 130 fathoms. Between the islands of Niatak and Paul, near Nain, the lead shows 71 fathoms. It is evident that the material torn from the surrounding islands by pan ice, and pushed along the bottom of the sea into these profound submarine valleys during a period of general submergence, will be protected from the action of the waves, and the loose blocks and boulders will have a forced arrangement in the mud, as if they had been pushed over a bank, and thus produce the irregular disposition so frequently seen in boulder clay deposits. In such narrow and profound valleys as those instanced, the accumulation of boulder drift probably goes on at the present time, and may continue during a period of elevation, until large portions of the drift are raised above the sea-level and beyond the influence of the waves, which will attack only its sea front. But the agent which gives rise to this heterogeneous mass is pan ice, and the formation of boulder clay is very probably a part of its work over a vast area on the Labrador coast at the present day, throughout the labyrinth of islands which fringe that coast to a depth of 20 miles seawards. If one examines the local deposits of boulder clay in various parts of Nova Scotia, with ice-worn gneissic rocks close at hand, or underlying the clays, the conclusion that pan ice has been instrumental in accumulating many of those deposits is irresistible.

Post-pliocene of Prince Edward Island.—On this I had little information in 1868, but have since studied it in some detail.

The Triassic and Upper Carboniferous rocks of this island consist almost entirely of red sandstones, and the country is low and undulating, its highest eminences not exceeding 400 feet. The prevalent Post-pliocene deposit is a boulder clay, or in some places boulder loam, composed of red sand and clay derived from the waste of the red sandstones. This is filled with boulders of red sandstone derived from the harder beds. They are more or less rounded, often glaciated, with striæ in the direction of their longer axis, and sometimes polished in a remarkable manner, when the softness and coarse character of the rock are considered. This polishing must have been effected by rubbing with the sand and loam in which they are
THE POST-PLIOCENE.

25

embedded. These boulders are not usually large, though some were seen as much as five feet in length. The boulders in this deposit are almost universally of the native rock, and must have been produced by the grinding of ice on the outcrops of the harder beds. In the eastern and middle portion of the island, only these native rocks were seen in the clay, with the exception of pebbles of quartzite, which may have been derived from the Triassic conglomerates. At Campbellton, in the western part of the island, I observed a bed of boulder clay filled with boulders of metamorphic rocks similar to those of the mainland of New Brunswick.

Striae were seen only in one place on the north-eastern coast and at another on the south-western. In the former case their direction was nearly S.W. and N.E. In the latter it was S. 70° E.

No marine remains were observed in the boulder clay; but at Campbellton, above the boulder clay already mentioned, there is a limited area occupied with beds of stratified sand and gravel, at an elevation of about 50 feet above the sea, and in one of the beds there are shells of Tellina Granlandica.

On the surface of the country, more especially in the western part of the island, there are numerous travelled boulders, sometimes of considerable size. As these do not appear in situ in the boulder clay, they may be supposed to belong to a second or newer boulder drift, similar to that which we find to be connected with the Saxicava sand in Canada. These boulders being of rocks foreign to Prince Edward Island, the question of their source becomes an interesting one. With reference to this, it may be stated in general terms that the majority are granite, syenite, diorite, felsite, porphyry, quartzite, and coarse slates, all identical in mineral character with those which occur in the metamorphic districts of Nova Scotia and New Brunswick, at distances of from 50 to 200 miles to the south and south-west, though some of them may have been derived from Cape Breton on the east. It is further to be observed, that these boulders are most abundant and the evidences of denudation of the Trias greatest in that part of the island which is opposite the deep break between the hills of Nova Scotia and New Brunswick, occupied by the Bay of Fundy, Chiegnecto Bay, and the low country extending thence to Northumberland Strait, an evidence that the boulder drift was connected with currents of water passing up this depression from the south or south-west. Similar local drift occurs in Nova Scotia (see Chap. V.), though there the predominant direction is from the northward.

Besides these boulders, however, there are others of a different character; such as gneiss, hornblende-schist, anorthosite and Labradorite rock, which must have been derived from the Laurentian
rocks of Labrador and Canada, distant 250 miles or more to the northward. These Laurentian rocks are chiefly found on the north side of the island, as if at the time of their arrival the island formed a shoal, at the north side of which the ice carrying the boulders grounded and melted away. With reference to these boulders, it is to be observed that a depression of four or five hundred feet would open a clear passage for the Arctic current entering the Straits of Belle Isle to the Bay of Fundy; and that heavy ice carried by this current would then ground on Prince Edward Island, or be carried across it to the southward. If the Laurentian boulders came in this way, their source is probably 400 miles distant in the Strait of Belle Isle.

On the north shore of Prince Edward Island, except where occupied by sand dunes, the beach shows great numbers of pebbles and small boulders of Laurentian rocks. These are said by the inhabitants to be cast up by the sea or pushed up by the ice in spring. Whether they are now being drifted by ice direct from the Labrador coast, or are old drift being washed up from the bottom of the gulf, which north of the island is very shallow, does not appear. They are all much rounded by the waves, differing in this respect from the majority of the boulders found inland. I may add here that Laurentian boulders have been observed on the north shore of Nova Scotia.* Dr Honeyman records their appearance even on the Atlantic coast.

The older boulder clay of Prince Edward Island, with native boulders, must have been produced under circumstances of powerful ice action, in which comparatively little transport of material from a distance occurred. If we attribute this to a glacier, then as Prince Edward Island is merely a slightly raised portion of the bottom of the Gulf of St Lawrence, this can have been no other than a gigantic mass of ice filling the whole basin of the gulf, and without any slope to give it movement except toward the centre of this great though shallow depression. On the other hand, if we attribute the boulder clay to floating ice, it must have been produced at a time when numerous heavy bergs were disengaged from what of Labrador was above water, and when this was too thoroughly enveloped in snow and ice to afford many travelled stones. Further, that this boulder-clay is a submarine and not a subaerial deposit, seems to be rendered probable by the circumstance, that many of the boulders of the native sandstone are so soft that they crumble immediately when exposed to the weather and frost.

The travelled boulders lying on the surface of the boulder clay evidently belong to a later period, when the hills of Labrador and Nova Scotia were above water, though lower than at present, and were sufficiently bare to furnish large supplies of stones to coast ice carried

* Notes on Post-pliocene, 1872, p. 112.
by the tidal currents sweeping up the coast, or by the Arctic current from the north, and deposited on the surface of Prince Edward Island, then a shallow sand-bank. The sands with sea-shells probably belonged to this period, or perhaps to the later part of it, when the land was gradually rising. Prince Edward Island thus appears to have received boulders from both sides of the Gulf of St Lawrence during the later Post-pliocene period; but the greater number from the south side, perhaps because nearer to it. It thus furnishes a remarkable illustration of the transport of travelled stones at this period in different directions; and in the comparative absence of travelled stones in the lower boulder clay; it furnishes a similar illustration of the homogeneous and untravelled character of that deposit, in circumstances where the theory of floating ice serves to account for it at least as well as that of land ice, and, in my judgment, greatly better.

Subdivisions of the Pleistocene Deposits.—In Chapter V., and in my Memoirs on the Pleistocene of the St Lawrence Valley, I have proposed a threefold division of these beds into Boulder clay, Leda clay, and Saxicava sand and gravel, to which may be added the old peaty deposit observed under the boulder clay in Cape Breton. Mr. Matthew has since recognised in New Brunswick certain beds only locally developed in the St Lawrence Valley, and which I have been hitherto disposed to regard as depending on the action of streams from the land or littoral agencies, but which he regards as marine deposits. They are gravels and sands underlying the boulder clay, and as yet destitute of fossils. He suggests for these the name "Syrtensis" beds, proposed by Packard for the fauna of the Great Bank deposits of the Newfoundland and New England coasts, but the application of which to the beds in question depends on a theory of their origin not yet certainly established. He also recognises, as I have done in the St Lawrence Valley, a lower and upper member of the Leda clay— the latter being equivalent in its fossils to the Uddevalla beds of Sweden. The complete series of Pleistocene beds in Acadia and Canada would thus stand as follows, in ascending order, though it is to be observed that the whole series is not to be found developed at any one place:

(a.) Peaty terrestrial surface anterior to boulder clay.
(b.) Lower stratified gravels—(Syrtensis deposits of Matthew).
(c.) Boulder clay and unstratified sands with boulders. Fauna, when present, extremely Arctic.
(d.) Lower Leda clay, with a limited number of highly Arctic shells, such as are now found only in permanently ice-laden seas.
(e.) Upper Leda clay and sand, or Uddevalla beds, holding many
sub-Arctic or boreal shells similar to those of the Labrador coast at present.

(f.) Saxicava sand and gravel, either non-fossiliferous, or with a few littoral shells of boreal or Acadian types.

This table may be regarded as giving a complete statement of the series of deposits in the Post-plioene, not only in the Acadian Provinces, but throughout North-eastern America.

Fossils of the Post-plioene.—Since the publication of the second edition, the Rev. Mr Paisley has published in the "Canadian Naturalist" (1872) a list of shells obtained from a railway cutting on the Tattagouche River, near Bathurst, in New Brunswick. They were found in beds of Leda clay passing upwards into sand and gravel. At the Jacquet River in the same district, the bones of a small cetacean have been found, and have been described by Dr Gilpin and Dr Honeyman.* They are referred by Dr Gilpin to _Beluga Vermontana_ of Thompson from the Pleistocene of Vermont. Similar bones have been found in the Leda clay of the St Lawrence Valley, and have been compared by the late Mr Billings with the skeleton of the recent _B. catodon_, L., of the St Lawrence, with which the so-called _B. Vermontana_ is probably identical, as the specimens above referred to, and examined by Billings, certainly were.

In Prince Edward Island I have recorded the occurrence of Post-pliocene shells at Campbellton, and Mr Matthew has found _Tellina Granlandica_ at Horton Bluff, in beds probably of the age of the Saxicava sand. Mr Matthew has also published † a valuable synopsis of the fossils found up to 1876 in the Post-pliocene of New Brunswick, in which the number of species of Mollusca is raised to more than thirty. He notes the important fact that the shells found on the coast of the Baie de Chaleur are of more northern type than those in the Bay of Fundy, which conform more nearly to the assemblage found in these deposits on the New England coasts, so that the existing geographical regions were already to some extent established on the coast of North America in the period of the Upper Leda clay.

5. THE TRIAS.

The principal addition to our knowledge of this formation is that contained in the Report by Dr Harrington and myself published in 1871.‡ In this we separated as Upper Carboniferous, or "Permo-

* _Trans._ Nova Scotia Institute, vol. iii.
† Canadian Naturalist, vol. viii.
THE TRIAS.

carboniferous," an underlying series of red and gray sandstones and shales, holding Carboniferous plants, extending from near Cape Wolfe toward the north point, and a similar series found at Governor's Island and Gallas Point in Hillsborough Bay. These are undoubtedly extensions of the Carboniferous of Nova Scotia. All the rest of the island is occupied with Triassic rocks; in one place, Hog Island in Richmond Bay, associated with trap. The general relations of these rocks are seen in the sections.

The beds of the Triassic series, as seen in Prince Edward Island, consist chiefly of soft red sandstone, with some buff-coloured beds and red and mottled clays. Associated with them are conglomerates and hard calcareous and concretionary sandstones, passing into bands of arenaceous limestone, which is in some places a dolomite. The following section in Orwell Bay and its vicinity shows the beds resting on the Upper Carboniferous of Gallas Point, and may be taken as typical. It is in ascending order:

1. Bright red sandstones with white bands 30
2. Red shales with white stains and red sandstones with cylindrical casts of fucoids 60
3. Red and purplish sandstones with gray bands and layers of ferruginous conglomerate with obscure remains of plants 88
4. Beach, probably representing soft beds 48
5. Red flaggy sandstone with conglomerate and concretions of red oxide of iron, containing remains of plants 50
6. Bright red sandstones and red shale with greenish stains 30
7. Marsh, probably soft beds 24
8. Red shale and green bands capped with bright red sandstones 75

(Here the section is broken by Orwell Bay, which probably represents some thickness of soft beds.)

9. On the high cliffs near Belfast are very bright red sandstones and shaly beds, with gray blotches and cylindrical fucoids—about 120
10. Over the last are seen, in the country east of Belfast, soft red sandstones with beds of conglomerate with rounded quartz pebbles and arenaceous cement (thickness uncertain) 525

As seen in this section, the whole thickness of these beds cannot much exceed 500 feet. Of this the lowest 270 feet, being Nos. 1 to
5 inclusive, of the above section may be referred to the lower division, or "Bunter," and the remainder to the upper division of the formation, or "Keuper." The dips are so low, and the beds so much affected by oblique stratification, that those of the Trias cannot be said to be unconformable to the underlying Carboniferous rocks; and for this reason, as well as on account of the similarity in mineral character between the two groups, some uncertainty may rest on the position of the line of separation. That above stated depends on fossils, or a somewhat abrupt change of mineral character, and on a slight change in the direction of the dip. These beds spread over the greater part of the island, presenting a nearly horizontal attitude, or lying in very flat synclinal and anticlinal. They are well seen in the coast cliffs in many places, and several of these coast sections are given in the Report above referred to.

The general sections (Figs. 2, 3) show the arrangement of this formation and its relations to those of Nova Scotia.

Fossils are rare in the Triassic beds. Of plants, one of the most interesting is a species of coniferous tree distinct from that occurring in the Carboniferous beds beneath, and allied to Dadoxylon Keuperianum of the European Trias. I have described it under the name D. Edwardianum. Another is apparently a small cycadean stem, which I have described as Cycadeoidea (Mantellia) Abequensis, from the old Micmac name of the Island.* Beside these there are Knorria-like stems, a coarsely marked Sternbergia, and impressions resembling fucoids. The only animal fossil yet known is Bathygnathus borealis, Leidy, described in Chapter VIII. The added knowledge of such fossils since that chapter was written, now enables us to refer this animal to the group of carnivorous dinosaurs, the highest known reptiles, and to regard it as a terrestrial animal, probably provided with large hind limbs for leaping, and to enable it to assume an erect position at will. That remains of such creatures should be exceedingly few is not wonderful, when we consider that at the time when they lived Prince Edward Island must have been a submarine bank, on which the carcases of animals living on the neighboring lands must have been very rarely deposited, even if we suppose these lands extensive and well peopled with reptilian forms.

6. THE PERMO-CARBONIFEROUS.

Chapter IX., headed "The Permian Blank," is devoted to the inquiry as to whether any part of the uppermost layers of the Carboniferous may, in part at least, represent this system of formations as

* Report, p. 45.
Devoted to the lower division of the upper division of the Trias, and the beds so few of the Trias cannot
Carboniferous rocks; similarity in mineral
habit may rest on
These beds spread
nearly horizontal
These
are
several
The arrangement of this
one of the most
from that occurring
zohydon Keuperi-
triac, under the name
Abequidens, from
here are Knorri-
resemblings
agnathus borealis,
Abequidens, from
This animal to
reptiles, and to
hind
position at will.
Thus
were few that did not
Prince Edward Island, of which the car-
must have been
an extensive and

THE PERMO-CARBONIFEROUS.

Fig. 2. GENERAL SECTION ON COAST OF PRINCE EDWARD ISLAND, FROM GALLAS POINT TO BAY OF FOWL.

Fig. 2 a. GENERAL SECTION ACROSS PRINCE EDWARD ISLAND, FROM CAMPBELLTON TO CAMPBELLTON.

Fig. 3. GENERAL SECTION ACROSS PRINCE EDWARD ISLAND, FROM CAMPBELLTON TO CAPE TAY

Fig. 4. GENERAL SECTION ON COAST OF PRINCE EDWARD ISLAND, FROM THE HILL TO BAY OF FOWL.

Fig. 4 a. GENERAL SECTION ACROSS PRINCE EDWARD ISLAND, FROM THE HILL TO BAY OF FOWL.

(c) Triassic Trap—in all the Sections.
developed elsewhere. The information obtained in the survey of Prince Edward Island in 1871, and followed up by re-examination of the upper members of the Carboniferous in Nova Scotia, has enabled me to give in a paper, presented to the Geological Society of London in 1874, a more definite reply to this question, and to affirm that we have at least a Permo-carboniferous formation closing the Carboniferous period, and whose fossils indicate that it represents beds of transition between the Carboniferous and Permian. This passing of the Coal formation upwards into the Permian is not without parallel elsewhere. It is observed both in England and Western America, and has led many to regard the Permian rather as an upward extension of the Carboniferous than as a distinct group. Where best developed, however, as in England and Germany, the Permian or Dyas is certainly to be regarded as a distinct formation; and even where its beds are absent, the lapse of long time is indicated by the disturbances of the Carboniferous and the entire change of life on entering the Trias. For the details of the facts bearing on the Permo-carboniferous of Prince Edward Island and Eastern Nova Scotia I must refer to the paper above mentioned,* but may give here some of the more salient points.

The Upper Coal formation was first distinguished as a separate member of the Carboniferous system in Eastern Nova Scotia by the writer, in a paper published in the first volume of the Journal of the Geological Society, in 1845—and was defined to be an upper or overlying series superimposed on the productive Coal-measures, and distinguished by the absence of thick coal-seams, by the prevalence of red and gray sandstones and red shales, and by a peculiar group of vegetable fossils.

Subsequently, in my paper on the South Joggins;† and in Acadia Geology, this formation was identified with the upper series of the Joggins section, Divisions 1 and 2 of Sir William Logan’s sectional list, and with the Upper Barren Measures of the English Coal-fields, and the third or upper zone of Geinitz in the Coal formation of Saxony.‡

Still more recently, in the “Report on the Geology of Prince Edward Island,” 1871, I have referred to the upper part of the same formation, the lower series of sandstones in Prince Edward Island not previously separated from the overlying Trias.§

In Prince Edward Island, however, where the highest beds of this

* Journal Geological Society, August 1874.
‡ Ac. Geol., p. 149.
series occur, they become nearly horizontal, and are overlain apparently in a conformable manner by the red sandstones of the Trias, which differ very little from them in mineral character. It thus happens that, but for the occurrence of some of the characteristic Carboniferous plants in the lower series, and of a few equally characteristic Triassic forms in the upper, it would be difficult to affirm that we have to deal with two formations so different in age.

In connexion with this, the presumed absence of the Permian, not only here but throughout Eastern America, raises the question which I have already suggested in Acadian Geology, whether the conditions of the Upper Coal formation may not have continued longer here than in Europe, so that rocks in the former region constituting an upward extension of the Carboniferous may synchronize with part at least of the Permian. On the one hand, there seems to be no stratigraphical break to separate these rocks from the Middle Coal formation of Nova Scotia; and their fossils are in the main identical. On the other hand, where the beds are so slightly inclined that the Trias seems conformable to the Carboniferous, no very marked break is to be expected; and some of the fossils, as the conifers of the genus *Walchia* and *Calamites gigas*, have a decided Permian tendency.

On the whole, in the Report above referred to, I declined to separate the red beds of the lower series in Prince Edward Island from the Newer Coal formation. Prof. Geinitz, however, in noticing my Report,* and also in a private letter, expresses the opinion that the fossils have, as an assemblage, so much of a Permian (or Dyadie) aspect that they may fairly be referred to that formation, more particularly to its lower part, the Lower Rothliegende. Attaching, as every one must, great weight to the judgment of Prof. Geinitz on such a point, I determined to re-examine the more instructive sections of the Newer Coal formation on the eastern coast of Nova Scotia, with the view of ascertaining whether any stratigraphical or palaeontological line can be found to divide the Upper Coal formation series of my former papers into two members, or to separate it from the Middle Coal formation. The results of this re-examination and their bearing on general geological questions may be stated as follows:—

The Carboniferous district of Pictou county, extending for about 45 miles along the shores of Northumberland Strait, exposes in that distance, in coast and river sections, the whole thickness of the Carboniferous system, arranged in three synclinal forms.

The *First* or eastern synclinal, extending from the older metamor-

Neues Jahrbuch, 1872.
phic rocks on the eastward and southward to a line running nearly east and west through the town of New Glasgow, consists entirely of the Lower Carboniferous, Millstone-grit, and Middle Coal formation, and contains all the known workable Coal-measures of the county. Its northern boundary, the New Glasgow anticlinal, brings up a bed not recognised in the other Nova Scotia Coal-fields—the New Glasgow Conglomerate, an immense mass, believed in some parts to be 1600 feet in thickness,* and containing boulders 3 feet in diameter, with pebbles of all sizes, many of its largest stones being composed of the hard brown or purplish sandstones of the Lower Carboniferous. Its stratigraphical position is that of the upper part of the Millstone-grit or lower part of the Middle Coal formation; and it is evidently an exceptional bed, representing an immense bar or beach of gravel and stones, stretching from the eastern end of the metamorphic chain of the Cobequid Mountains across the Pictou Coal-field, and protecting those deep swamps in which the Pictou main coal, 36 feet thick, and its black shale roof, more than 1000 feet thick, were deposited. The theory of this remarkable deposit, one of the most singular connected with any coal-field, is fully discussed in the second edition of my "Acadian Geology." I may merely remark that, facing, as this bed does, the open sea stretching to the northward in the Coal formation period, it is not unreasonable to suppose that it indicates the action of heavy ice grounding on the shores behind which grew the Sigillaria forests of the Coal-swamps. The arrangement of the beds in the first synclinal, which is that of the great Pictou Coal-beds, has recently been worked out in much detail by Sir W. E. Logan and the late Mr E. Hartley.

The Second or middle synclinal extends from New Glasgow to Caribou Harbour, and centres in the deep indentation of Pictou Harbour. On its southern side it contains, north of New Glasgow, the depauperated equivalent of the Middle Coal formation; and the remainder of it is occupied by the Newer Coal formation, whose newest beds, however, are not represented in this trough. The low anticlinal which separates it from the third trough brings up nothing older than the lower part of the Newer Coal formation.

The Third synclinal extends from Caribou Harbour to Cape John, and, stretching westward through the Cumberland Coal-field, shows in its centre the newest beds of the Upper Coal formation, here more especially referred to.

It is to be observed that in these synclinals the north-west sides

* This is Sir W. Logan's estimate, and is warranted by the breadth which the bed occupies in the section; but there are indications that it thins rapidly toward the dip.
THE PERMO-CARBONIFEROUS.

have steeper dips than the south-east sides, and consequently occupy a less breadth on the map. The south-east sides also show the best and most continuous sections; and for this reason I shall select the section from New Glasgow to Pictou Harbour, and that from Carribun Harbour towards Cape John, as typical of the lower and upper parts of the Upper Coal formation.

Section on the East River of Pictou.

1. In the river section, below New Glasgow bridge, the conglomerate is succeeded in ascending order by a gray concretionary limestone 20 feet thick, associated with sandstone and shale, and containing in some layers great numbers of the *Spirorbis*, which I have described as *S. arietinus*, and whose habits of life were probably not dissimilar to those of *S. carbonarius*, so abundant in the Coal-measures. This limestone does not appear in the immediate river section, but on the flank of the conglomerate east of New Glasgow.

2. Above this is a series of black shales and underclays with gray sandstones and some reddish and purple shales, and thin seams of bituminous shale and coal. These beds contain *Stigmaria*, *Lepidodendron*, Entomostracans, and fish-remains; the fossils and the mineral character of the beds alike corresponding with those seen in the upper part of the Coal-measures south of the conglomerate. The thickness of these beds is about 400 feet.

3. This series is succeeded by a thick gray sandstone holding *Calamites*, *Calamodendron*, trunks with aerial roots (*Psaronius*), etc., 30 to 50 feet thick. This appears at the mouth of Smelt Brook, and in several quarries to the eastward of that place.

4. Above this is a second series of dark shales and underclays, and bituminous shales associated with gray sandstones, and containing fossils similar to those of the series below. It especially abounds in fish-scales and *Cythera*; and several of the fishes are specifically identical with those of the upper part of the Middle Coal-measures, as seen in the southern trough south of New Glasgow. These beds are about 200 feet thick. Mr H. Poole has described them in the "Canadian Naturalist" for August 1860.

5. The beds up to this point may be considered the equivalents of the Middle Coal-measures, or of the upper part of them, and are now succeeded in ascending order by thick gray and reddish sandstones, and reddish and gray shales, including, however, thin coaly

* Report of Geol. Survey of Canada. This limestone may be compared with the "*Spirorbis* limestone" of the Shrewsbury, Lancashire, and Warwickshire Coal-fields in England. Hull, "Coal-fields of Great Britain." See also Note 3, p. 102.
beds and underclays, and clays with nodular limestone. These may be regarded as belonging to the Upper Coal formation; and their aggregate thickness as far as Pictou Harbour may be 2000 feet. They contain Calamites, trunks of Dadoxylon materarium, Lepidodendron, Pecopteris arborescens? and Neuropteris.

The dip of the conglomerate is high; and that this is not altogether due to false stratification is shown by the fact, that to the eastward of New Glasgow the limestone and the Coal-measure beds rest on the conglomerate at an angle of 45°; but this rapidly diminishes to 20°, and in the greater part of the section it is only from 8° to 6°.

The line of demarcation between the Middle and Upper Coal formations is not marked here by any great physical break, but merely by the cessation of the characteristic beds of the Middle Coal formation and the change to sandstones associated with red shales.

At first sight it might appear that as the beds north of the conglomerate dip uniformly to the north, and mostly at slight angles, and those south of its outcrop are much more disturbed, there might be evidence of unconformability. This, however, is due to a line of fault extending along the outcrop of the conglomerate, and to the greater relative disturbance of the beds of the southern synclinal.

Section West of Carribou Harbour.

This section exposes the south side of the third or northern synclinal, and may be supposed to begin not far above the base of the Upper Coal formation. It extends in ascending order obliquely across the synclinal for about ten miles, along a coast in which the beds are on the whole well exposed, with uniform dips of about N. 30° E. magnetic, or nearly true north, and at an angle of about 10°; and no break or evidence of unconformability exists throughout the series, which amounts here in thickness to about 2500 feet.

The lowest beds seen in this section at the mouth of Carribou River are red and gray shales, and gray, red, and brown sandstones, including a small bed of coal 5 inches thick, with Stigmaria rootlets in the underclay; and at Carribou Island, nearly in the line of strike, there is a somewhat thicker bed of coal. The overlying series may be described as consisting of indefinite alternations of shales, mostly deep red, with sandstones, gray, red, and brown, the latter sometimes coarse and pebbly, and occasionally in thick massive beds. Several of the beds of shale contain concretions of limestone, in one case forming a nearly continuous bed, and with no fossils except a few casts of a Cythere. In one of the lower beds of sandstone seen on Carribou
River there are concretions of gray copper, and fossil trunks of trees penetrated by this mineral; and some of the fossil trees found in the sandstones on the coast are partly mineralized with sulphate of baryta.

The only material difference in mineral character is that red beds become more prevalent toward the upper part of the section, where the general character of the series is precisely that of the supposed Upper Coal formation rocks at Miminigash, Governor's Island, and Gallas Point in Prince Edward Island, and on the coast of New Brunswick at Cape Jourimain.*

The following statements, reduced from my sectional lists, will serve to illustrate these points of mineral character.

In the whole section the sandstones, including the argillaceous sandstones, are to the shales in the proportion of about two to one in vertical thickness, and the gray and buff sandstones are about equal to those which are brown and red, while the red and mottled shales greatly preponderate over those which are gray.

In the lower half of the section, extending to the mouth of Toney River, the gray sandstone, red sandstone, and shales (mostly red) are in the proportions of \(4\frac{1}{2}, 3, 6\frac{1}{2}\). In the upper half of the section they are in the proportions of \(4\frac{1}{2}, 5\frac{1}{2}, 3\); so that red sandstones become decidedly more prevalent in the upper part, where there is also a greater proportion of coarse pebbly sandstones and of light-red shale with greenish stains.

If we compare this with the upper part of the Joggins section as given in Sir William Logan's lists, we find a thickness of 2267 feet; and if we regard the Ragged Reef Sandstones as equivalent to the heavy sandstones at the base of the Picton section, it is possible that the upper part of the latter is not represented at the Joggins. Taking the proportions of sandstones and shales at the latter place, we find them to be gray sandstone 12, red and brown sandstone 1, shale 10; so that while the proportions of sandstones to shales are not very dissimilar to those in the lower part of the Picton series, but the gray sandstones are greatly more prevalent. Like those in the upper part at Picton, some of the upper beds at the Joggins are coarse and pebbly, a character not observed in either Coal-field, in the sandstones of the Middle Coal formation.

If, on the other hand, we turn to Prince Edward Island, the geological relations, and especially the fact that the outcrops on Prince Edward Island correspond with the extension of two of the New Brunswick Carboniferous anticlinals, would lead us to believe that

the Upper Coal formation beds seen at Gallas Point, and amounting
to about 800 feet in vertical thickness, must belong to the upper part
of the Pictou series, or may even reach some way above its summit.
Accordingly, we find the proportions of the several rocks to be, gray
sandstone 2, red and brown sandstone 4, shales 2, or a still greater
proportion of red sandstone as compared with Pictou. All this accords
with the idea of a gradual increase of red beds in approaching the
summit of the formation, so that the Upper Coal formation passes in
its upper part into beds having more the aspect of some parts of the
Lower Dynas or Permian. No true dolomite is present in these beds;
buts Dr Harrington's analyses show that some of the thin beds of
concretionary limestone are highly magnesian, and the sandstones
contain concretions of sulphate of copper, while the fossil trees which
abound in them are often mineralized with sulphides of copper and
iron, and sulphate of baryta.

In the paper referred to, lists are given of the characteristic fossil
plants in the upper beds, and it is shown that the species found, though
mostly common to these beds and the Middle Coal formation, consti-
tute a peculiar group, having strong points of resemblance with the
flora of the Lower Permian in Europe.

In Prince Edward Island the Upper Carboniferous and the Trias
are apparently conformable, and may almost be said to pass into each
other, though in Nova Scotia the Trias rests unconformably on the
Carboniferous. I believe, however, that this apparent conformity in
Prince Edward Island, and the resemblance of the two series in mineral
characters, arises from the almost horizontal position of the Carboni-
ferous beds, and from the circumstance that the Trias has been in
part formed from their waste. The Triassic fossils, though few, are
of species quite distinct from those of the Carboniferous. Further
details as to the relations of these formations in Prince Edward Island
will be found in my Report on that island.

To sum up, it may be said that the beds which overlie the Coal-
field of Pictou and extend into Prince Edward Island, and which
constitute the upper part of the Upper Coal formation, have such
strong points of resemblance to the lower part of the European Per-
man, both in their mineral character and organic remains, that they
may fairly be named Permo-carboniferous, a name already applied to
certain marine limestones in the West, in which the Carboniferous
graduates upward into the Permian. They may also be held to some
extent to bridge over the gap which in Eastern America generally
separates the Carboniferous from the Trias.

I may add that in Nova Scotia the Lower Carboniferous beds are
THE PERMO-CARBONIFEROUS.

usually more hardened and altered than those of the Middle Coal formation, and the latter more than those of the Upper Coal formation. Moreover, there are instances in Nova Scotia of local unconformability of the Lower Carboniferous beds; and the New Glasgow conglomerate affords evidence of extensive denudation of the Lower Carboniferous before the deposition of the productive Coal-measures. These facts indicate the long duration of the Carboniferous period and the extent of the physical changes which it included; and it is evident that, had unconformability or extensive local denudation occurred somewhat higher in the system, it might have been regarded as forming the base of an overlying Permian series.

Detailed descriptions and sections of the Permo-carboniferous beds as they occur at Gallas Point, Governor's Island, and Campbellton, in Prince Edward Island, are given in the Report above referred to.

7. THE CARBONIFEROUS.

With reference to the structure and stratigraphy of the Carboniferous, a large amount of work has been done by the officers of the Geological Survey, principally in the Cape Breton, Pictou, and Cumberland areas, and more especially in the productive Coal-measures. Much has also been done by private explorations, and the results are so voluminous that I can scarcely do more than refer to the Reports in which the principal of them are contained.

Discoveries in different Coal-Fields.

In the Report of the Geological Survey for 1872-3, Messrs Bailey and Matthew have given details of the Coal-field of New Brunswick, derived both from surveys and from borings made by Mr. Ells. The most remarkable general result is the small thickness of this widely-extended Coal formation area. The estimate given is as follows, in ascending order:

- Gray sandstones and shales, equivalent of Mill- 200 feet.
- Stone-grit 200 "
- Coal-measures containing no known bed thicker than 26 inches 200 "
- Upper Coal formation . 600 "

Perhaps there should be added to this a small additional thickness for the Permo-carboniferous of the shore of Northumberland Strait. But in any case it presents a great contrast to the vast thickness of.
the Carboniferous system in the Pictou or Cumberland areas, amounting to many thousands of feet, and shows how very unequal subsidence and deposition must have been even in neighbouring areas not separated by any physical barrier. The facts thus ascertained do not increase the probability of the discovery of valuable coals in this great area. Some of the widely-extended thin beds may perhaps admit, at some time, of being worked on a large scale, and possibly large beds may exist in the central part of the area remote from the older rocks, or on the north-eastern coast. The coast between Bathurst and Miramichi River, and that between the latter and Buctouche, afford perhaps some of the most promising localities.

The Cumberland Coal-field has attracted much attention, and more especially that part of it in the Springhill district which is traversed by the Intercolonial Railway, affording so great facilities for the transmission of its produce. Mr Barlow reports* that in the Springhill areas eight or nine seams of coal have been discovered, the principal one being 11 feet in thickness, and affording coal of very good quality. There is an overlying seam 13 feet thick, but with two clay partings. Mr Hartley gives as the analysis of the Springhill coal:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Volatile matter</td>
<td>35.39</td>
</tr>
<tr>
<td>Fixed carbon</td>
<td>60.46</td>
</tr>
<tr>
<td>Ash</td>
<td>4.15</td>
</tr>
</tbody>
</table>

So that this appears to be an excellent coal, altogether superior to that of which I have given an analysis (Ac. Geol., p. 221), and which was an outcrop sample, the only one that I could at that time obtain.

The Reports of Sir W. E. Logan and Mr Hartley (Geol. Survey Reports, 1869) have added greatly to our knowledge of the structure of the Pictou Coal-field, and more especially of the faults traversing it, and the distribution of the measures on the east side of the East River, and the actual productive limits of the Coal-field. A detailed map accompanies the Report, and Mr Hartley has given tables of analyses and practical trials of the coals. On the east side of the East River, the trough-shaped arrangement already referred to appears to continue as far as the left bank of Sutherland's River. A subordinate anticlinal appears, however, to occur in the middle of the trough, or rather nearer the East River, and there are a number of faults, both parallel and transverse to the axis of the trough. In the

western end of this part of the trough, that nearest the East River, no important extension of the great seams of the Albion mines appears yet to have been distinctly recognised, though these seams, or their equivalents, must exist both on the south side towards M'Lellan's brook, and on the north side near New Glasgow (see the map, Ac. Geol., p. 320). The beds of coal which have been worked near the east side of the East River, the Foster and Lawson seams, are believed to overlie the great main seam by a thickness of about 1500 feet. In the eastern half of the trough these upper beds are apparently represented by the Marsh Brook seam, the George M'Kay seam, and associated beds; and the correspondence of the beds and their containing measures, as well as in the quality and structure of the coal, seem to establish this equivalency. But here, at a distance of 480 yards to the rise, occurs the M'Lean seam, now worked in the Vale Colliery, and associated with other seams, making in all so great an aggregate of coal, that they may not unreasonably be regarded as the equivalents of the main seam. In this case, however, the thickness of the overlying measures must have diminished or been concealed by faults, and on that account it is still possible that the real equivalents of the main seam may occur lower down. The M'Lean beds, not yet worked, lying to the westward of the explored part of the M'Bean seams, may in the one case be the continuation of the M'Bean series, or in the other may be much lower. There can be little doubt that these M'Lean beds represent the main seam. The great inequality of the original deposits in this Coalfield, and the disturbances to which they have been subjected, with the absence of good natural sections, oppose great obstacles as yet to the decisive settlement of these questions—the answers to which are, however, being gradually worked out by mining explorations.

In 1868, immediately after the publication of my second edition, I had an opportunity to examine some parts of the coast of Cape Breton, and more carefully to correlate the Coal-beds of that region, as well as to make some important observations on fossil plants. These observations have not been published in full, but in the same year I sent a note relating to them to the Nova Scotia Institute, which was printed in their Transactions, and gives my views on these subjects as formed at that time.

The following section of the Coal formation, as exposed on the south side of Sydney Harbour, on the property of the Victoria Mining Company, is condensed from observations made with the aid of Mr Ross, of the Victoria Mine, and Mr Mosely of Sydney. The order is descending.
This series of Coal-beds I believe to represent the whole of the workable beds known at North Sydney as well as those of Glace Bay and Cow Bay. The high angle of dip brings their outcrops nearer to one another than is usual in this district, and a good coast cliff and beach section enables them to be well studied. This section is the best guide I have seen to the vexed question as to the equivalents of the several Coal-beds in the different mining areas of Cape Breton, but its application is by no means easy. On the south side of Sydney harbour the Coal-beds above-mentioned dip about N. 5° E. at angles of 30° to 45°. On the opposite side of the harbour the corresponding beds dip to the north-east at an angle of 10 degrees or less. Consequently the beds, crowded together on the south side, spread out like a fan on the north side. In addition to this, when we measure the thickness of the beds intervening between the several seams of coal, it is evident that they must vary greatly both in character and thickness within very short distances. Making due allowance for these differences, it would seem that the Paint seam of the above list must be the Lloyd's Cove seam of the North Sydney series. In this case the main seam at North Sydney is equivalent to the Ross seam. The equivalency of these beds with those of Glace Bay and Cow Bay is more uncertain. I was inclined to correlate the Paint seam with that known as the Phelan at Glace Bay, and to suppose that the lower seams were still to be found there; but different views
have been stated by Mr Robb, which would tend to diminish somewhat the probable importance of the lower beds of coal underlying those worked at Glace Bay and Cow Bay. These, however, include the equivalents of the Gardiner seam and the McGillivray seams. To these points I may add the statement that in my sketch map, page 413, the strike of the beds at the east side of Sydney Harbour should turn a little more to the south, and that the outercrops should be closer to each other; and that, by an error in the engraving, the town of Sydney is removed from its true position on the southern arm of the harbour to the south-west bar. I am indebted to Mr Mosely of Sydney for information bearing on some of these points.

In the Reports of the Geological Survey for 1872-3, 1873-4, and 1874-5, Mr Robb has gone with great elaborateness into these questions, and correlates the Sydney main seam not only with the Ross or Victoria, but with the David’s Head seam of Bridgeport, the Harbour seam of Glace Bay, and the Block-House seam of Cow Bay. Mr R. Brown has stated a similar view of the equivalency of these beds in his work on the Coal-fields of Cape Breton.*

Leaving these local details, I may now refer to some curious fossil plants met with in the Coal formation of Cape Breton, and deserving of record as additions to our knowledge of its flora. Among the rarest of fossil plants in the Coal rocks of Nova Scotia have hitherto been the trunks of tree-ferns. The scattered fronds are sufficiently abundant, but trunks of arborescent species are seldom found. Mr Poole’s collections at Glace Bay enable me to add another fine species to the Coal flora of Nova Scotia. It is a large flattened stem, a foot or more in diameter, marked with many wrinkles over the whole surface, and with large distant oval leaf-shears 1½ inch in diameter and 3 inches in length, to which large fronds must have been attached. It is a near ally of Caulopteris macrodiscus, Sternberg, but has larger and more distant shears, more obtuse above. I would name it Caulopteris glacensis. It belongs to the genus Ptychopteris of Corda. Another remarkable trunk, which I found obscurely preserved in coarse sandstone at North Sydney, appears different from anything hitherto described. It seems to have had four vertical rows of shears, the form of which could not be made out; but I have little doubt that it belonged to an arborescent fern with a stem 4 inches in diameter and several feet at least in height. Near an abandoned coal-mine at Bridgeport I also found a fragment of one of those tree-ferns surrounded with aerial roots, to which the name Psaronius has been given, but not admitting of specific description.

* London, 1871.
As I have been able hitherto only to describe four species of trunks of tree-ferns, these are considerable additions. Among other interesting specimens in the collection of Mr Poole, I also saw the curious sigillaroid tree *Syringodendron cyclostigma*, Brongniart, and a species of *Sigillaria* new to Nova Scotia and allied to *S. rugosa* of Brongniart, though scarcely sufficiently perfect for description. Another remarkable form collected by Mr Poole is a flattened striated stem about an inch in width, with two rows of punctiform marks at the sides, and giving off alternate slightly curved branches, at right angles, and in one plane. It may have been the stipe of a fern.

Another interesting fossil observed at North Sydney was an erect *Sigillaria*, with that peculiar bulb-like enlargement of the base figured by Sternberg on Plate xxxviii. of his great work, but which I had not before seen, the *Sigillaria* found in Nova Scotia usually enlarging regularly towards the base in the manner of ordinary trees. This bulb-like appearance seemed to be a natural feature of the growth of the plant, which had the markings of *S. reniformis*. Through the kindness of my friend Mr Brown, of the Sydney colliery, the specimen was carefully taken down from the cliff, and forwarded to Montreal; and it now stands, a column five feet in height, in the museum of McGill University.

Since 1868, the Coal-field of Campbellton, an extension northward of the Sydney series, lying against the ancient Syenite ridge of St Anne's Mountain, has been explored, and coal-workings commenced in it,* and the extension of workable Coal-measures has been traced on the west coast of Cape Breton, north of Mabou, in Broad Cove. These have been reported on by Professor Hind. The boundaries of the Millstone-grit and Carboniferous limestone in the vicinity of Sydney Harbour have also been carefully mapped by Mr Fletcher of the Dominion Geological Survey.

Lower Members of the Carboniferous.

Turning now to the lower members of the Carboniferous series; in connection with a Report on the Fossil Plants of the Lower Carboniferous and Millstone-grit Formations,† I have endeavoured to classify these, and to indicate their equivalency with formations abroad, a subject at present exciting some controversy among European geologists.

Where most fully developed in Nova Scotia and New Brunswick, these formations may be thus subdivided in ascending order:—

Among the richest and most beautiful of the Carboniferous Limestones is the Millstone-grit, a well-known formation in the eastern counties of England, and of great importance both to the farmer and miner. The Millstone-grit is a very regular series of strata, consisting of calcareous sandstones, with thin beds of sandstone and shale, and is divided into three main divisions:—

1. The Millstone-grit, consisting of sandstones and shales, 1814 and 1817 (see page 79).
2. The Lower Coal-formations, consisting of sandstones and shales, 1818 and 1819.
3. The Middle Coal-formations, consisting of sandstones and shales, 1820 and 1821.

The Millstone-grit is a very regular series of strata, consisting of calcareous sandstones, with thin beds of sandstone and shale, and is divided into three main divisions:—

1. The Millstone-grit, consisting of sandstones and shales, 1814 and 1817 (see page 79).
2. The Lower Coal-formations, consisting of sandstones and shales, 1818 and 1819.
3. The Middle Coal-formations, consisting of sandstones and shales, 1820 and 1821.

The Millstone-grit is a very regular series of strata, consisting of calcareous sandstones, with thin beds of sandstone and shale, and is divided into three main divisions:—

1. The Millstone-grit, consisting of sandstones and shales, 1814 and 1817 (see page 79).
2. The Lower Coal-formations, consisting of sandstones and shales, 1818 and 1819.
3. The Middle Coal-formations, consisting of sandstones and shales, 1820 and 1821.

The Millstone-grit is a very regular series of strata, consisting of calcareous sandstones, with thin beds of sandstone and shale, and is divided into three main divisions:—

1. The Millstone-grit, consisting of sandstones and shales, 1814 and 1817 (see page 79).
2. The Lower Coal-formations, consisting of sandstones and shales, 1818 and 1819.
3. The Middle Coal-formations, consisting of sandstones and shales, 1820 and 1821.
its equivalents. In the following lists I have given the equivalents of the Horton series and Millstone-grit series as they appear to me to be settled by stratigraphy and fossils:

1. Equivalents of the Lower Carboniferous Coal-Measures or Horton Series.

(1.) The Vespertine Group of Rogers in Pennsylvania.
(2.) The Kinderhook Group of Worthen in Illinois.
(3.) The Marshall Group of Winchell in Michigan.
(4.) The Waverley Sandstone (in part) of Ohio.
(5.) The Lower or False Coal-measures of Virginia.
(6.) The Calcareous Sandstones of M'Laren, or Tweedian Group of Tate in Scotland.*
(7.) The Carboniferous Slate and Coomhala Grits of Jukes in Ireland.
(8.) The Culm and Culm Graywacke of Germany.
(9.) The Graywacke or Lower Coal-measures of the Vosges, as described by Schiöner.
(10.) The Older Coal Formation of the Ural, as described by Eichwald.
(11.) The so-called "Ursa Stages" of Heer includes this, but he has united it with Devonian beds, so that the name cannot be used except for the local development of these beds at Bear Island, Spitzbergen.

All of the above groups of rocks are characterized by the prevalence of Lepidodendron of the type of L. correugatum, L. Veltheimianum, and L. Glineum, and also of the type of L. tetragonum of Sternberg (Bergeria of some authors),† pines of the sub-genus Pitus of Witham, Paleoxylon of Brongniart, and peculiar ferns of the genera Cyclopteris, Cardioperis, and Sphenopteris. In all the regions above referred to they form the natural base of the great Carboniferous system.

* Some attention has recently been given to these beds in England and Scotland by Geikie, Hull, Labour, and others, and new names have been proposed, as that of "Valentinian" by Geikie. The name "Tweedian" of my old friend Tate, should, I think, stand. Many years ago, when I was engaged in the study of these rocks, he seemed to be the only English geologist who knew much about them. Of late years much confusion has been introduced into the geology of these beds by some European palæobotanists. Stur has, however, worked up their fossils in Silesia, as Eichwald had done in Russia, and in both regions they correspond very closely with the flora which I have found in Nova Scotia, and have described in the Report above referred to. Meck has also recognised this flora in Western Virginia.

† This type of Lepidodendron has been recognised even in Australia, but seems there to be referred to the Devonian age.
2. Equivalents of the Millstone-Grit Series.

1. The Seral Conglomerate of Rogers in Pennsylvania, etc.
2. The Lower Coal Formation Conglomerate and Chester Groups of Illinois (Worthen).
3. The Lower Carboniferous Sandstone: of Kentucky, Alabama, and Virginia.
5. The Moor rock and Lower Coal Measures of Scotland.
6. Flagstones and Lower Shales of the South of Ireland and Millstone-grit of the North of Ireland.

The vegetable fossils of this group differ from those of the beds below the marine limestones, and contain forms resembling or identical with those of the Middle Coal formation, into which, indeed, both lithologically and as to fossils, the Millstone-grit passes by imperceptible gradations.

The distribution of these series in the Acadian Provinces may be stated thus:—

In Gaspé and the Bay de Chaleur and along the northern margin of the New Brunswick Carboniferous district, the Lower Carboniferous formation presents the characters of the Bonaventure formation of Sir William Logan, the marine limestones being absent or little developed, and the prevailing rocks being conglomerates and sandstones with few fossils. (Logan, Report of 1863; Robb, Report of 1869; Acadian Geology, p. 227.)

In Southern New Brunswick the Lower Carboniferous Coal-measures are remarkable for the great thickness of bituminous and bituminous-calcareous shales which they contain. These rocks hold the remarkable vein of Albertite worked in this district. They contain numerous remains of fishes, and also of the characteristic Lower Carboniferous plants. (Bailey and Matthew, Report of 1871; Acadian Geology, p. 231; see also Note 2.)

In Southern New Brunswick and North-western Nova Scotia, the Millstone-grit is also largely developed. At the South Joggins, where this formation and the Middle Coal formation probably attain their maximum thickness, the equivalent of the Millstone-grit occupies in Sir William Logan's section a vertical thickness of no less than 5972 feet, and consists of red and gray sandstones, red and chocolate shales and conglomerates, with some dark shales, underclays, bituminous limestones, and thin unproductive coals. It contains species of Sigillaria, Lepidodendron, Calamites Dadoxylon, and Cordaites.
(Logan, Geol. Survey of Canada, 1845; Acadian Geology, p. 176.)

On the south side of the Cumberland Coal-field, the Lower Carboniferous beds appear to return to the type of the Bonaventure formation, and to consist principally of conglomerate and sandstone not rich in fossil plants, and these principally of the Millstone-grit horizon.

Crossing the ancient metamorphic ridge of the Cobequids, we find on their southern flanks conglomerates representing the lowest Carboniferous rocks. Above these there is a slender development of the marine limestones and a great thickness of hard sandstones and shales, representing the Millstone-grit and perhaps the lower part of the Middle Coal formation. These rocks form a long belt extending from Cape Chiegnecto till it unites with the Pictou Coal-field on the eastward. Their general arrangement appears to be that of a narrow trough much broken by faults. They afford a good representation of the flora of the Millstone-grit. (Acadian Geology, p. 263 et seq.)

On the south side of Minas Basin and Cobequid Bay a very wide area is occupied by Lower Carboniferous rocks; and at the cliff of Horton Bluff, and other places in its vicinity, these beds, which, from their large development in this locality, may be named the Horton series, are very well exposed, and contain abundance of their characteristic fossils. For their detailed description I may refer to my paper of 1858, Journal of Geol. Society, vol. xv., p. 63. (See also Acadian Geology, p. 252.)

Similar rocks are seen and have been described by the author near Windsor, at Walton and Noel, and at Five Mile River on the Shubenacadie, in all these places rising up from under the Lower Carboniferous limestones. (Journal of Geol. Society, vol. iv. p. 59, vol. vii. p. 335; Acadian Geology.)

Further east, on the Salmon River, and on the West, Middle, and East Rivers of Pictou, there is a great development of rocks of the Millstone-grit series, consisting largely of chocolate sandstones and shales, often very hard, and with bands of gray and dark-coloured beds holding plants. In this region the marine limestones extend upward into the Millstone-grit, so that it is difficult to establish any distinct line of separation, and the Lower Carboniferous Coal measures seem to be absent. (Journal of Geol. Society, vol. i. p. 26, 1843; Logan and Hartley, Reports on Pictou Coal-field, 1869; Acadian Geology, p. 316 et seq.)

In the Pictou Coal-field there are certain hard sandstones holding obscure fossil plants, which come up from beneath the Millstone-grit on the Middle River, and which I have regarded as Devonian. It is,
Acadian Geology, p. 321.

The Carboniferous Coal measures are rare in the Cobequid basin, but the Lower Carboniferous conglomerate of the Picton Coal-field, known as the New Glasgow Conglomerate, appears to be a shingle bed of the Upper Millstone-grit or Middle Coal formation epoch. It stretches with some interruptions from Mergimish to Roger's Hill and Mt. Dalhousie, near the eastern end of the Cobequid Ridge, or about twenty miles, and is undoubtedly connected with the different developments of the beds of the Coal formation on the south and north of this line; and it implies very great and violent denudation of the Lower Carboniferous sandstones during the Coal formation period, as the fragments contained in it are largely composed of these sandstones, and are often of great size. (Acadian Geology, p. 321, et seq.; Logan, Report on Picton, 1869.)

At the extreme eastern end of the Picton Coal-field, where it is in contact with the Upper Silurian at M'Cara's Brook, the Lower Carboniferous beds are conglomerates with interstratified trap, above which is marine limestone overlaid by the Millstone-grit series. (Journal of Geol. Society, vol. i. p. 329; Acadian Geology, section opposite page 125.)

In the Carboniferous area of Antigonish County we again meet with the dark shales and sandstones of the Horton group, holding their characteristic plants, and underlying the marine limestones and gypsiums. I noticed these beds as occurring at Right's River in 1843;* and Dr Honeyman, who subsequently traced them further to the eastward, has kindly placed in my hands a small but interesting collection of their fossil plants.

The long belt of Carboniferous rocks extending along the west branch of the St Mary's River, has the mineral character and fossils of the Millstone-grit series in those places where I have examined it, except near Guysboro, where there are Lower Carboniferous limestones, and in the Strait of Canso, near Cape Porcupine, where the basal conglomerates appear. (Acadian Geology, p. 350.)

In Cape Breton a well-characterised representation of the Lower Carboniferous Coal measures or Horton series is seen in the sandstones, gray and black shales, and conglomerates which underlie the limestone and gypsum of Plaister Cove, while the Millstone-grit seems to be represented by the thick sandstones underlying the Coal-field of Richmond County. (Journal of Geological Society, vol. v.; Acadian Geology, p. 390 et seq.)

In Northern Cape Breton, from the Cape Dauphin section, as

described by Mr. R. Brown, it would appear that the Lower Carboniferous Coal measures are slendrly represented or concealed by faulting. Mr. Brown has, however, recognised the Millstone-grit as underlyng the Sydney and Glace Bay Coal-fields, and attaining to a thickness of 1800 feet. It consists largely of gray sandstone, and holds Siggilavia, Calamites, and Lepidodendra. (Brown, Journal Geol. Society, vol. iii. p. 258; Ibid., vol. vi. p. 116.)

From a collection of fossils made by Mr. R. Bell in Western Newfoundland, and presented to the Museum of the McGill University by Donald Ross, Esq., it appears that the Lower Carboniferous limestone of that island holds the same fossils with that of Nova Scotia, and that it is overlaid by a series of beds corresponding to the Millstone-grit. This formation, however, contains beds of coal of workable size, abounding in remains of Lepidodendra, so that it would seem that in Newfoundland, as in Scotland, the workable coals extend farther down in the series than is the case to the southward.

For the flora of these interesting formations which form the lower portion of the Carboniferous, I must refer to the Report already mentioned. I may remark here in general terms, that in the area of the Acadian Provinces, the close of the Devonian was accompanied by great physical changes which removed the Devonian flora. In the Lower Carboniferous period, a meagre flora, different from that of the Devonian, took possession of the land. This was again partially removed by the subsidence leading to the deposition of the Lower Carboniferous limestones, and the Millstone-grit lying on these, forms, as to its flora, the dawn of the great Middle Coal formation. While the local elevation, subsidences, and denudations within the Carboniferous period were sufficient to cause some limited cases of unconformability, these are not comparable with those between the Devonian and the Carboniferous; and the Devonian fauna and flora are as a whole quite distinct from those of the Carboniferous, though there are some species of plants common.

In Eastern America, as in Great Britain, the conditions of coal accumulation seem to have set in earlier to the northward. The Coal-beds of Newfoundland belong to the Millstone-grit series. Those of Pictou are exclusively in the Middle Coal series, and apparently in its lower part. Those of the Joggins seem to be rather higher in the series than those of Pictou, and in the United States there are workable beds of coal in the Upper Coal measures which are barren in Nova Scotia. This connects itself with the fact illustrated in my Report on the Devonian Flora (1870), that this flora in North America seems to have extended itself from the north-east,—a view which
Heer and Professor Asa Gray also entertain with respect to the Tertiary floras. Facts now accumulating from the observations of recent Arctic explorers, make it more and more evident that the peculiar Lower Carboniferous flora was very widely distributed in circumpolar lands at the beginning of the Carboniferous period.*

Mr. E. Gilpin, in a paper in the Transactions of the Nova Scotia Institute (vol. iv.), has directed attention to the peculiar manganiferous limestone lying at the base of the Carboniferous on the East River of Pictou, and very distinct in character from the great bed of light-coloured limestone (Lithostrotion Limestone of Acadian Geology), lying above, and the still higher gray limestones. In my tabular arrangement of the Lower Carboniferous limestones (Ac. Geol., p. 281), I have not separated this lower bed, as it has no distinctness with regard to fossils; but its wide distribution and metalliferous character would now induce me to follow Mr. Gilpin's arrangement, and recognise it as a separate subdivision. It reappears in Pictou County in New Lairg, and is represented elsewhere by the black limestone of Plaister Cove, Cape Breton, the "Black Rock" at the mouth of the Shubenacadie and the manganiferous limestone of Walton and Teny Cape. It is not improbable that the manganese in these limestones may be derived from the decomposition of volcanic debris proceeding from the contemporaneous igneous vents which produced the Lower Carboniferous traps. Its origin may thus be similar to that to which the manganiferous nodules found so abundantly in the deep-sea dredgings of the "Challenger" have been attributed.

New Carboniferous Fossils.

In addition to the Report on the Lower Carboniferous and Millstone-grit plants already referred to, which gives a nearly complete view of this interesting flora as far as known up to 1873, I may refer to a paper on the Relations of Sigillaria, Calamites, and Calamodendron, in the Journal of the Geological Society for 1870; a paper on a remarkable Sigillaria discovered at the Joggins by Mr. Hill (Proceedings of the same Society, 1877), Mr. Scudder's descriptions of the five species of myriapods found by me in the Coal formation (Journal of Boston Society, 1873); Descriptions of Fossil Insects from Nova Scotia, by the same author (Canadian Naturalist, vol. viii.), and my own recent papers on a new crustacean (Geological Magazine, 1877), and on a recent discovery of Carboniferous

* See a summary of the latest of these facts in Geological Magazine, July 1877; also Heer, "Flora Fossilis Arctica," vol. iv.
Reptiles (Silliman's Journal, vol. xii., December 1876). I may add a paper on Impressions and Footprints of Animals and Imitative Markings on Carboniferous Rocks (Silliman's Journal, vol. v., January 1873), and the description of the remarkable footprints of Sauropsis unguifer found in a quarry in Cumberland County.* It would be impossible to give here even the substance of these several contributions to palaeontology, but I may notice a few points likely to be of interest to the general reader, or specially new in geological science.

In the Report on Fossil Plants above referred to, the species characteristic of the Lowest Carboniferous beds are defined and separated from those of the Devonian below and the Millstone-grit

above. Special attention is given to the protean varieties of *Lepidodendron corrugatum*, and to its *Stigmaria* roots, this being the characteristic Lower Carboniferous *Lepidodendron* in America, and our representative of the widely distributed *L. Veltheimianum* and its allies in Europe,* and also to the conifers of the Lower Carboniferous and Millstone-grit. A list is also given, for comparison, of the plants of the Middle and Upper Coal formation, and some inte-

![Figure 5](image1.png)
Fig. 5.—Wing of *Blattina Brevifrons*.
—Scudder.

![Figure 6](image2.png)
Fig. 6.—Wing of *Blattina Heeri*.
—Scudder.

resting new species from the former are described—more especially *Sigillaria Lorwayana*, a species showing very beautifully the transverse bands of fruit-scar so characteristic of some species of *Sigillaria* (Fig. 4). In the paper on *Sigillaria*, it was my aim to define the true place and structure of that genus, and also to separate *Calamites* from *Calamodendron*. In connection with this I may mention that the *Cordaites*, whose leaves are so abundant in both the Devonian

![Figure 7](image3.png)
Fig. 7.—Wing of *Blattina Sepulta*.
—Scudder.

![Figure 8](image4.png)
Fig. 8.—*Libellula Carbonaria*.
—Scudder.

* I see that in recent descriptions of the Lower Carboniferous plants of Greenland, *L. Veltheimianum* is recognised; but this is probably *L. corrugatum*, which for want of sufficient specimens most European botanists have not yet learned to discriminate, nor have the Greenland specimens been yet compared with their American analogues. Until this shall be done, we must remain in some uncertainty respecting them, notwithstanding the good illustrations in European works.
Fig. 9.—Markings on Rocks.

(a) Protichnites Carbonarius (nat. size), Carboniferous, Nova Scotia.
(b) P. Acidicus,
(c) Diplichnites enigma (reduced),
(d) Diplichnites, different forms (nat. size),
(e) Carbonized plant with reticulated cracks filled with mineral matter, simulating a reticulately veined leaf (nat. size); a, enlarged section of part of the same. Carboniferous, Nova Scotia.
THE CARBONIFEROUS.

have belonged to trunks of advanced structure allied to that of conifers, and to have been gymnospermous plants. This gives them a higher position in the vegetable kingdom than that assigned to them in Acadian Geology, unless, indeed, there may be two groups included in this genus, the one lycopodaceous, the other gymnospermous.

Among the new insects described by Mr Scudder (Figs. 6 to 8), that which he has named Libellula Carbonaria, and which was found by Mr A. J. Hill at the Cossit's Pit, near Sydney, C.B., is of especial interest as being the first known example of a Carboniferous dragon-fly (Fig. 8). This place, Cossit's Pit, is of especial interest, because it has afforded to Mr Hill a rich and varied flora, containing forms not yet described, and some species characteristic of the Upper Coal formation, while the horizon of this coal is believed to be in the lower part of the Middle Coal formation, or even in the Millstone-grit.

In my paper on Fossil Footprints,* I described from the Carboniferous rocks tracks referable to Protichnites, and which I regard as belonging to species of limulus, or horse-shoe crab, a genus which, though elsewhere known in the Carboniferous, has not been found in Nova Scotia, unless represented by these tracks. Other markings on the Carboniferous beds are impressions of worms, referable to the genus Arenicolites, and of crustaceans (trilobites or their allies) referred to genus Rusichnites. A very peculiar and anomalous form of large size was placed in the new genus Diplichnites, and the genus Rubichnites was established to contain some markings resembling the so-called Eophytus of the Cambrian rocks, and probably of similar nature. Illustrations of these are given in Fig. 9.

Fig. 10. — Carapace of Anthracopseudon (Pierocerascarabus) Millhauum. — Dawson.

The curious fossil figured in Fig. 10, the carapace or body shield of a species of Palaeotricarabus, was found by Mr A. J. Hill at the South Joggins, and is the first of the higher or decapod crustaceans found in our Coal formation. Very similar species occur in the Coalfields of Great Britain and Illinois. It has been described in the Geological Magazine.†

The sole species of myriapod recognised by me in the original discovery of these animals at the Joggins was Xylobius Sigillarius; but when a large number of fragments had accumulated in my collection, suggesting diversity of species, I placed the whole in the hands of Mr S. H. Scudder, our best

* Stillman's Journal, January 1873. † February 1877.
authority on fossil insects, and he was able to discriminate two genera and five species. This was stated in a note at page 405 of Acadian Geology, and I now give a series of diagrammatic illustrations prepared by Mr Scudder, showing the characteristic forms of the segments in the several species (Fig. 11.)

Fig. 11.—Myriapoda from the Coal Formation of Nova Scotia.—After Scudder.

The remarkable discovery of Carboniferous batrachians made at the South Joggins in 1876, in one of those erect trees which have, since 1851, afforded so many similar remains, is of so much interest in connexion with the species described in Acadian Geology, that I make considerable extracts from the account of it published at the time.

The tree of 1876 was found by me in "the reef," or extension of the sandstone seaward, and near the low-water mark. The upper part of the stump, probably filled with sandstone, had been removed by the waves, but about 2 feet of the lower part remained. It was extracted with as much care as possible by two miners with picks and crowbar, and the disk-like fragments, into which it naturally split, were carried up to the foot of the cliff, and subsequently numbered and dissected at leisure. In the hurry of working against time to escape the tide, the men, it seems, left in the hole a portion of the lowest layer, and a fragment of an upper one. The former was afterwards removed by Mr J. C. Russel, of Columbia College, New York, and the latter was found by Mr Hill. Both have been kindly placed in my hands by these gentlemen, so that the whole of the material
has been collected and carefully labelled, in such a manner as to keep together the parts belonging to each skeleton.

This tree was about 18 inches in diameter, and in the lower part was partially flattened by lateral pressure, so that its diameter in one direction was only a little over a foot. The material filling the somewhat thick early bark may be described as a more or less arenaceous silt or soil, blackened with vegetable matter, and replete with fragments of carbonized bark, mineral charcoal, and fine vegetable debris. There are also numerous leaves of *Cordaites*, and abundance of the fruits which, from their frequent occurrence in such hollow trees, I have elsewhere named *Trigonocarpum Sigillariæ*. In some places the sediment was finely laminated, the laminae being often much contorted. In other places the earthy matter existed in patches or interrupted layers, nearly free from vegetable matter, and especially abundant toward the sides of the trunk. The cementing substance is in general carbonate of lime, many portions of the mass effervescing freely with an acid, but in some spots there are hard concretions of pyrite. The material has evidently been introduced gradually, in small quantities at a time, and the earthy matter seems to have run down the sides, spreading more or less towards the centre, but in general accumulating around the circumference. The number of skeletons recovered in a more or less complete state was no less than thirteen in all, belonging probably to six species, besides other bones contained in coprolites, and several millipedes, and shells of *Pupa Vetusta*, the latter almost entirely in the lowest layers.

The first animal introduced was a specimen of *Hylerpeton Dawsonii*, Owen, whose bones and scutes, after decay of the connecting parts, had slid down the slope of silt from one side toward the centre of the space. Next, after a few inches of filling, came a specimen of *Dendrerpeton Acadianum*, Owen, whose bones lie along the centre of the layer and nearly in one plane. Above this a large flake of bark had fallen in, forming an imperfect floor over the remains. Then, after an inch or two of carbonaceous matter had been deposited, came a somewhat flat surface, which seems to have remained uncovered for some time, and on this lie the *disjecta membra* of three skeletons belonging to *Dendrerpeton Acadianum*, D. Owenii, and a new species of *Hylerpeton*. Above this was a confused mass of considerable thickness, in which were found another specimen of the new *Hylerpeton*, and remains representing a third animal of the same or an allied genus, also four specimens of *Ilylonomus Lyelli*, and portions apparently of an immature *Dendrerpeton*. Still higher in position was a layer with large portions of the cuticle of a *Dendrerpeton*, probably
the species *D. Acadium*; and above this, at the surface of the stump, were some remains and impressions of bones probably indicating another specimen of *Dendrerpeton*. Taking these specimens in the order above given, we may notice the new facts which they have disclosed on a preliminary examination.

2. Remains of *Hynerpeton*.

The sole species of this genus heretofore known, *H. Dawsonii*, was discovered by me in 1860, and was described by Professor Owen from remains so scanty that he expressed considerable doubt as to its affinities. I afterwards worked out, from a few fragments of the matrix, the evidence that its teeth were simple, without plicated dentine, that it had a large canine or tusk in the anterior part of the upper jaw, and that it possessed a walking foot. The present specimen throws much additional light on its structure. It had at least twelve teeth in each ramus of the mandible, and they are large in proportion to the size of the animal, bluntly conical and somewhat acuminate, and faintly striate at the apex. The vomerine bones are beset with numerous small blunt teeth. The skull is long, and its bones thin and marked merely with delicate incised lines rather than wrinkles. The forms of the stout ribs and scattered vertebrae would indicate that the body was broad and squat. The skull must have been about 2 inches in length, the body probably 4 or 5, and there are some small vertebrae which may indicate a short tail. The limbs were large and strong, the femur being an inch and a quarter long, and its shaft a fifth of an inch in diameter, and with thick bony walls. The vertebrae are short and biconcave, and with large dorsal spines, the belly was protected by numerous imbricated bony scales of two kinds, one oblong and narrow, the other broad and obliquely shield-shaped. There are indications of thoracic plates of larger size than the scales. On the whole, this species was probably a somewhat clumsy creature, of toad-like form and slow gait, and with a dentary apparatus suited to pierce and crush crusts and shells. It is perhaps significant of its habits, in these respects, that the layers of this tree in which its bones occur are alone those in which shells of *Pupa vetusta* are found.

The second species of *Hynerpeton*, which I may provisionally name *H. longidentatum*, was of somewhat smaller size, with the bones of the skull thinner and more slender, and the teeth very long and sharply pointed, with the apex finely striate, but with no corrugation of the dentine. The vomer is covered with minute teeth, and there are long and slender anterior teeth, resembling canines. The best
preserved mandible shows eighteen teeth, which are strongly inclined backward. The scales are very narrow, and there is a large thoracic plate. The general form of body may have been as in the last species, but the skull was probably narrower and the feet longer.

Another species of this genus, or belonging to a genus intermediate between it and Hylonomus, is represented by a confused mass of bones showing long and narrow jaws, armed with short and blunt teeth, of which at least thirty occur on each side of the lower jaws. The sculpture of the bones is as in the previous species, but the pulp cavities of the teeth are smaller and their walls stronger, and they show no sculpture on the apex; in which respects they resemble those of Hylonomus. The vertebrae also are more elongated, and the femur is a large bone indicating a powerful hind limb. The abdominal scutes are very long and narrow, resembling slender semicylindrical rods, a point in which this species differs from all the others found with it, although it resembles some of those found in Ireland and Ohio. This species I would name provisionally, in allusion to the form of its teeth, Hylerpcton curtidentatum.

In all these species of Hylerpcton the teeth are simple, and are ankylosed to the bone and placed in linear series in a shallow groove.

The remains of this genus will afford additional facts as to the differences in individuals of various ages, and as to the details of the skeleton in the species D. Owenii, previously known by only one imperfect example. The specimen now found would seem to show that it resembled very much the larger species, except in the form of the teeth and scales. But the most interesting facts presented by a cursory examination of the specimens relate to the skin and its appendages. It is now evident that in addition to the abdominal and gular scales, Dendrerpeton possessed thoracic plates of considerable size, resembling those of other labyrinthodonts. The large mass of skin found in the tree of 1876, taken in connection with the smaller portions found on previous occasions, and described in detail in my "Air-breathers of the Coal-period," enables us to form a very good general idea of the appearance and clothing of the animals of this genus. To the naked eye the skin presents a shining and strongly rugose surface, reminding one of that of modern newts when contracted by immersion in alcohol, though on a coarser scale. Under the lens, the surface appears granular, and with a higher power the granulation is seen to result from minute scales embedded in the cuticle, and much smaller
than those, in previous finds, which I have referred to *D. Oweni* and to *Hylonomus*. On some portions of it there are delicate transverse lines about a quarter of an inch apart, and apparently corresponding to those which on the newts and Menobranchus mark the bands of subcutaneous muscles. The bony scales of the abdomen have disappeared, except a few scattered in the matrix. But the most remarkable dermal appendages are those triangular lappets or frills of which I have in previous papers described detached examples, and have compared them with the gular and cervical lappets and frills of iguanas, geckos, and Draco; and which also suggest analogies with the processes that support the gills in perennibranchiate batrachians, and with the lateral folds of the skin in Menopoma. These appendages are flat and of appreciable thickness, about half an inch in length, and an eighth of an inch in breadth, terminating in an edge or obtuse flat point, which seems to have been horny, while the appendage itself must have been flexible. They are marked with small scaly oval areoles or projections, placed somewhat in rows, and each with a minute puncture in its centre. The markings on both sides are similar. These appendages are arranged in series along what appears to be the skin of a fore leg, and also in groups apparently on the anterior part of the body, perhaps the neck or shoulder. They appear to be closely connected with a series of much smaller angular points which extend along the edge of the skin near the supposed leg, and probably fringe the sides of the abdomen. The evidence that this integument belongs to *Dendrerpeton Acadianum* is derived from the presence in its anterior part of skull-bones having the markings of that of this species, and from the occurrence of a jaw and other bones in the neighbouring matrix. The specimen to which the skin belonged may have been about a foot in length. Taking it in connection with what is known of the skeleton, we can reproduce the external appearance of the animal. It was lizard-like in form, with a somewhat flat and broad head, and strong teeth with folded dentine. Its back was covered with a shining skin filled with microscopic horny scales. Its sides were marked with vertical bands separated by delicate indented lines. Anteriorly it was ornamented with numerous cutaneous lappets or pendants. The sides were bordered with a row of sharp horny points, and the throat, thorax, and abdomen were protected by bony scales and plates, the scales of the throat being narrow and small, and arranged in a chevron pattern.

Dendrerpeton Oweni probably had the scales of the back and the horny appendages larger in proportion, that is, if I have rightly referred to that species some similar remains to those above men-
tioned, found in 1859. *Hylonomus Lyelli* had a far more ornate set of cutaneous appendages, as evidenced by remains of skin found associated with its bones, also in 1859.* The tree of 1876 contains no cuticular remains referable to this species.

The bones of this genus are all, I think, referable to *H. Lyelli*, and to specimens about the size of those previously found. They throw little additional light on its character, except to indicate that it was probably very abundant, and to render it probable that the specimens formerly described were adult. Two of the skulls in the tree of 1876 are better preserved than those previously known, and confirm the statement already made as to the smoothness of the bones and the greater cranial elevation as compared with other batrachians of the Carboniferous period. This is indicated, among other things, by the skulls lying upon one side, which is not found to be the case with the other species.

In the admirable Report by Cope on the Batrachians of the Coal formation of Ohio,† he places *Hylonomus* in the same family, *Tuditanida*, with *Dendrerpeton*. This I think does not express its true affinities. The more elongate and narrow skull, with smooth bones, the differently formed vertebrae, the teeth with non-plicated dentine, the different microscopic structure of the bone, the more ornate dermal appendages, all separate these animals from the labyrinthodonts, and entitle them, as I have formerly held, to a distinct position as an order or sub-order, for which I proposed in 1863 the name *Microsauria*. I observe that in the Report on the Labyrinthodonts, prepared by Mr Miall for the British Association in 1873, and in the Tabular View appended to it in 1874, while the group *Microsauria* is retained, *Dendrerpeton* is placed in it, as well as *Hylerpeton* and *Hylonomus*. This I think is an error, in so far as the first genus is concerned. I may add my continued conviction that *Hylonomus* and its allies present many points of approach to the lacertian reptiles, which I hope in future to be able to work out more in detail.

Several masses of coprolite, filled with small broken bones, were obtained in breaking up the material surrounding the skeletons. I presume these bones belong to one or other of the smaller species of *Hylonomus*; but I have not yet found any of them to be sufficiently

† Palaeontology of Ohio, vol. ii.
characteristic to warrant any confident statement on the subject. These coprolites must have been produced by *Dendrerpeton* or *Hylerpeton*, most probably the former.

In the summer of 1877 Mr Hill kindly extracted for me three other trees which had appeared in the reptiliferous bed, but they proved barren of reptilian remains, though affording some curious fossil plants. A fourth, which presented great difficulties in its extraction, being 2½ feet in diameter, and embedded in sandstone to the height of 8 feet, was taken out for me in the same summer. It afforded only one skeleton of *Dendrerpeton* and detached bones of *Hylerpeton*, but was interesting as showing on one layer the trails and tracks left by a reptile dragging itself around the sides of the hollow tree in its efforts to escape. The details of all these discoveries I hope to give to the public so soon as I can take time to study fully the bones and teeth obtained.

I think it quite possible that further examination may enlarge the number of species above mentioned. I have been guided mainly in the reference of the specimens to species by the structure of the teeth and the cranial bones; but some of these may yield new points of difference on further study. As all the specimens are preserved under the same conditions, there is less liability here than in most cases to multiply species unduly, in consequence of different states of preservation.

The fact that Cope has been able to catalogue, in his recent Report,* 39 genera of Carboniferous batrachians, including about 100 species, and that these present so wide a range of size, structure, and general conformation, affords a very remarkable illustration of that simultaneous occurrence of many forms of one type, which appears in so many other groups of fossil animals; and is particularly striking in this first known group of air-breathing vertebrates, which since 1843 have swarmed upon us from the Coal-fields of both continents, and of which we probably know as yet but a small fraction of the species. It remains to be seen whether the Devonian, so rich in its land flora, and which has already afforded remains of insects, may not disclose some precursors of the Carboniferous batrachians.

Since the publication of the second edition, some very interesting discoveries of footprints of Carboniferous reptiles have occurred. The most important of these is that originally made by Mr Albert J. Hill, C.E., at Fillmore's quarry, near River Philip. At this place certain beds of brownish red sandstone hold numerous footprints of a large batrachian, now in the collection of the Geological Survey of

Paleontology of Ohio, vol. ii.
Canada, and which has been described by Mr Selwyn and myself. The dimensions of the footprints are—

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hind foot, breadth</td>
<td>2.71 inches</td>
<td></td>
</tr>
<tr>
<td>" length</td>
<td>4.24 "</td>
<td></td>
</tr>
<tr>
<td>Fore foot, breadth</td>
<td>2.63 "</td>
<td></td>
</tr>
<tr>
<td>" length</td>
<td>2.77 "</td>
<td></td>
</tr>
<tr>
<td>Length of stride</td>
<td>11.53 "</td>
<td></td>
</tr>
<tr>
<td>Average distance between the rows of footprints made by right and left feet</td>
<td>5.48 "</td>
<td></td>
</tr>
</tbody>
</table>

These measurements correspond very nearly with those of my Sauropsis Sydneensis.†

The hind foot, it will be observed, is considerably longer than the fore foot, and has a sort of plangrade appearance; and there are some indications which show that the legs must have been strong and thick.

The hind foot shows four well-developed toes, the three outer stronger than the remaining one. There was also a fifth toe, which must have been placed at a higher level than the others, on the outside of the foot. It bore a long claw, which was plunged into the mud at each step, and when the foot was raised made a curved trace on the surface. It probably corresponded to the thumb-like fifth toe of labyrinthodon, and to the detached outer toe of the foot-prints figured by Sir C. Lyell. The fore foot is as broad as the hind foot, but much shorter, and shows four strongly-marked toes, with more obscure impressions of a fifth.

All the toes of both feet are broad in front, and seem to have had claws, but not of great length, except in the case of the detached toe of the hind foot above referred to. There is no indication of a membrane connecting the toes.

The prints of the hind and fore feet of each side are in a line, and the distance between the right and left lines, say 5½ inches, indicates a body broad in comparison with the length of the legs.

The impression of the hind foot is either a little way behind that of the fore foot, or the impressions are equidistant, indicating a walking gait varying somewhat in the length of the stride.

There are no indications of a tail, and in general the body was carried clear of the ground; but in one place it has been dragged along the surface, leaving longitudinal furrows, probably indicating that the abdomen was clothed with bony scales, as was generally the case.

in the labyrinthodonts of the Carboniferous. On another slab there
seems to have been a soft place where the legs of the animal have
 sunk deeply into the mud; and it would appear to have been mired,
 extricating itself with some difficulty, and leaving deep marks of the
 body and legs.

 These footprints must have been made on a subaerial surface, prob-
 ably left dry by the recession of the tide, and rain must have fallen
 shortly before the animal passed over it, as indicated by the pitted
 appearance of the slabs. The trunk of the creature may have been
 3 feet in length. Its tail, if it had such an appendage, must have
 been short, or carried in the air without touching the ground. Its
 legs were strong, and bore the body well above the surface when
 walking. The only known Carboniferous batrachian of Nova Scotia
 which could have made these impressions is Baphetes planiceps,
 Owen, discovered by the author in the Coal-field of Pictou. Eosaurus
 Acadianis of Marsh, from the Joggins, was a creature of sufficient
 size, but probably of different structure, and more exclusively aquatic
 habits.

 The principal distinctive character of the present specimens is the
 peculiar appendage on the hind foot, and from this we may give the
 provisional name Sauropus ungulifer to these footprints, until the
 animal which produced them shall be known to us by its bones.

 It is interesting that in three localities in Nova Scotia, and two in
 Pennsylvania, footprints of this general type and of the same size
 have been found, indicating the wide diffusion and abundance of these
 large batrachians in the Carboniferous period in North America, and
 also that they were animals comparable in size and development of
 limb with some of their successors in the Mesozoic period.

 One of the slabs in the rooms of the Survey shows a number of less
 distinct footprints of an animal which may have been two-thirds of
 the size of that above described, though possibly of the same species.
 In the Provincial Museum of Halifax there is a slab with a series of
 footprints similar to these. Dr Honeyman has also placed in the
 same Museum a series of footprints, of the Dendrerpeton type, from
 Great Village River.

 On another slab, and associated with the larger footprints, are some
 small trifid impressions which seem to indicate the presence of a still
 smaller animal, with feet of different form from those of the others.
 These small trifid footprints are not dissimilar from those found by
 Sir W. E. Logan, at Horton, in 1841, and which were the first
 indications of reptilian life discovered in the Carboniferous. They
 are also allied to those subsequently discovered by Dr Harding at
In another slab there are a number of the animal have been mired, and deep marks of the animal's foot are visible on the surface. The material of the great beds of bituminous coal is composed of the spore-cases of lycopodiaceous plants—a statement quite contrary to that resulting from my microscopical examinations of the coal of more than eighty Coal-beds in Nova Scotia and Cape Breton, as stated in Acadian Geology (page 463), and more fully in my memoir of 1858 on the Structures in Coal, and that of 1866 on the Conditions of Accumulation of Coal.

The reason of this mistake is that an eminent English naturalist, having found in certain specimens of English coal a great quantity of remains of spores and spore-cases, though even in his specimens they constitute only a small portion of the mass, and being apparently unacquainted with what others had done in this field, wrote a popular article for the Contemporary Review, in which he extended an isolated and exceptional fact to all coals, and placed this supposed origin of coal in a light so brilliant and attractive that he has been followed by many recent writers.

The fact is, as stated in Acadian Geology, that trunks of Sigillaria and similar trees constitute a great part of the denser portion of the coal, and that the cortical tissues of these rather than the wood remain as coal. But cortical or epidermal tissues in general, whether those of spore-cases or other parts of plants, are those which from their resistance to water-soakage and to decay, and from their highly carbonaceous character, are best suited to the production of coal. In point of fact, spore-cases, though often abundantly present, constitute only an infinitesimal part of the matter of the great Coal-beds. In an article in Silliman's Journal, which appeared shortly after that above referred to, I endeavoured to correct this error, though apparently without effect in so far as the majority of British geological writers are concerned. From this article I may quote the following passages, as it is of importance in theoretical geology that such mistakes, involving as they do the whole theory of coal accumulation, should not continue to pass current.

THE CARBONIFEROUS.

Parsboro', and by myself at the Joggins, and referred to in Acadian Geology. These smaller footprints, showing marks of three toes, and in more distinct impressions of four or five, I have conjectured may have been produced by Labyrinthodonts of the type of *Dendrerpeton.*

Origin of Coal.

The readers of recent English popular works on geology will have observed the statement reiterated, that a large proportion of the material of the great beds of bituminous coal is composed of the spore-cases of lycopodiaceous plants—a statement quite contrary to that resulting from my microscopical examinations of the coal of more than eighty Coal-beds in Nova Scotia and Cape Breton, as stated in Acadian Geology (page 463), and more fully in my memoir of 1858 on the Structures in Coal, and that of 1866 on the Conditions of Accumulation of Coal.

The reason of this mistake is that an eminent English naturalist, having found in certain specimens of English coal a great quantity of remains of spores and spore-cases, though even in his specimens they constitute only a small portion of the mass, and being apparently unacquainted with what others had done in this field, wrote a popular article for the Contemporary Review, in which he extended an isolated and exceptional fact to all coals, and placed this supposed origin of coal in a light so brilliant and attractive that he has been followed by many recent writers.

The fact is, as stated in Acadian Geology, that trunks of Sigillaria and similar trees constitute a great part of the denser portion of the coal, and that the cortical tissues of these rather than the wood remain as coal. But cortical or epidermal tissues in general, whether those of spore-cases or other parts of plants, are those which from their resistance to water-soakage and to decay, and from their highly carbonaceous character, are best suited to the production of coal. In point of fact, spore-cases, though often abundantly present, constitute only an infinitesimal part of the matter of the great Coal-beds. In an article in Silliman's Journal, which appeared shortly after that above referred to, I endeavoured to correct this error, though apparently without effect in so far as the majority of British geological writers are concerned. From this article I may quote the following passages, as it is of importance in theoretical geology that such mistakes, involving as they do the whole theory of coal accumulation, should not continue to pass current. The early part of the paper is occupied

with facts as to the occurrence of spores and spore-cases as partial ingredients in coal. Its conclusions are as follows:—

"It is not improbable that sporangites, or bodies resembling them, may be found in most coals; but the facts above stated indicate that their occurrence is accidental rather than essential to coal accumulation, and that they are more likely to have been abundant in shales andannel coals, deposited in ponds or in shallow waters in the vicinity of lycopodiaceous forests, than in the swampy or peaty deposits which constitute the ordinary coals. It is to be observed, however, that the conspicuous appearance which these bodies and also the strips and fragments of epidermal tissue, which resemble them in texture, present in slices of coal, may incline an observer, not having large experience in the examination of coals, to overrate their importance; and this I think has been done by most microscopists, especially those who have confined their attention to slices prepared by the lapidary. One must also bear in mind the danger arising from mistaking concretionary accumulations of bituminous matter for sporangia. In sections of the bituminous shales accompanying the Devonian coal above mentioned, there are many rounded yellow spots, which on examination prove to be the spaces in the epidermis of *Psilophyton* through which the vessels passing to the leaves were emitted. To these considerations I would add the following, condensed from my paper above referred to, in which the whole question of the origin of coal is fully discussed:*

"(1.) The mineral charcoal or 'mother coal' is obviously woody tissue and fibres of bark, the structure of the varieties of which, and the plants to which it probably belongs, I have discussed in the paper above mentioned.

"(2.) The coarser layers of coal show under the microscope a confused mass of fragments of vegetable matter belonging to various descriptions of plants, and including, but not usually largely, sporangites.

"(3.) The more brilliant layers of the coal are seen, when separated by thin laminae of clay, to have on their surfaces the markings of *Sigillaria* and other trees, of which they evidently represent flattened specimens, or rather the bark of such specimens. Under the microscope, when their structures are preserved, these layers show cortical tissues more abundantly than any others.

"(4.) Some thin layers of coal consist mainly of flattened layers of leaves of *Cordaites* or *Psilophyllum*.

"(5.) The *Stigmaria* underlayes and the stumps of *Sigillaria* in the

* See also Acadian Geology, 2d edit., pp. 138, 461, 493.
...coals equally testify to the accumulation of coal by the growth of successive forests, more especially of Sigillaria. There is, on the other hand, no necessary connection of sporangite beds with Stigmarian soils. Such beds are more likely to be accumulated in water, and consequently to constitute bituminous shales and cannel.

(6.) Lepidodendron and its allies, to which the spore-cases in question appear to belong, are evidently much less important to coal accumulation than Sigillaria, which cannot be affirmed to have produced spore-cases similar to those in question, even though the observation of Goldenberg as to their fruit can be relied on; the accuracy of which, however, I am inclined to doubt.

On the whole, then, while giving due credit to Prof. Huxley and those who have preceded him in this matter, for directing attention to this curious and no doubt important constituent of mineral fuel, and admitting that I may possibly have given too little attention to it, I must maintain that Sporangite beds are exceptional among coals, and that cortical and woody matters are the most abundant ingredients in all the ordinary kinds; and to this I cannot think that the coals of England constitute an exception.

It is to be observed, in conclusion, that the spore-cases of plants, in their indestructibility and richly carbonaceous character, only partake of qualities common to most suberous and epidermal matters, as I have explained in the publications already referred to. Such epidermal and cortical substances are extremely rich in carbon and hydrogen, in this resembling bituminous coal. They are also very little liable to decay, and they resist more than other vegetable matters aqueous infiltration,—properties which have caused them to remain unchanged, and to resist the penetration of mineral substances more than other vegetable tissues. These qualities are well seen in the bark of our American white birch. It is no wonder that materials of this kind should constitute considerable portions of such vegetable accumulations as the beds of coal, and that when present in large proportion they should afford richly bituminous beds. All this agrees with the fact, apparent on examination of the common coal, that the greater number of its purest layers consist of the flattened bark of Sigillaria and similar trees, just as any single flattened trunk embedded in shale becomes a layer of pure coal. It also agrees with the fact that other layers of coal, and also the cannel and earthy bituminous appear, under the microscope, to consist of finely comminuted particles, principally of epidermal tissues, not only from the fruits and spore-cases of plants, but also from their leaves and stems. These considerations impress us, just as much as the abundance of spore-cases,...
with the immense amount of the vegetable matter which has perished during the accumulation of coal, in comparison with that which has been preserved.

"I am indebted to Dr T. Sterry Hunt for the following very valuable information, which at once places in a clear and precise light the chemical relations of epidermal tissue and spores with coal. Dr Hunt says—\[The outer bark of the cork tree, and the cuticle of many if not all other plants, consists of a highly carbonaceous matter, to which the name of suberin has been given. The spores of Lycopodium also approach to this substance in composition, as will be seen by the following, one of two analyses by Duconi, along with which I give the theoretical composition of pure cellulose or woody fibre, according to Payen and Mitscherlich, and an analysis of the suberin of cork, from Quercus Suber, from which the ash and 2.5 per cent. of cellulose have been deducted.\]

<table>
<thead>
<tr>
<th></th>
<th>Cellulose</th>
<th>Cork</th>
<th>Lycopodium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>65.73</td>
<td>64.80</td>
<td>64.78</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>8.33</td>
<td>8.73</td>
<td>8.73</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>1.50</td>
<td>6.18</td>
<td></td>
</tr>
<tr>
<td>Oxygen</td>
<td>24.44</td>
<td></td>
<td>20.29</td>
</tr>
<tr>
<td></td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>

"This difference is not less striking when we reduce the above centesimal analyses to correspond with the formula of cellulose, C_{24} H_{20} O_{20}, and represent cork and Lycopodium as containing 24 equivalents of carbon. For comparison I give the composition of specimens of peat, brown coal, lignite, and bituminous coal.\]

<table>
<thead>
<tr>
<th></th>
<th>Cellulose</th>
<th>Cork</th>
<th>Lycopodium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cellulose</td>
<td>C_{24}H_{20}O_{20}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cork</td>
<td>C_{24}H_{18}O_{15}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lycopodium</td>
<td>C_{24}H_{19}O_{15}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peat (Vaux)</td>
<td>C_{24}H_{17}O_{15}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brown Coal (Schröther)</td>
<td>C_{24}H_{17}O_{15}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lignite (Vaux)</td>
<td>C_{24}H_{17}O_{15}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bituminous Coal (Regnault)</td>
<td>C_{24}H_{17}O_{15}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

"It will be seen from this comparison that, in ultimate composition, cork and Lycopodium are nearer to lignite than to woody fibre; and may be converted into coal with far less loss of carbon and hydrogen than the latter. They in fact approach closer in composition to resins and fats than to wood, and, moreover, like those substances repel water, with which they are not easily moistened, and

which has perished with that which has not. Following very valuably and precisely light the trees with coal. Dr. Huxley in the cuticle of many coniferous matter, to spores of Lycopodium will be seen by the mode with which I give the study fibre, according the suberin of cork, per cent. of cellulose of Lycopodium.

<table>
<thead>
<tr>
<th>Lyco</th>
<th>64.80</th>
</tr>
</thead>
<tbody>
<tr>
<td>873</td>
<td>6.18</td>
</tr>
<tr>
<td>20.29</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>100.00</td>
</tr>
</tbody>
</table>

we reduce the above formula of cellulose, or as containing 24 be the composition of bituminous coal.

\[21 \text{H}_20 \text{O}_20 \]
\[24 \text{H}_{18} \text{N}_0 \text{O}_15 \]
\[24 \text{H}_{20} \text{N}_0 \text{O}_15 \]
\[21 \text{H}_{11} \text{N}_0 \text{O}_10 \]
\[21 \text{H}_{11} \text{N}_0 \text{O}_10 \]
\[24 \text{H}_{11} \text{N}_0 \text{O}_10 \]
\[24 \text{H}_{10} \text{O}_35 \]

in ultimate composititude than to woody less loss of carbon and which closer in compositi-over, like those sub- easily moistened, and clin, Handbook, xv. 145.

thus are able to resist those atmospheric influences which effect the decay of woody tissue.

"I would add to this only one further consideration. The nitrogen present in the Lycopodium spores, no doubt, belongs to the protoplasm contained in them, a substance which would soon perish by decay; and subtracting this, the cell-walls of the spores and the walls of the spore cases would be most suitable material for the production of bituminous coal. But this suitableness they share with the epidermal tissue of the scales of strobiles, and of the stems and leaves of ferns and lycopods, and above all, with the thick corky envelope of the stems of Sigillaria and similar trees, which, as I have elsewhere shown,* from its condition in the prostrate and erect trunks contained in the beds associated with coal, must have been highly carbonaceous and extremely enduring and impermeable to water. In short, if instead of 'spore-cases,' we read 'epidermal tissues in general, including spore-cases,' all that Huxley has affirmed will be strictly and literally true, and in accordance with the chemical composition, microscopical characters, and mode of occurrence of coal. It will also be in accordance with the following statement, from my paper on the Structures in Coal, published in 1859;—

"A single trunk of Sigillaria in an erect forest presents an epitome of a coal-seam. Its roots represent the Stigmaria underlay; its bark the compact coal; its woody axis the mineral charcoal; its fallen leaves (and fruits), with remains of herbaceous plants growing in its shade, mixed with a little earthy matter, the layers of coarse coal. The condition of the durable outer bark of erect trees concurs with the chemical theory of coal, in showing the especial suitableness of this kind of tissue for the production of the purer compact coals. It is also probable that the comparative impermeability of the bark to mineral infiltration is of importance in this respect, enabling this material to remain unaffected by causes which have filled those layers, consisting of herbaceous materials and decayed wood, with pyrites and other mineral substances.""

8. THE DEVONIAN.

On the distribution and arrangement of the rocks of this period I have nothing material to add to what I have already stated in referring to the Geological Map. Though the Devonian does not occupy a very wide area in the Acadian Provinces, yet, in connection with the neighbouring areas in the province of Quebec, it is of great in-

terest, as showing perhaps more of the land life of the period, and more especially of its flora, than the Devonian of any other part of the world. In connexion with this, it is to be observed that the vast development of this formation in the great Lake Erie district shows mainly its marine conditions. Yet it is satisfactory to know that Professor Hall finds erect trunks of tree-ferns and abundance of remains of fern fronds and Psilophyton in the Chemung sandstones of New York, and that in the marine limestones of Ohio Dr Newberry has discovered trunks of conifers and beautifully preserved stems of tree-ferns. The vague notions which many European geologists still entertain as to the importance and extent of the Devonian period would be at once corrected could they study the American developments of it.

The following table will show the nature and distribution of the formations referred to:

Devonian, or Erian of America.

<table>
<thead>
<tr>
<th>Subdivisions</th>
<th>New York and Western Canada</th>
<th>Gaspé</th>
<th>Southern New Brunswick and Nova Scotia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Devonian or Erian.</td>
<td>Chemung Group.</td>
<td>Upper Sandstones. Long Cove, etc.</td>
<td>Miopec Group. Shale, Sandstone, and Conglomerate. Sandstones near Middle R., Pictou</td>
</tr>
<tr>
<td>Middle Devonian or Erian.</td>
<td>Hamilton Group.</td>
<td>Middle Sandstones. Bois Brûlé, Cape Otsego, etc.</td>
<td>Little R. Group (including Cordale shales and Dadoxylon Sandstone).</td>
</tr>
<tr>
<td>Lower Devonian or Erian.</td>
<td>Corniferous and Oriskany groups.*</td>
<td>Lower Sandstones. Gaspé Basin, Little Gaspé, etc.</td>
<td>Lower Conglomerates, etc. Nictaux and Bear River Series (Oriskany).</td>
</tr>
</tbody>
</table>

These rocks in the Acadian Provinces overlie the fossiliferous beds of the Lower Heelderberg or Ludlow group, and underlie the Lower Carboniferous, to the peculiar flora of which I have already referred. From these beds, thus limited, I have described or catalogued 125 species of fossil plants,* of which the greater part are specifically, and some generically, distinct from those of the Lower Carboniferous. A very considerable proportion of these plants have been derived

* On the evidence of fossils, Hall now regards the Oriskany as Silurian. It is really a group of transition, and in Canada its physical relations are with the Devonian, and it introduces the fauna and flora of that age.

THE DEVONIAN.

71

of the period, and the other part of the period, and that the vast district shows to know that abundance of sandstones of Newberry showed stems of tree botanists still enter- ined period would be a few developments of it. distribution of the

southern New Brunswick and Nova Scotia.

Hispee Group.
Shale, Sandstone, and Conglomerate.
Sandstones near Middle R., Pictou.

Little R. Group (including Cordaite shales and Dasdoxylon Sandstone).

Lower Conglomerates, etc.
Nictaux and Bear River Series (Oriskany).

fossiliferous beds underlie the Lower which are already referred. for catalogued 125 are specifically, and Lower Carboniferous. have been derived as Silurian. It is with the Devonian, Survey of Canada, 1871.

from the rich plant-bearing beds near St John, New Brunswick, so admirably explored by Messrs Hartt and Matthew. It is proper, however, to explain that, in Acadian Geology, I have restricted myself to these species, not noticing, except incidentally, those from the Devonian of Gaspé, New York, etc. It is also to be observed that several of the species mentioned in that work are much more fully

Fig. 12.—Psilophyton princeps.—Restored.

a, Fruit, natural size; b, Stem, natural size; c, Scalariform tissue of the axis, highly magnified. In the restoration, one side is represented in vernation, and the other in fruit.

illustrated and described in the Report above referred to. More especially is this the case with the remarkable genus Psilophyton, the fructi- fication of which was not distinctly known when my last edition was published, but will be found fully described and figured in the

a, Fruit, natural size; b, Stem, natural size; c, Scalariform tissue of the axis, highly magnified. In the restoration, one side is represented in vernation, and the other in fruit.
Report. The restoration given in Fig. 12 will better show the precise character of this curious plant, which, while allied to the club-mosses in structure and habit, has remarkable peculiarities in its fructification. In the case of *P. elegans*, in which* the fructification is said to consist of "oval scales," these should be understood as flattened spore-cases, not scales. *Cyclopteris Jacksoni* would also now be placed in my new genus *Archeopteris*; and, as previously stated under the head of Carboniferous, a higher place in the vegetable kingdom might now be assigned to the genus *Cordaites* on the evidence furnished by M. Grand 'Eury.

The disposition which prevails among European palaeobotanists to refer our Devonian flora to the Lower Carboniferous, proceeds, as already pointed out, in part from their imperfect acquaintance with the development of this system of formations in America, and also from the superior richness, so far, of our flora. But there is not improbably another reason. Just as the modern genera of plants seem to have appeared in full force in America in the Cretaceous, while in Europe they scarcely attain a similar development till the Miocene Tertiary, we may have had an earlier introduction of the Palaeozoic flora. This is, I think, now rendered probable by the later publications of Stur and Heer. In any case, however, our Devonian flora is markedly distinct from that of the Lower Carboniferous, as may be seen by reference to the Reports on those floras already referred to.

9. THE UPPER SILURIAN.

In the Acadian Provinces, as in some other parts of Eastern America, the great igneous outbursts, evidenced by the masses and dykes of granite which cut the Lower Devonian rocks, make a strong line of distinction between the later and older Palaeozoic. While the Carboniferous series is unaltered, except very locally, and comparatively little disturbed, and confined to the lower levels, the Upper Silurian, and all older series, have been folded and disturbed and profoundly altered, and constitute the hilly and broken parts of the country. Further, in the Upper Silurian and the older periods, there seems to have been a constant mixture with the aqueous sediments in process of deposition of both acidic and basic volcanic matter, in the form of ashes and fragments, as well as probably outflows of trachyte and dioritic rock, so that all these older formations are characterized by the presence of felsite, and porphyry, and petro-siliceous breccia, and of diorite. Further, since these volcanic and

Ac. Geol., 543.
tufaceous rocks, owing to their composition, are much more liable to be rendered crystalline by metamorphism than the ordinary aequous sediments from which the bases have been leached out by water, and since they are usually not fossiliferous, the appearance is presented of crystalline non-fossiliferous rocks alternating with others holding abundant organic remains, and comparatively unaltered. The volcanic members of these series are also often very irregular in distribution, and there is little to distinguish them from each other, even when their ages may be very different. These circumstances oppose many difficulties to the classification of all the pre-Devonian rocks of Nova Scotia and New Brunswick, difficulties as yet very imperfectly overcome. My own attempts to unravel these intricacies have as yet been only partially satisfactory to myself, and I have seen quite as little reason to be satisfied with many of the arrangements which have been suggested by others. We shall, however, endeavour to ascertain what new facts are available, and to what extent they contradict or modify the views given in the text of Acadian Geology.

Messrs Bailey and Matthew have devoted much time and labour to the rocks which crop out from under the Upper Devonian beds at Perry in Maine, and extend thence eastward into New Brunswick, where they have been named the "Mascarene series." I studied these beds in 1862, as they occur at Pigeon Hill and elsewhere near Eastport, and referred them to the Upper Silurian period, but the tracing of their extension in New Brunswick, and the full establishment of their age, belongs to the gentlemen above named.†

These rocks are extensively developed in the south-western part of New Brunswick, and their thickness has been estimated at 2000 feet. The following section, in ascending order, taken from the Report of the Geological Survey for 1875-6, shows the general structure of the formation in Queen's County.

Division 1. Gray clay slates, mostly of pale colour and generally somewhat calcareous. Darker-gray clay slates, some of which are calcareous, about 400 feet.

Division 2. Black and dark-gray argillaceous or silicious clay slates, with very regular sedimentary bands, about 600 "

Division 3. Dark-gray and greenish-gray earthly sandstones, the lower part compact, the upper

* Paper on Precarboniferous Flora.
† Reports, Geol. Survey, 1875-6.
part more slaty, greenish-gray, calcareous, or black and fissile, about 600 feet

Division 4. Ash-gray and greenish-gray schistose beds, generally chloritic and calcareous, sometimes amygdaloidal and dioritic, about 300 "

Division 5. Alternations of gray and dark-gray felsites (often porphyritic), with compact dark-gray feldspathic rock, clouded with green and purple, and with beds of dark and pale-green chloritic schist. There is a mass of felsite about 150 feet thick near the base, and a breccia conglomerate at the summit, about 800 feet or more.

These rocks, with the same general structure, are widely distributed in Southern New Brunswick, but, as might be expected, they vary in detail, more especially in the upper members. They also present a general resemblance to the belt of Upper Silurian rocks already referred to as extending towards Bathurst, and rocks of this type are known to occur in the Upper Silurian districts of Nova Scotia.

The fossils found in the lower members of this series near Eastport are a Lingula allied to L. centrilineata of the Lower Helderberg, and also very near to some Hamilton species, and to that found in the Lower Devonian of Gaspé, though probably different from that occurring in the Upper Silurian of Wentworth, Pictou, and Arisaig. There are also species of Modiomerpha, and a species of Loxomena, with a small Beyrichia of Upper Silurian type. Elsewhere in New Brunswick these beds have afforded species of Strophomena, Orthis, Rhyynchonella, Pterinea, and corals of Upper Silurian genera. There can thus be no doubt as to their general age, though we have not sufficient evidence to assign them to any particular horizon in the series of Upper Silurian beds known in Nova Scotia.

The Kingston group, referred in Acadian Geology to the Upper Silurian, is now regarded as in great part of older date, though fossils apparently Upper Silurian have been found in some of its beds. From the sections given by Bailey and Matthew, and the specimens I have seen, it is apparent that its rocks somewhat resemble in mineral character those of the Masearen series. They, however, also closely resemble the series of beds which, in the Cobequid Mountains and East River of Pictou, is seen to emerge from beneath the Upper Silurian series, and which is probably
careceous, or about 600 feet, these beds, sometimes about 300 "

The beds in the Upper Silurian, and to which I shall in the sequel give the name of the Cobequid series, already applied to it in the Table of Formations in Acadian Geology.*

The cuttings of the Intercolonal Railway have enabled Dr Honeyman to recognise at Wentworth, on the north side of the Cobequids, the extension westward of the Upper Silurian rocks mentioned in Acadian Geology, and also in an earlier memoir on the Metamorphic rocks of Eastern Nova Scotia,† as flanking the crystalline rocks of these hills in New Amman and Earlton. Dr Honeyman was disposed to regard these beds at Wentworth as possibly as old as the Cincinnati group of the Lower Silurian; but the fossils which I have collected seem to me to indicate that they are probably of the age of the Lower Arisaig series,‡ or about that of the Clinton of New York. They also much resemble in mineral character the Lower Arisaig beds, as well as those of similar age near Cape Gaspe, and on the Matapedia. The more characteristic fossils in my collections are:—

Graptolithus Clintonensis, Hall.
Climacograpsus and Retio-grapsus (2) sp.
Atrypa reticulata, Dalman.
Strophomena rhomboidalis, Wahl.
Lingula oblonga, Hall.
Othec tenuiscula, Hall, or allied.
Orthis elegans, Dalman, or allied.
Rhyncocelis neglecta, Hall, "
Leptocelis intermedia, Hall, "
Tentaculites distance, Hall, "

As usual in the shales of this series, the finer markings of the shells are not well preserved, so that it is not easy to assign them to their species. I think, however, that I cannot be wrong in referring them to the lower part of the Upper Silurian.

At Wentworth the dark shales holding these fossils are traversed by diabase dykes,§ in the vicinity of which the shales have assumed a gray colour, and have been hardened so as in places to resemble felsites. It is probable that the fossiliferous beds may be unformable to the hard slates, felsites, and porphyries underlying them, but the shales must have participated to some extent in the movements to which the older rocks have been exposed.

* Page 20.
‡ I use the term "Lower Arisaig" in the sense attached to it in Acadian Geology, namely, for the lower fossiliferous series at that place, in the main equivalent to the Clinton and Medina groups of New York—Llandovery of England.
§ See Note IV. in Appendix.
Farther eastward, at French River and Waugh’s River, the representatives of the Wentworth series contain coarse limestone and hard sandstone as well as shale, but hold some of the same fossils, and at Earlton loose pieces contain fossils of a somewhat higher horizon equivalent to the Upper Arisaig series.

Passing from the eastern end of the Cobequids across a bay of the Picton Carboniferous area, we find well-characterized Upper Silurian rocks with fossils of the Upper Arisaig (Lower Helderberg) age. These rocks have recently been somewhat carefully examined in connexion with explorations of the great deposits of iron ore associated with them. It would seem that the upper half of the Upper Silurian is here quite as well developed as at Arisaig, and includes the great bed of fossiliferous hematite which is so characteristic of this region (Fig. 13). From below these beds arise thick beds of ferruginous quartzite, and of imperfectly crystalline diorite and slaty and felsitic breccias, which would seem to be lower members of the Upper Silurian, and which are less indurated than the rocks of similar composition referred to the Lower Silurian and older series in the sequel. These latter rocks, which also appear in the vicinity of the East River, are breccia, felsite, quartzite, slates, and hydro-mica schists, which bear a close resemblance to the Cobequid series, and pass to the southward and westward of the newer rocks, no doubt forming in this region the continuation of that formation. In the central parts of the hills, at the head-waters of the East River, these beds are seen, as in the Cobequids, to be invaded by great masses of an intrusive red syenite.

Eastward of the East River the continuation of the Upper Silurian rocks has been traced by Dr Honeyman all the way to Arisaig, where their characteristics are fully described in Acadian Geology; and beyond this as far as Lochaber Lake, where at least the lower members occur.
One of the most interesting fossils recently found in the Upper Silurian of Eastern Nova Scotia, is the complete specimen of *Homalonotus Dawsoni*, Hall, figured here (Fig. 14), and which was found on the East River of Pictou by Mr D. Fraser, who has collected many of the characteristic fossils of this district while exploring its iron deposits.

We have to inquire under the next head as to those regions coloured in the map as Upper Silurian, but which subsequent investigations have relegated with some probability to older periods.

I have said nothing above of the areas of Niagara, Lower Helderberg, and Oriskany in the western counties, because I have not re-visited them since the publication of my edition of 1868, and have no further facts to present. Farther study of the fossils formerly collected has not materially modified the conclusions stated in Acadian Geology, pp. 498, 499, and 571; but much remains to be done in this district.
10. THE LOWER SILURIAN.

In the second edition of Acadian Geology, following, though under protest, the Murchisonian nomenclature, then current both in England and America, and adopted by the Canadian Geological Survey, I included under this head all the fossiliferous rocks older than the Upper Silurian. If, however, we restrict the term Lower Silurian to that geological group of which the great Trenton formation in America and the Bala in England are the main and typical members, and which contains what Barrande has called the “second fauna,” then we have as yet no certainly determined fossiliferous group of this age in Acadia; and there seems little doubt that the great Lower Silurian fossiliferous limestones are absent, as they appear also to be in Newfoundland.* If, therefore, there are any representatives of the Lower Silurian, we have to look for them in those rocks underlying the Upper Silurian series, and which are largely of the nature of volcanic or trap-ash deposits.

In New Brunswick the band of old rocks lying on the north of the crystalline belt extending south-west from Bathurst, and composed of greenish felsites, quartzites, and slates of various kinds, is usually referred to the Lower Silurian. The evidence of this is, first, its appearance from under the Upper Silurian beds in the same manner with the rocks of the Quebec group on the north; and, secondly, the occurrence of a few graptolites, found by Mr Robb, but as yet only in loose stones. Lithologically these rocks may be regarded as corresponding somewhat closely with portions of the Quebec group, and also with the contemporaneous Skiddaw and Borrowdale series in England. According to Messrs Bailey and Matthew, similar rocks occur also in several places in the south-west of New Brunswick, and underlie the Upper Silurian of that region. If this view of their age is correct, then it would follow that the mixed aqueous and volcanic deposits so characteristic of the Huronian recurred in the Lower Silurian, and again in the deposition of the Upper Silurian Micasarenite series. On the evidence of mineral character, as well as of relation to the Upper Silurian series, there seems some reason to suppose that the Kingston group of Messrs Bailey and Matthew, occupying the peninsula between Kennebecasis Bay and the St John River, and extending south-westward to the coast, may also, as stated above, be of this age.

Crossing over to Nova Scotia, we have in the Cabotid Mountains a great series of slates, quartzites, and volcanic rocks, evidently under-

* Murray's Geological Map, 1877.
lower Silurian.

The following, though under current both in England and America, characterised by me in 1850 as consisting of "various slates and quartzites, with syenite, greenstone, compact felspar, claystone, and porphyry," and were named in American Geology the "Cobequid group," and their age defined as intermediate between that of the lower Arisaig of the Atlantic coast. As they had afforded no fossils, and as there seemed to be a lithological and stratigraphical connection between them and the lower part of the Upper Silurian, they were placed with that series as a downward extension, or, in part, metamorphosed members of it.

The arrangement of these rocks in the central part of the Cobequids, and also between the East River of Picton and the east branch of the St Mary's River, may be stated thus. There is a central mass of red intrusive syenite or syenitic granite, usually having a large predominance of red orthoclase, with a moderate quantity of hornblende and quartz. This sends veins into the overlying beds, and is itself penetrated by dykes of diabase. On this central mass rest a great thickness of felsites, porphyries, felsitic agglomerates, and dikes, evidently of volcanic origin. Upon these are gray, black, and redish slates and quartzites, with a bed of limestone, and penetrated by metallic veins. The lower volcanic portions and the upper more strictly aqueous parts might perhaps be separated as a Lower and Upper Cobequid series; but the difference appears to depend rather on mode of deposition than on any great difference of age.

Along the northern side of the Cobequids, and between Picton and Arisaig, these beds are seen immediately underlie the Upper Silurian rocks, which have been disturbed with them, and are penetrated by the same igneous dykes. Mr Honeyman appears to have observed the same relation on the Lochaber Lake and in other parts of Antigonish County. This somewhat constant association would seem to indicate that the rocks in question immediately underlie the Upper Silurian, and are therefore themselves of Lower Silurian age. On the other hand, their similarity in mineral character with the Huronian series of New Brunswick, with rocks observed in Cape Breton to rise from under Cambrian deposits, and with the Huronian rocks of Murray in Newfoundland, might induce us to assign them to an earlier date. There are, however, some differences in mineral character; as, for example, the greater prevalence of olive, black, and micaceous slates, and of highly felspathic rocks in the Cobequid series.
which, while they ally this series with that of Northern New Brunswick and of the Kingston peninsula, separate it from the typical Huronian. I am therefore inclined to believe that it will ultimately be found that there are three barren series of mixed volcanic and aqueous deposits in the Acadian Provinces, separated by fossiliferous deposits, viz.,

(1) The Huronian, over which lie the fossiliferous Cambrian (Acadian) beds; (2) The Cobequid series, over which lie the fossiliferous Middle and Upper Silurian; (3) The Mascarene series, belonging to the Upper Silurian. In some districts, as in Southern New Brunswick and Cape Breton, where these series, or some of them, approach closely to each other, and are much disturbed, it may be difficult to disentangle these deposits; but I believe the distinction will be found to hold good, and will no doubt be facilitated by the discovery of additional fossiliferous beds.

Fig. 15.—General Structure of the Cobequid Range.

In the meantime, I have no doubt of the identity of the greater part of the altered and volcanic beds of the hilly country extending through Pictou and Antigonish counties, and underlying the Upper Silurian, with the Cobequid series. Further, large suites of specimens placed in my hands by Albert J. Hill, Esq., leave no room to doubt the similarity of the greater part of the rocks in the district extending from St. Peter's to Scatari in Cape Breton to the Cobequid deposits; though, as will appear in the sequel, there is reason to believe that older rocks occur both in this district and in Northern Cape Breton.

Mr Selwyn, who has studied these rocks in Southern Cape Breton and in Eastern Nova Scotia, but has not yet published his results, takes, I believe, similar views of their probable age, and compares their lithological character with that of the contemporaneous trap-ash beds and similar volcanic deposits in South Wales. Their resemblance to the Borrowdale and Skiddaw series in England, as described by Ward in his Report on these formations, is also remarkable.
If the above views are correct, it will follow that in the Lower Silurian period the area of Nova Scotia and New Brunswick was the theatre of extensive and long-continued volcanic ejections, producing a series of rocks entirely dissimilar from those deposited at the same period in the interior continental region, though in some respects resembling those of Great Britain and those of the regions in Quebec and the United States lying east of the great Appalachian line of disturbance.

11. THE CAMBRIAN.

Under this head I would now place the interesting "Acadian series" of St John, so well characterized by its fauna, that it may be considered as the typical representative in Eastern America of that Middle or Lower Cambrian formation known in England as the Menevian, and off Barand's étage C of the Primordial in Bohemia. The true horizon of these beds was, of course, perfectly recognised at the time of the publication of my last edition, but they were then, in accordance with prevailing classification, placed as Primordial Silurian. Nothing new can as yet be added to the almost exhaustive examination of their fossils at that time made by Professor Hartt, nor has the area of beds holding these fossils in the Acadian Provinces been considerably extended.* In Newfoundland† and New England, however, beds of this age seem to have a large extension; and in certain conglomerates of the Quebec group on the Lower St Lawrence there are fragments holding the remains of a fauna which has been termed by Billings Lower Potsdam, and must be near to the age of the Acadian group.

The great Atlantic coast series of Nova Scotia, which is the auriferous formation of that province, and includes in ascending order the so-called Quartzite and Clay-slate formations, in which these rocks respectively predominate, I believe to be likewise Cambrian or Primordial, a view which Mr Selwyn and Professor Hind have also advocated. It is, however, noteworthy that in mineral character this very widely extended formation does not precisely resemble the Acadian series of New Brunswick, and it is therefore to be presumed that it represents some other part of that great system of formations.

The evidence of fossils in determining the precise age of these rocks is unfortunately as yet somewhat imperfect. Mr Selwyn has recognised in the Slate formation at Lunenburg linear markings of

* Note VI.
† Murray's Reports and Map.
the nature of those which in Sweden have been named *Eophyton* and have been described as land plants. They are, however, of very doubtful origin, and in my judgment more akin to those trails of aquatic animals which I have named *Rhabdichites*. This conclusion I arrived at after a careful examination of a very complete suite of Swedish specimens in London in 1870. Still, these markings are very characteristic of certain Cambrian beds. They are, for example, abundant on the surfaces of the slates of the Acadian group at St. John. Professor Hind has also discovered in the quartzites of this group certain nodular bodies and markings which Mr. Billing referred with doubt to the genus *Eospangia* and to casts of *Orthotheca*. The latter I have not seen, but Professor Hind has very kindly guided me to a bed near the Waverly Gold Mine, on the surface of which there are great numbers of the former fossils. As appearing on the weathered surface of the rock, they consist of little oval depressions surrounded by a raised ridge from which radiate a number of raised lines sometimes bifurcating. These lines appear to represent radiating plates or lamellae rather than rods. They are of various sizes, from an inch to six or seven inches in diameter, only the larger ones having the rays well developed. They present no structure or evidence of organic matter, except that the centre has a brownish colour, as if from the oxidation of iron, and that in some specimens, differently preserved from the others, the rays also show a rusty colour. The most natural interpretation of these forms would seem to be that they consist of a central axis or central cavity surrounded with vertical radiating plates, sometimes splitting into two toward the circumference. The central axis seems to have been the original structure to which the radiating plates were afterward added. Some specimens seem to indicate that the larger specimen were ultimately broken down into irregular groups of plates and separate plates. The material would seem to have been organic, and probably very perishable. These objects are no doubt those which Billing referred with doubt to his genus *Eospangia*; but they have no structures warranting such a reference, though they might well be compared with the problematical object from the Eophyton sandstone of Sweden described by Linnarson under the name *Astylospong radiata*. To me they appear to be fucoids with radiating fronds, allied form at least to Hall's *Phytopsis* from the Bird's-eye Limestone, or Linnarson's *Scotolithus* from the Eophyton sandstone. Similar objects are abundant on the surfaces of the sandstones of the Quebec group Metis, and they are there associated with a spiral *Arenicolites* alli

THE CAMBIAN.

A. spiralis of Torell, but distinct specifically, and with forms allied to Eophyton. In any case they may be regarded as forms of Cambrian and Lower Silurian type. In the meantime, that we may have some name wherewith to designate them, I would propose to call them Astropolithon,* and the Waverley species, in honour of its discoverer, A. Hindii.

The only other fossils known to me are specimens resembling the tubes or perforations known as Scolithus, and very characteristic of the Potsdam sandstone in Canada. These I found near the mouth of St Mary's River in loose blocks, which must have been derived from a neighbouring ledge of quartzite. In so far as the above fossils give any indication of age, they serve to confirm the supposition that the Gold series of the Atlantic coast is to be referred to the Cambrian period. Within that period its fossils have strong points of alliance with those of the beds known as Fucoidal sandstone and Eophyton sandstone in Sweden, and which underlie the equivalents of our Acadian series. They may, therefore, be regarded as probable equivalents of the Lower Cambrian or Longmynd series of Europe.

Professor Hind has given a good description of the characters and structure of the more important parts of the Gold series in his Reports to the Department of Mines in Nova Scotia.+ He states the entire thickness of the series at 12,000 feet. Of this the Lower or Quartzite and Slate division, which includes in its middle and upper part the productive gold veins, comprises about 9000 feet, and the Upper or Ferruginous Slate division 3000 feet. The whole is thrown into a series of somewhat sharp anticlinalfs, which, as might be expected, are much faulted. The steepest sides of the anticlinals are usually to the north, though in some cases, as at Sherbrooke, to the south. The courses of these anticlinals are approximately east and west. The gold has been found to be most accessible in the sides and near the summits of the anticlinals, while in the synclinals the upper unproductive slates usually appear. It is also to be observed that the productive gold veins are best developed in the vicinity of the great masses of eruptive granite which traverse this formation, and in connection with which it has locally been much metamorphosed.

The gold veins, as stated in Acadian Geology, run for the most part parallel to the bedding, but cross courses and branches traversing

* Star-like stone.
+ Report on Waverley District, 1869; Sherbrooke, 1870; Mount Uniacke, Oldham and Renfrew, 1872.
the beds are very frequent,* and there is no proof that these are less ancient than the conformable veins or "leads." Though occurring in the Quartzite division, the auriferous veins usually follow bands of slaty rock included in the quartzite, a circumstance which much favours their profitable working.

In my Acadian Geology, I associated with the Atlantic coast series the extensive deposits of mica slate and micaeous gneiss found in the peninsula ending in Cape Cano, and also very extensively in the west, more especially in Shelburne County. I also regarded all the true granite of this district as intrusive, and on the evidence of the fossiliferous rocks cut by it on the Nictaux River, as of later date than the Oriskany period. It has, however, lately been customary to regard much of the granite as gneiss, and to speak of this and the associated schistose rocks as Laurentian and Huronian. Aware that many new exposures had been made in recent years by mining and roadmaking, and being desirous to satisfy myself as to whether any change was required, I revisited the district around Sherbrooke and the St Mary's River, and was so fortunate as to find what seems to me conclusive evidence of the correctness of my former views.

Eastward of Sherbrooke, the beds of the Gold series run endwise against the great mass of granite rock extending from near the St Mary's River beyond Indian Harbour, and given in my Acadian Geology as a typical illustration of intrusive granite.† At a place near the Upper Indian Harbour Lake I found the granite and quartzite in contact, the line of junction running about south-east, and the quartzite dipping north-east at an angle of 70°. At the junction the quartzite is slightly changed in character, having apparently minute hornblende and mica crystals developed in it; but the granite sends numerous veins into the quartzite, and in these becomes coarser in texture, and presents beautiful aggregations of plumose mica. This is, I believe, the character of the junction everywhere, except that where the slaty bands approach the granite, they are more altered than the quartzite. (See Frontispiece.)

At Cochrane's Hill, near the forks of the St Mary's River, a new gold mine has been opened on quartz veins said to be richer in visible gold than usual, and included in beds which must belong to the upper part of the Quartzite series. These beds lie, however, in the line of the great intrusive granite belt extending from Cape Cano along the south side of Chedabucto Bay, and they are pene-

* I have observed and sketched examples of this at Uniacke and Sherbrooke.
† Page 619, and plate, p. 613.
that these are less micaceous. Though occurring generally follow bands of substance which much of the Atlantic coast, and micaceous gneiss and also very extensive in some County. I also found an intrusive, and on the Nictaux River, has, however, lately been described as gneiss, and to them as Laurentian and Granite; and being desirous to required, I revisited Mary's River, and was evidence of the.

The series run endwise from near the St. Mary's River, in my Acadian granite. At a place and the granite and about south-east, angle of 70°. At the character, having developed in it; but quartzite, and in these aggregations of quartz, in the granite, (frontispiece.)

Mary's River, a new said to be richer in which must belong to beds lie, however, in extending from Cape and they are pen-

trated by numerous granite veins, which in the vicinity of the mine were seen to vary from six feet to less than an inch in thickness. In these circumstances, the gold-bearing slates and quartzites have experienced a metamorphosis equal to any observed elsewhere in this coastal series. These slates have become perfectly crystalline, Mica-schists, or micaceous gneisses, with crystals of chiastolite and staurolite, have been developed in them, and they are absolutely indistinguishable from the rocks of the Cape Cansue peninsula and of Shelbourne and Barrington, as described in Acadian Geology. This I consider a perfectly conclusive vindication of the views held by me in 1868, and I have reason to believe that it will apply to all other localities. I would not, however, maintain the negative conclusion that nowhere in this district do Laurentian or Huronian rocks penetrate the Gold series; though the only locality where I have seen any rocks which appeared likely to be of this kind, is in the extreme west, in the vicinity of Yarmouth, where certain epidote, felspathic, and chlorite rocks appear, of a very different character from those of other parts of the coast, and which may be Huronian (Ac. Geol., pp. 616, 620). Mr Selwyn has recently examined these rocks more in detail than I have been able to do, and regards them as probably older than the Gold series."

The apparent relation of the granite veins and auriferous quartz at Cochrane's Hill suggests an interesting question with respect to the age of the latter. It would seem that the quartz veins cut or disturb those of granite, and hence are newer. Now, if the intrusive granite is of Upper Silurian or Devonian age, this would limit the age of the gold veins on one side, just as the occurrence of drift gold in the Lower Carboniferous conglomerate of Gay's River limits it on the other. In this case the movements of the Cambrian rocks which opened up the gold veins must have taken place in the Devonian age.† There is, however, some reason to believe that all the gold veins are not precisely of one date, and this conclusion may apply only to the later of them.‡ Perhaps, taking this in connection with the fact already stated, that the gold deposits seem richer in the vicinity of the granite, we may be justified in affirming that the granite intrusions and gold veins are "roughly contemporaneous." This is the conclusion at which I arrived in 1868, and stated in the second edition of Acadian Geology.§

Mr Selwyn has ascertained that the granite and gneissose rocks of

* Report, Geol. Survey, 1870.
† Acadian Geology, p. 631.
‡ Mr Poole mentions to me a case of granite apparently "capping" a quartz vein.
§ See Acad. Geol., pp. 665, 666.
the south coast in Shelburne, are probably continuous inland with those of Annapolis, and thus occupy a much greater area than that represented in my map. *

I am indebted to Henry S. Poole, Esq., Inspector of Mines for Nova Scotia, for some notes on the distribution of granite bands in the Gold series of the eastern coast. He informs me that granite crosses the Post road from Musquodoboit, five miles from the junction of Pictou, Halifax and Guysboro' counties. It also occurs at Liscomb Lakes, south of the west branch of St Mary's River, and in the hills west of Moosecland, between Moosecland and the shore. It appears to extend from Moosecland to the north-eastern corner of Ship Harbour, and also occurs at Sheet Harbour. Mr Poole agrees with me in regarding the granites as intrusive, and mentions the tongues or veins extending into the gneiss, the fragments of slate and quartzite caught up in the granite, and the development of chiaostolite in the vicinity of the granite masses, as corroboration of this.

It may be well to explain here that in designating the granite as igneous and intrusive, I by no means wish to declare myself against those theories of its origin which would regard it as consisting of indigenous rock fused by aqueo-igneous agency in place, or nearly so. I have referred to this question in Acadian Geology, pp. 500, 501, and my views regarding it still remain the same.

I may further remark that, independently of the stratified character of gneiss, Plutonic granite has always, in so far as my experience extends, a different texture, quite manifest to an experienced eye, and dependent, I believe, chiefly on the more regular forms and inferior density of the crystals of felspar in granite as compared with gneiss.

Mr Fletcher, of the Geological Survey, has discovered, in certain beds near St Andrew's Channel, Cape Breton, fossils which probably belong to the Cambrian series, and are apparently newer than the Acadian or Menuevic group. They consist, according to Mr Billings, of an Obotella, Orthina, and Dictyocoma, and a trilobite of Primordial type; and the beds holding the Lingula or Ciolella are very like the Lingula shales of St John. The series is characterized as consisting of a purple, red, and green slate, sandstones and limestones, with beds of felsite. † It thus differs in character from the Acadian group, as developed at St John, and also from the Cambrian of the Atlantic coast of Nova Scotia. It rests on the crystalline rocks of the Boisdale Hills, referred to under next head, which must thus be Lower Cambrian or Huronian.

* Report of 1870.
† Report, Geological Survey, 1875-76.
Mr. Fletcher has still more recently (1877) procured fossils, not yet described, from the vicinity of Miré River, where beds similar to those of St. Andrew's Channel are extensively developed, and which include an *Agnostus* and other trilobites of primordial type, but specifically distinct from those of the Acadian group; and also a small Orthis, apparently allied to *O. Evadne*, Billings, from the Quebec group, or to *O. lenticularis*, Dalman, of the British Upper Lingula flags. These fossils I regard as indicating a position probably Cambrian, but later than that of the Acadian beds of St. John. The beds containing these fossils are associated with the volcanic ash series of Southern Cape Breton, but I have no information as yet with reference to their precise geological relations. It is interesting and instructive thus to find the Upper Cambrian series appearing in Cape Breton. With the Acadian or Menevian, and the probable Longmynd series of the coast of Nova Scotia, it serves to complete the representation of that system of formations in Acadia. I may add that Professor Bailey informs me that in the belt of old rocks, north of the central Coal-field in New Brunswick, there are portions, apparently older than the Silurian rocks of that region, and resembling the Nova Scotia coast series, like which they are anniferous.

12. THE HURONIAN.

The Coldbrook series of Messrs Bailey and Matthew, rising from beneath the Cambrian fossiliferous slates, was referred to this age in my second edition; and this view has been still further confirmed and extended by recent observations of Professor Bailey. From these it appears that the Coldbrook or Huronian series rests unconformably on the Laurentian, and that pebbles of the latter are included in its conglomerates. On the other hand, the Acadian or Menevian beds lie unconformably on the Coldbrook series. Further, the Upper Huronian is now identified with the "coastal series" of former reports, and thus greatly extended, more especially to the eastward of St. John. There would also appear to be indications of unconformity between the upper and lower members of the Huronian itself. It thus appears as a distinct formation, or group of formations, between the Laurentian and Acadian groups, and connected with neither. The study of a series of typical specimens, kindly furnished by Mr. Matthew of St. John and Mr. Murray, director of the Geological Survey of Newfoundland, enables me to affirm a remarkable similarity in mineral character between the rocks described as Huronian in these two regions, while their relations to the Laurentian below and Menevian above are the
same. The peculiar fossils, however, *Aspidella* and *Arcenticolites*, allied to *A. spiralis*, discovered by Murray in the Upper Huronian of Newfoundland and described by Billings, have not yet been recognised in New Brunswick.

The Coldbrook series is remarkable for the abundance in it of felsites, felsitic breccias, porphyry, diorite, and other crystalline or cryptocrystalline rocks, which, though stratified, are evidently of volcanic origin, and if such rocks are to be considered as everywhere of this age, the classification of the older rocks of Acadia would be greatly simplified. It is evident, however, that we must separate the Mascarone series, and other rocks of this character, with Upper Silurian fossils; and there is no good evidence that the Cobequid series and its equivalents in Ficton and elsewhere are older than the Lower Silurian. There seems, however, good reason to class as Huronian, or at least as Lower Cambrian, the rocks of the Boisdale Hills in Cape Breton, which Mr Fletcher finds to underlie the fossiliferous Cambrian of that region, and which are more quartzose and micaceous than the rocks of the Cobequid series. It is not impossible that rocks of this age may also occur in the vicinity of the Cambrian beds found at Mirv. We may also conjecturally class as Huronian the chloritic rocks of Yarmouth.

I may repeat here my conviction, founded on the comparison of large suites of specimens from Newfoundland, and from Nova Scotia and New Brunswick, as well as from the typical localities in Lake Huron, that volcanic and trap-ash rocks of various composition were in process of deposition from the Huronian to the Upper Silurian inclusive, and that they cannot be distinguished in hand specimens. It is only by considerations based on stratigraphy and fossils that these rocks can be ultimately classified with certainty. Unfortunately, in many cases, decisive evidence of these kinds is not easily obtained, and in the meantime our classification has to remain to a great extent conjectural.

13. THE LAURENTIAN.

These rocks, as they occur near St John, New Brunswick, have been arranged by Messrs Bailey and Matthew, in their recent Reports, in a Lower and Upper series.* The former consists, in ascending order, of gray gneiss, red and gray gneiss, and dark-gray gneiss, with chloritic gneiss and diorite. The latter consists of limestone, with graphite and serpentine, gray quartzites and diorite, gray slates and limestones with diorite. In one of the Upper Lime-

* Geol. Reports, 1871, etc. See also Nota VI.
stones I have recognised somewhat obscure structures, which appear to indicate the presence of fragments of Eozoon.* In consequence of this discovery, I reprint here some illustrations of the structure of the typical Canadian Eozoon, as guides to observers searching for them in the Laurentian of the Lower Provinces (Figs. 16 and 17). Full descriptions and other details will be found in my work, "Life's Dawn on Earth."†

Fig. 16.—Eozoon Canadense.

(1) Weathered specimen, natural size.
(2) Casts of acervuline chambers.
(3) Surface of a flat chamber.
(4) Section showing casts of flat chambers.

Dr. Hunt seems, in recent publications, inclined to doubt the Laurentian age of the upper part of these rocks, and to refer them, with the Hastings group of Ontario, to a somewhat later, though pre-Cambrian age.

Dr Honeyman and Professor Hind have suggested the Laurentian age of certain rocks at Arisaig, in the Cobequids, and associated with the coast Metamorphic series, but I do not regard the evidence of this, either from fossils, mineral character, or superposition, as conclusive, and must refer for it to the memoirs of these gentlemen in the Trans-

* Proceedings, American Association, 1876.
† London, 1875.
actions of the Nova Scotia Institute, and the Journal of the Geological Society of London. I must, in like manner, decline to receive as of Laurentian age the felsitic and other rocks of Cape Breton, referred to this system by Mr Fletcher in the latest Report of the Geological Survey. I would except those of St Anne's Mountain, the lithological resemblance of which to the Lower Laurentian of Canada is indisputable, and the evidence that they may be of this age has certainly been much strengthened by the recent observations of Mr Fletcher.* Specimens, and the observations of Mr Brown and Mr Campbell and others, induce me also to believe that in the little island of St Paul's, and in some parts of Northern Cape Breton, we may have

Fig. 17.—Canal System of Eozoan—Magnified.

a continuation of the rocks referred by Mr Murray to the Laurentian in Newfoundland. With these exceptions, I have not seen in Nova Scotia, unless in travelled boulders, any rock that I could believe to be lithologically equivalent to the Laurentian of Canada, nor have I found any stratigraphical evidence of the occurrence of such rocks.

14. COMPARISONS WITH OTHER COUNTRIES.

The new facts above stated in relation to the older formations, somewhat modify the statements made in Acadian Geology as to the

* I observe, in some recent papers on this subject, the statement that I had held these old rocks of Cape Breton to be intrusive syenites newer than the Carboniferous age. On the contrary, I have held that the Metamorphic region of northern Cape Breton formed "a rocky island in the seas of the Carboniferous period." The only foundation known to me for this statement is my reference of the somewhat altered line stones of Low Point, in Eastern Cape Breton, to the Lower Carboniferous. I believe that later investigations would indicate that they are older.
The older formations, geological history of the region now included in the maritime provinces. They establish what I could then only indicate as probable, that the great igneous outbursts of the Devonian age, accompanied with profound alteration of the older sediments, with much disturbance of these beds, and the introduction into them of mineral veins, were preceded by a long series of emissions of trachytic lavas and volcanic ashes and breccias, now represented by the felsites, porphyries, and agglomerates of the Huronian, Cobequid, and Mascarene series. Beginning with the Huronian age, these eruptive actions were interrupted in the Cambrian, but recurred with great intensity in the Lower Silurian, and extended into the Upper Silurian age. For this reason, the rocks of these periods in the Acadian area present a marked lithological contrast to those which were accumulating at the same time in the great quiet sea areas of the interior of the continent, and it becomes extremely difficult to correlate these deposits in detail. The peculiar characters of the Quebec group of Eastern Canada, and of the rocks called Taconic by Emmons further south, are no doubt connected with the great igneous actions of the Lower Silurian age. We may ultimately find that in the Silurian period the Atlantic coast of America was the theatre of igneous activity comparable with that which has prevailed in later periods on the Pacific coast, and that the relations of the coastal and interior rocks are similar to those between the Mesozoic porphyrites and trachytes of British Columbia, and the contemporaneous shales, marls, and sandstones of the interior plains.*

It is to be observed here that the character of the older deposits in the Acadian area has been modified not only by contemporaneous igneous action, but by the action of the Arctic currents in drifting along the Atlantic border earthy matter set free by frost and aqueous denudation in the north; as well as by the metamorphic influence connected with the subsequent igneous ejections of the Devonian.

It is further to be observed, that the peculiar features above referred to ally the rock formations of the Silurian age in Nova Scotia and New Brunswick with those of Great Britain, in which also there are great series of bedded volcanic rocks and ash rocks both in Cumberland and Wales. A rough equivalency may, indeed, now be traced in these rocks on the two sides of the Atlantic, as represented in the following table:

* See on this subject a paper by Mr G. M. Dawson, On Mesozoic Volcanic Rocks of British Columbia, Geological Magazine, July 1877.
COMPARATIVE TABLE

Upper Silurian

England, etc.

<table>
<thead>
<tr>
<th>Upper Arisaig Series, Mascarene Series; Lower Arisaig, New Canaan, Wentworth, and Restigouche Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Arisaig Series, Mascarene Series; Lower Arisaig, New Canaan, Wentworth, and Restigouche Series</td>
</tr>
</tbody>
</table>

Nova Scotia and New Brunswick.

<table>
<thead>
<tr>
<th>Llandovery or Mayhill.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Llandovery or Mayhill.</td>
</tr>
</tbody>
</table>

Lower Silurian

- Caradoc and Bala, with Snowdon Felsites and Ash Beds, Coniston and Knock Series.
- Great Felsite and Trap Ash Series of Borrowdale (Ward).
- Lower Llandeilo Flags and Shales, Arenig Series, Skiddaw Slates, etc.

Cambrian

- Tremadoc Slates and Lingula Flags. (Mire and St Andrew's Channel Series in Cape Breton.)
- Menonian Series.
- Longmynd Series, Harlech Grits, and Llanberis Slates.

Huronian

- Pebbied and Dimetian Series (Hicks), containing Felsite, Chlorite Schist, and Serpentine.
- Huronian Felsites, Chlorite and Epidotite Rocks of St John, Yarmouth, and of Cape Breton in part.

Laurentian

- Older Gneiss of Scotland and of Scandinavia.
- Gneiss, Quartzite, and Limestone of St John, Portland Group, Gneiss of St Anne's Mountain?

This table may at least serve to suggest comparisons, even though some of its correlations should be shown, by further examination, to require correction. In any case, the facts exhibited illustrate the general truth, now well established, that throughout geological time, the formations on the borders of the great oceans have been different in character from those of the continental plateaus and from those of the abysses of the sea.

15. MINERAL RESOURCES

Coal, etc.—The Report of the Inspector of Mines for Nova Scotia for 1876, shows 24 collieries in operation. Their total produce was 709,646 tons, but this is far below their present capacity, the trade
MINERAL RESOURCES.

93

being in a very depressed condition. All these mines are in the Cumberland, Picton, and Cape Breton Coal areas. In New Brunswick, according to the report on the exhibits at the Centennial Exhibition, the only coal-mine in operation was that at Grand Lake, Queen's Co.; the annual production being only 3,000 chaldrons. Beside this, there is the remarkable Albertite of the Albert Mines, Albert County, a vein of altered bitumen in the Lower Carboniferous rather than a Coal deposit. This yielded in 1874, the latest report I have seen, 7,000 tons. A new mining enterprise (the Beliveau mine) has recently been commenced near the Petitecodiac River, in search of this valuable mineral.

There are, in the Carboniferous of New Brunswick and also of Nova Scotia, immense deposits of pyroclastic or bituminous shale, capable of yielding as much as 63 gallons of oil, or 7,500 feet of illuminating gas, per ton. Owing to the great cheapness of petroleum, little attention has been paid to these shales for some years, but it is likely that they will before long again be in demand.

The Coal areas now worked in Nova Scotia and New Brunswick are undoubtedly those most accessible and promising, and the question of working those beds of less thickness, or less accessible, or those concealed under the beds of the newer Coal formation, is not likely to be raised for some time. That large available areas of these kinds exist there can be no doubt; but should present commercial relations with the United States continue, the first great stimulus to the coal industry must arise from the development of the iron ores, so abundant in the vicinity of the principal Coal-fields.

Devonian Anthracite.—At Point Lepreau in New Brunswick, a remarkable discovery has been made of anthracite in a horizon referred by Mr. Matthew to the upper part of the Dadoxylon sandstone. I am informed by Mr. Matthew that it occurs in a vertical bed from 6 to 10 feet in thickness, in olive-coloured sandy shales. It is of a granular texture, and may be regarded as an anthracite, as it contains only about 5 per cent. of volatile matter. A specimen analysed by Dr. Harrington gave 85.8 per cent. of ashes; but possibly this may not represent the general quality of the deposit. Whether of economical value or not, it is of interest as the only example of Devonian coal in North America, except the little bed, 2 inches thick, occurring in the Gaspé sandstone.*

Iron.—The only extensive works at present in operation in Nova Scotia are those of the Steel Company of Canada at Londonderry—formerly the Acadia Company. These works depend on the great veins of iron ore on the south side of the Cobequid Mountains (Ac.

* Report on Fossil Plants of Devonian, pp. 7, 8.
The supplies of ore are at present almost entirely derived from extensive veins of limonite, constituting part of the great vein of specular and spathic ore which was first worked at this place, but is now neglected, owing to the greater cheapness and more ready reduction of the limonite; 15,274 tons of ore were mined in 1876.

In a recent visit to this mine, I was pleased to see an admirable smelting establishment with two blast furnaces of the most improved construction, and a beautiful village, where, in my former visits, had been a wild forest ravine. I found that the extensive adits now worked at Martin's Brook are in the same veins which I originally described, and that the change in the chemical quality of the ore depends on the fact that the mine has penetrated into portions of the vein where the ankerite and carbonate of iron have been decomposed and oxidized by water, owing to the more open and permeable character of the containing rock.

The iron deposits in the Silurian rocks on the East River of Pictou, and their associated deposits, have recently attracted some attention; but no smelting operations have yet been undertaken. The ores here consist of—(1.) A bed of red hematite in the lower Helderberg slates. It has a percentage of 43 to 54 of iron, and varies in thickness from 10 to 30 feet. Its outcrop has been traced for several miles over ground where it is very accessible, and not more than 12 miles distant from the great Pictou collieries. (2.) A vein of crystalline specular ore, whose geological relations are similar to those of the Londonderry vein. It has been traced for a mile or more, and in some places has a thickness of 20 feet of pure ore. Masses of magnetite occur in parts of the vein, and also quantities of spathic iron and ankerite. (3.) Veins of limonite, which occur in many places on the East River of Pictou; some of them are of large dimensions, and associated with subordinate veins and concretions of pyrolusite or manganese ore. (4.) In the Lower Carboniferous, on Sutherland's River, there is a remarkable vein of crystalline spathic iron ore or carbonate of iron, which will no doubt eventually be worked in connection with the other deposits.

In Cape Breton, extensive discoveries of hematite are reported on the East Bay of the Bras d'Or, and in other localities not distant from the collieries of the east part of that island. Valuable deposits of limonite are reported at Brookfield and Old Barns, in Colchester County, and further discoveries of magnetic ore have been made in the bed of iron ores associated with the Oriskany formation at Nictaux and Moose River.

Beds of clay ironstone, which occur in the Carboniferous of Nova Scotia, have naturally attracted little attention in the presence of those
great deposits of rich crystalline ores lying unused in the immediate vicinity of the Coal-fields. The latest discovery of this kind is on the French River, Pictou County, where beds of nodular clay ironstone from 6 inches to 4 feet thick are reported, the ore containing 35 per cent. of iron.

In New Brunswick the beds of red hematite occurring at Jackson-town, near Woodstock, in beds believed to be of Upper Silurian age, are not now worked, though formerly successfully mined and smelted. These beds are numerous, and from 6 inches to 8 feet thick. Their geological characters seem to resemble those of the great Pictou hematite already referred to. Bog iron ores, believed to be of commercial value, are found at Burton, Sunbury County, and at Maryland, York County.

Iron ochres, used as "mineral paints," abound in connexion with the deposits of iron ore as stated in Acadian Geology, and have been worked on a limited scale at various points, as has also theumber of Chester.

Copper.—Though many indications of copper have been observed, it is only recently that veins of workable dimensions have been found in Nova Scotia. A locality at Polson's Lake (Ac. Geol., p. 692), which has attracted some attention for many years, has at length revealed an apparently continuous vein of spathic iron holding rich copper pyrites. A neighbouring area near the Lochaber Lake exhibits several apparently rich veins, said to be 2 to 6 feet in width. There can be little doubt that the former place will soon become the seat of an important mining industry. The ores occur in a slate formation associated with quartzite, and which I believe to be equivalent to the Cobequid series.

Attempts have recently been made to work the native copper in the Triassic trap of Cape D'Oor, and the nodules of gray copper in the Carboniferous sandstones of New Amant, but with little success.

In New Brunswick, ores of copper in veins, and disseminated through slaty rocks, have been found in several places of the south coast, in rocks of very similar character with those holding the Nova Scotian ores above mentioned. The attempts to open them profitably are hitherto been unsuccessful. Vitreous copper ore is also found in connexion with the Triassic trap of Grand Manan, but I have no definite information as to its economic importance.

Manganese.—The peroxide of manganese, or Pyrolusite, occurring in veins and "pockets" in the Lower Carboniferous limestone is worked profitably at Markhamville, New Brunswick, and at Teny Cape in Nova Scotia, where it occurs under similar conditions. This
mineral has also been found in profitable quantity on Onslow Mountain, in Colchester County. It is associated with limonite on the East River of Pie ton, and its occurrence has been reported in several other places, though in uncertain quantity.

Lead.—A vein of galena has been worked on in Caledonia, Guysboro', though as yet the results are uncertain. A vein of argentiferous galena, yielding 135 lbs. lead and 2.95 ounces of silver to the ton, is also reported on the North River of St. Ann's Bay, Cape Breton. This vein is stated to be five inches in thickness. The deposit of galena in Lower Carboniferous limestone at Gay's River (Ac. Geol., 275) has also attracted some attention, but I believe has not been worked on a large scale as yet.

Antimony.— Stibnite, or antimony glance, occurs in veins in a gangue of quartz, in rocks believed to be of Upper Silurian age, at Prince William, York County, New Brunswick. The ore is mined and smelted with profit, and is also made into the alloy named "Babbit Metal."

Gold.—In Nova Scotia thirteen gold districts are reported as being worked in 1876. The total yield was 12,638 ounces, nearly half of this being from the Sherbrooke district, and the next most important being those of Oldham, Waverley, and Wine Harbour. All the gold mines at present worked are in the Carboniferous conglomerate of the Atlantic coast, with one remarkable exception. This is the Carboniferous conglomerate of Gay's River, referred to in Acadian Geology (p. 277) as an instance of a gold alluvium of Lower Carboniferous age, and as a proof that the gold veins are of older date than the Carboniferous. It is stated in the report of the inspector that in one area the conglomerate was worked along a run or depression of the slates for 500 feet.

The gold is obtained by breaking up the conglomerate and panning the debris; and, as in most modern gold gravels, the richest part of the deposit seems to be near the bed-rock. 246 ounces were obtained from this deposit in 1876. Professor Hind states* that a similar instance of the occurrence of gold in a Carboniferous conglomerate occurs in the peninsula opposite Baddeck in Cape Breton. Here, however, it is near the summit of a thick conglomerate, implying peculiar circumstances in its deposition.

The gold-mining industry is believed at present to be in a healthy state, though reduced in amount from the times of early excitement; and it is likely gradually to extend.

Silver.—The sulphide of this metal, and also argentiferous galena,

* Paper on Gold-Mining, Society of Arts, May 1870.
MINERAL RESOURCES.

... an object on Onslow Mountain, with limonite on the same; and a gold occurrence has been reported in several districts.

A vein of gold is reported on in Caledonia, Nova Scotia, but its value is not certain. A vein of gold is reported in the 2:95 ounces of silver from the 12,038 ounces of St. Ann's Bay, Cape Breton Island, Nova Scotia, with some silver and gold in thickness. The occurrence of gold is at Gay's River, Nova Scotia, and in the upper parts of the same, but I believe has not been exploited.

Gold occurs in veins in a Cambrian age, and in the upper Silurian age, at Yellow Bank. The ore is mined in gold outcrops and into the alloy named gold.

The occurrence of gold is reported as 1,012,038 ounces, nearly all of it occurring in the same district, and the next most important occurrence is at the Silver and Wine Harbour, and in the Cambrian Quartzite rocks of Cape Breton Island, Nova Scotia. This occurrence is the result of a gold alluvium of the Cambrian rocks, and the gold veins are of the same character. The occurrence of gold is reported in the report of the Government of Nova Scotia, and it is worked along a run of conglomerate and sandstone beds, with sand and gravel, the sand and gravel being the bed rock. 246.6. Professor Hind refers to the occurrence of gold in a Cambrian rock, and to the occurrence of a thick quartzite bed, at the mouth of the thick conglomerate, and to the occurrence of gold in a Cambrian rock, and to the occurrence of a thick quartzite bed, at the mouth of the thick conglomerate. The occurrence of gold is reported to be in a healthy state of early excitement; and there is a great demand for galena, and a large supply of the ore, as well as of the copper.

Gold is reported to occur in a vein in Metamorphic rocks at Watchabuck in Northern Cape Breton, and the occurrence of drift fragments of these ores in the streams in that district indicate that there must be other deposits in this, as yet, little explored region.

Freeze and Grindstone.—The export of these materials from Nova Scotia and New Brunswick still continues to be large. The celebrated Lower Cove quarries at the Joggins, alone, exported in 1876 grindstones and whetstones to the value of 35,847 dollars. Large and prosperous quarries of a stone, quite equal to that of the Joggins, exist at New Bandon, or Clifton, Gloucester Co., New Brunswick. Considerable quarries of building-stone are exported at Wallace and Picton, Nova Scotia; at Dorchester and Hopewell, New Brunswick, and many other places.

Other Building and Ornamental Stones.—The cutting and polishing of red sycamore and granite are carried on at St. George, Charlotte County, New Brunswick. The stone produced is equally beautiful with the red granite of Scotland. Marble of varied hues, and favourably situated for quarrying, has been discovered at Marble Mountain, on the Bras D'Or Lake, Cape Breton.

Gypsum.—This mineral is still extensively exported from Nova Scotia and New Brunswick. The exports from Nova Scotia in 1876 are stated at 80,920 tons, and no less than 129,000 tons are stated to have been quarried at Hillsboro', New Brunswick, in 1875. A large portion of this was ground and calcined at the quarries.

According to Dr. How, anhydrite or anhydrous gypsum is worked at Cheverie, Hants County, and exported for agricultural purposes. It is, of course, harder to grind than common gypsum, and cannot be used for moulding or plastering, but for land it may be regarded as more valuable than the hydrous variety, as wantling the water, which amounts to about 20 per cent. of the weight of the latter.

Barytes.—The sulphate of barium or heavy spar is mined in small quantity at Five Islands (Ac. Geol., 592), and is known to occur at many other places.

Dr. How, in his Report on the Mineralogy of Nova Scotia, also directs attention to the numerous Brine Springs issuing from the Lower Carboniferous rocks, and the working of which has been attempted on a large scale at Antigonish. He also notices the important discoveries of Iron Pyrite or sulphur ore; and mentions Titaniferous Iron Ore as occurring at Sable River, Shelburne County, and in sand at Digby Cove. This Report, as well as that of the Geo-

* Halifax, 1868.
logical Survey of Canada, those of the Inspector of Mines of Nova Scotia, those of Professor Hind on the Gold Fields, and those made on behalf of private mining corporations, contain a large amount of detail respecting the resources and mining industries of the Acadian Provinces, which it is impossible to summarize here. The above notes are intended merely to supplement the more extended notices given in Acadian Geology.

The great coal and iron industries of the Acadian Provinces, and with these indirectly all other mineral industries, are at present much depressed, not only by the general depression of trade in these minerals, but also by those artificial restrictions and arrangements which shut out their produce from the largest American market, while they give no preference or protection at home. It is creditable to the intelligence and industry of these Provinces, and at the same time an indication of their great mineral wealth, that under these circumstances they have been able to do so much as appears from the Report of the Inspector of Mines for 1876.
NOTES AND ADDENDA.

1. Lignite from the Trias of New Brunswick.

Jackson and Alger, in their memoir on Nova Scotia Geology, mentioned the occurrence of lignite at Cape Blomidon in the Triassic sandstones, but I have not succeeded in discovering it. Last summer Mr Ellis, of the Geological Survey, obtained a specimen in the sandstones of the opposite side of the Bay of Fundy at Martin's Head. This specimen proves to be a coniferous wood with one row of large disks in the cells, and of the same type with silicified wood found at Quaco, and referred to in Acadia Geology, p. 108. It is also of the same type with Dadoxylon falciforme, referred to above as characteristic of the Trias of Prince Edward Island, and is similar to fossil wood which I have received from the Mesozoic of Virginia.

2. Lower Carboniferous Fishes of New Brunswick.

The recent sinking of a shaft on the property of the Beliveau Albertite and Oil Company on the Petitscodiac River, has exposed a new and interesting deposit of fossil fishes in the rich bituminous shales of that district, which contain the remarkable deposits of Albertite, described in Acadia Geology, p. 231 et seq. The bed affording these fossils is a dark-brown bituminous shale, and, I am informed by Mr E. B. Chandler, to whom I am indebted for an interesting collection of the fish remains, is from four to five feet thick. The specimens thus presented, with those previously in my collection and one kindly given to me by Mr F. Adams of this University, and the valuable memoirs recently published by Dr Newberry in the Ohio Report and by Dr Traquair in the Journal of the Geological Society, enable me now to give a revision of the fishes of this locality, as described by Dr Jackson in his Report of 1851 on the Albert mine, which I was unable to do in my second edition, owing to the small number of specimens at my disposal.

In the collections in my possession I recognise, in all, five species—three of them very small, and two of larger size. Of these, one, which is unusually well preserved, and is the smallest of the whole, appears to be new, and I shall begin by describing it.

Palaeoniscus (Rhabdichthys) modus, s.n.—Length, five to six centimetres; greatest breadth, 15 to 17 millimetres—the proportion of length to breadth being about five to one and a half. Head, oval and obtuse; details not preserved, except that the bones are sculptured with fine waving lines. Body gracefully curved, and upper lobe of tail long and slender. Pectoral fins small, with stout, unjointed rays. Ventral not distinctly preserved, but apparently small and nearer to pectorals than to anal. Dorsal and anal of moderate size and opposite each other. Caudal very heterocercal, with the lower lobe sharply pointed. Fins with well-developed fulcral spines especially large at the base of the caudal. Scales
IMAGE EVALUATION
TEST TARGET (MT-3)

1.0
1.1
1.25

1.0
1.1
1.25

6"
of the sides rhombic, coarsely toothed on the posterior edges, and elaborately sculptured with flat, scaly ridges, corresponding to the teeth of the edge. The ridges are arranged in an upper and lower series, the latter oblique to the former, so that each scale has the appearance of being composed of two distinct portions. Lower surface of scales smooth, with a few furrows corresponding to the ridges above, and the posterior edges apparently serrate. Caudal scales narrowly rhombic, pointed, and with a few central lines. The back is protected with about ten large oval scales between the head and the dorsal. They are sculptured with waving lines, curving with the edges, and are apparently truncate and serrate behind. The fish figured by Jackson, Pl. II., Fig. 5, but not named, probably belongs to the above species.

Fig. 18.—*Palaonisicus modulus*, n.s.

(a) Outline, natural size.
(b) Series of Scales enlarged, seen from inside. The lower row are those on mesial line.
(c) Surface of exposed part of scale from side and from upper lobe of tail, showing sculpture, enlarged.
(d) One of the dorsal scales, enlarged.

This beautiful and elaborately ornamented little fish is a perfect model in miniature of that type of lower Carboniferous *Palaonisicus* to which it belongs, and which has recently been separated by Dr Traquair in the genus or subgenus *Rhadinichthys*. For this reason I have given it the specific name *modulus*. To the same genus belong the two next species, described by Jackson, of which I shall give merely distinctive marks.

P. Alberti, Jackson, is larger than the preceding. The scales have more numerous striæ. The dorsal scales are rounded posteriorly. The posterior edge of the anal fin approaches nearly to the caudal, and extends considerably behind the posterior edge of the dorsal.

A specimen collected by Mr Ellis, of the Geological Survey, indicates a fish of the same general form with *P. Alberti*, but about 6 inches long. The details are not sufficiently preserved to show if it differs in these from the above-named species.

P. Cairnsii, Jackson.—About the same size with the last, but more slender, and the head less obtuse in front. Scales thick and with few
striae, and less numerous serrations. Dorsal scales pointed posteriorly. Anal fin somewhat remote from caudal and opposite dorsal.

The next species, and perhaps the last, may belong to the genus *Elonichthys* of Giebel. They are much larger than the preceding.

P. (Elonichthys) Browni, Jackson, is deep in form, with large dorsal and anal, the latter reaching almost to base of caudal. Scales of body broad and with numerous fine horizontal striato-pecticate furrows, which turn abruptly upwards at the anterior side of each scale. A nearly perfect specimen, collected by Mr. Ellis, is 10 inches long and 3½ inches wide, the breadth at the dorsal fin being about equal to that at the shoulder, and suddenly diminishing to the tail. The crystalline lens of the eye is preserved in this specimen in calcite, and shows its structure, which is on the same plan with that of our modern ganoid *Ania ocellicauda*. It is the first instance known to me of the preservation of the structure of the eye of a Paleozoic fish.

P. Jacksonii, s. x.—A species figured, but not described, by Jackson, is represented by several fragments in my collection, and by a cast obtained from Mr. Matthews of St. John. It is the largest of these fishes, reaching a length of 15 inches. It may be distinguished from the last by its more slender form, its small anal fin, more remote from the caudal, and by the character of the scales, which are marked with numerous horizontal striae, and have in the broader ones a few deep and strong serrations posteriorly.

The whole of these fishes have been preserved entire; their bodies being perfectly flattened, and thrown into attitudes which imply that they were embedded when living or immediately after death. The material in which they are contained is shown, by its microscopic and chemical characters, to have been a vegetable muck or mud, and the fish were either overwhelmed by it in the manner of a bursting bog, or were stifled by the non-oxygenated water mixed with this mud, and suddenly killed and embedded in the accumulating sediment. That they occur in this perfect state, and in a limited thickness of the deposit, may imply that at certain times they were overwhelmed by the eruption of the fetid organic mud into the water in which they lived. The bed is low down in the Lower Carboniferous series, being the equivalent of the Horton series of Nova Scotia; so that these fishes are among the oldest that we know in the Carboniferous system; but we know, from the Horton beds, that many far larger and predecessors ganoids were their contemporaries. No remains of these have, however, as yet been found in the Albert or Belleau beds, which were probably deposited in limited fresh-water basins, perhaps not ordinarily accessible to the larger fishes.

Sir Philip Egerton* and Dr. Traquair† have both remarked on the similarity of these fishes to those found in the Lower Carboniferous of Scotland, and Dr. Newberry has described very similar species from the Carboniferous of Illinois and Ohio.‡

3. *New Spirobranchus*.

* Journal of Geological Society, 1853.
‡ Journal of Geological Society, 1877.
wholets four, the first three regularly spiral and not flattened for attachment, except at the apex; the last whorl diverging from the others irregularly in the manner of a *Vermicula*. Length about 3 millimetres. The surface uneven, with obscure wrinkles on the last whorl, and microscopic lines of growth on the others. Shell thin, with delicate tubular structure, much finer than that of *S. carbonarius*. I have not recognised this shell elsewhere than in the limestone of Fraser’s Mountain, near New Glasgow, except in a few rare and doubtful examples at the Joggins. It was probably attached by a narrow space at the apex to submerged plants, in the manner of the modern *Spirobis porrecta*; and, being broken from its attachment, or the vegetable matter being removed by decay, remained loose and unmatted, as it appears in this limestone, some portions of which are crowded with specimens.

4. *Cone-in-Cone*.

Mr H. Poole informs me that the figure of this curious concretion, at page 676 of Acadian Geology, should be inverted; as, in the beds from which the specimens were obtained, the conical ends of the concretions were below and the flat sides above.

5. *Diabase*.

The dark-coloured dykes of igneous rock occurring in the Cobequids have usually been regarded as diorites; but two specimens, one from a dyke traversing the Upper Silurian beds at Wentworth, another from a dyke in the older Felsite series, which were kindly examined by Dr Harrington, proved to contain pyroxene instead of hornblende; and as they contain hydrous silicates as well, probably products of decomposition, would be included in the group now usually named Diabase. It is not improbable that other so-called diorites of the Cobequid series, in the county of Pictou and elsewhere, may be really of the nature of diabase. Some of the more coarsely crystalline igneous rocks occurring in this formation undoubtedly contain hornblende, and are true diorites and syenites. The term Felsite is used in this supplement for rocks composed chiefly of compact Orthoclase Feldspar, usually with excess of Silica and sometimes porphyritic. These rocks are usually termed “Compact Felspar” in Acadian Geology.

Professor Bailey informs me that rocks similar in character to the Laurentian have been recognised in York County, in the interior of New Brunswick. He also mentions an additional outcrop of the Acadian group, flanking the Huronian rocks on their northern side, and constituting the fifth parallel belt of this formation now known in Southern New Brunswick. He also states that the Lower Carboniferous Albert shales are found to underlie unconformably the remainder of the Lower Carboniferous formation,—an effect, probably, of local crumpling and partial denudation in connexion with the changes which introduced the deposition of the coarse rocks which succeed these shales. The details of these discoveries will be found in Professor Bailey’s and Mr Ellis’s forthcoming Reports to the Director of the Geological Survey of Canada.
flattened for attachment, and the others irregularly in form. The surface under microscopic lines of composite and tubular structure, much resemble this shell elsewhere than in New Glasgow, except in a small extent, it was probably attached to the stems, in the manner of the other, in a single loose and unattached, which are crowded with
different species.

Various concretion, at page 95, in the beds from which the concretions were below

The Felsite occurring in the Cobequids specimens, one from a worth, another from a examined by Dr. hornblende; and as they of decomposition, would be. It is not improbable in the county of Picton base. Some of the more formation undoubtedly the. The term Felsite and chiefly of compact Silica and sometimes "Compact Felapar"

The Carboniferous in character to the in the interior of New the group, and constituting the New Brunswick. Carboniferous formations are found to Carboniferous formation, partial denudation in con deposition of the coarse rocks discoveries will be found to the Director of
ACADI AN G E OLOG Y.

THE GEOLOGICAL STRUCTURE, ETC.,

OF

NOVA SCOTIA, NEW BRUNSWICK, AND
PRINCE EDWARD ISLAND.

SUPPLEMENTARY NOTE TO THE
FOURTH EDITION, 1891.
CONTENTS OF THE SUPPLEMENTS OF 1878 AND 1891.

(The General Index to the body of the Work will be found at page 689.)

<table>
<thead>
<tr>
<th>Topic</th>
<th>Sup. I</th>
<th>Sup. II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrections of Map, and Introduction</td>
<td>page 9</td>
<td>3</td>
</tr>
<tr>
<td>The Modern Period</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>The Pleistocene</td>
<td>19</td>
<td>6</td>
</tr>
<tr>
<td>The Trias</td>
<td>28</td>
<td>8</td>
</tr>
<tr>
<td>The Permian</td>
<td>30</td>
<td>9</td>
</tr>
<tr>
<td>The Carboniferous</td>
<td>39</td>
<td>12</td>
</tr>
<tr>
<td>The Erian</td>
<td>69</td>
<td>18</td>
</tr>
<tr>
<td>The Silurian</td>
<td>72</td>
<td>22</td>
</tr>
<tr>
<td>The Cambro-Silurian</td>
<td>78</td>
<td>24</td>
</tr>
<tr>
<td>The Cambrian</td>
<td>81</td>
<td>25</td>
</tr>
<tr>
<td>The Huronian</td>
<td>87</td>
<td>28</td>
</tr>
<tr>
<td>The Laurentian</td>
<td>88</td>
<td>32</td>
</tr>
<tr>
<td>Comparisons with other Countries</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Mineral Resources</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>Notes on Fishes, Spirorbes, etc.</td>
<td>99</td>
<td></td>
</tr>
</tbody>
</table>
SUPPLEMENTARY NOTE TO THE
FOURTH EDITION, 1891.

TWELVE years constitute a long period in the history of a science whose "goal to-day is its starting-point to-morrow," even with reference to any one limited field. Since the appearance of the Supplement to Acadia Geology, appended to the third edition (1878), much has been done in the geology of the Eastern Maritime Provinces of Canada by the addition of new species of fossils, by the working out of the geological details of formations, and by the development of useful minerals. In the present note I shall endeavour to mention the more important of these contributions, and to sum up their contents in so far as they add to or correct the observations and conclusions of the early and unaided researches embodied in a work which was a labour of love, as a contribution to the material interests and scientific reputation of my native country and its sister provinces by the sea.

Under the auspices of the Geological Survey of Canada, several able labourers have been in the field, and have contributed to the reports of the Survey from 1878 to 1888.

Dr R. W. Ellis has examined and reported on the Pre-Silurian rocks of Southern New Brunswick (1877-78), on the geology of Northern New Brunswick (1879-80), on Prince Edward Island, including the Permian and Triassic (1882-4), on parts of New Brunswick and Nova Scotia, 1885.

Mr Hugh Fletcher, in recent years, with the aid of Mr Faribault, has laboured on the geology of Cape Breton and Eastern Nova Scotia, and has minutely described and mapped these regions on a large scale (Reports, 1879 to 1888).

The late Mr James Richardson visited and reported on the
Magdalen Islands, describing their Lower Carboniferous Limestone, Sandstone, and Gypsum, and finding some of the marine fossils characteristic of the Lower Carboniferous. He also supposes that the islands contain some overlying red sandstones of Triassic age (1879–80).

Prof. Bailey, F.R.S.C., has continued his work in unravelling the complexities of the older formations in Southern and Northern New Brunswick, and has done good service in this matter, and also in correlating these rocks with those of Quebec (Reports, 1877 to 1888).

Mr G. F. Matthew, F.R.S.C., has contributed a report on the Pleistocene Fossils of New Brunswick, of which he has catalogued 57 species, finding some also in Nova Scotia, where they had not previously been recognised (1877–78). The most important work of Mr Matthew, however, has been that on Cambrian fossils, the results of which he has contributed in successive communications to the Royal Society of Canada (Trans., vols. i. to vii.)

Mr R. Chalmers has been appointed to the important work of studying the Pleistocene and superficial formations. In this he has done good service, more especially in ascertaining the local character of the drift, and tracing it from its centres of distribution (1885 to 1888). Mr Chalmers has also published valuable papers in the Trans. R. S. C. and in the Canadian Record of Science.

In economic matters the reports of Mr Coste of the Dominion Survey, and of the Provincial Inspector of Mines for Nova Scotia, Mr Edwin Gilpin, F.G.S., have kept up to date our information as to the discoveries and developments, more especially in gold, iron, and coal (Annual Reports; Records of Mining Institute of Great Britain; Society of Mining Engineers, U.S.; Can. So. Engineers).

In addition to the official reports, I may mention the papers on "Acadian Scorpions and Insects," by Dr Seudder, Trans. Nat. Hist. Society of Boston; and on "Entomostraca," by Prof. T. Rupert Jones, London Geol. Magazine, 1884. Mr Francis Bain has worked with much success in the Pernian fossils of Prince Edward Island. Mr Masters of Ithaca has recently studied the lithological character of some Triassic and other traps (American Geologist, March 1890).

The Transactions of the Royal Society of Canada have, since its institution in 1882, contained several important contributions to the Geology of the Maritime Provinces. In addition to those of Mr Matthew already referred to, which extend from vols. i. to vii., I may mention here an important paper by the late Mr Murray, Director of
the Geological Survey of Newfoundland, on the Glaciation of that Island, vol. i.; and two by Mr. Gilpin, Superintendent of Mines, on the Gold Deposits of Nova Scotia, and on the Limestones of the East River of Pietou. The Fossil Fishes from the Erian of New Brunswick have also been described and figured by Mr. Whiteaves, F.G.S.

Valuable papers by Gilpin, Honeyman, Matthews, Bailey, and others have also appeared in the Transactions of the Institute of Natural Science of Nova Scotia, and in the Bulletin of the Natural History Society of New Brunswick.

The principal contributions of the author to the Geology of the Acadian Provinces since 1878 have been the following:—

"Fossils collected by Mr. Bain in Prince Edward Island," Canadian Record of Science, 1885.

"On New Plants from the Erian and Carboniferous, including Remarks on Tylopectodendron, and Description of T. Baini from Prince Edward Island," Memoirs, Peter Redpath Museum, 1890.

In what follows I shall throw the new facts which seem most important into the form of a sketch of the general results, and a comparison of these with the geological features of the other similar districts on the East and West of the Atlantic.
I. THE PLEISTOCENE.

Since the publication of the last edition of this work a vast mass of material has been added to the discussion of the so-called Glacial Period. In so far as the Maritime Provinces are concerned, I see little reason to modify the general conclusions stated in the Supplement of 1878. These conclusions have, indeed, in my judgment been confirmed and their bearing extended, more especially by the researches of Mr Chalmers, who has shown in the most convincing way that glaciers proceeding from local centres along with sea-borne ice may have been the agents in glaciating surfaces and transporting boulders in Nova Scotia and New Brunswick. Taken in connexion with the observations of Dr Dawson and Mr M'Connell in the Cordillera region of the West, and those of Dr Bell, Dr Ellis, Mr Low, and others in the Laurentian country north of the St Lawrence and in the Province of Quebec, we may now be said to know that there was not, even at the height of the glacial refrigeration of America, a continental ice-sheet, but rather several distinct centres of ice-action,—one in the Cordillera of the West, one on the Laurentian V-shaped axis, and one on the Appalachians, with subordinate centres on isolated masses like the Adirondacks, and at certain periods even on minor hills like those of Nova Scotia. It would also seem that, in the West at least, elevation of the mountain ridges coincided with depression of the plains. In Newfoundland also, it would appear from the observations of Captain Kerr, with which those of Mr Murray are in harmony,* though they have been differently interpreted, that the gathering-ground of ice was in the interior of the island, and that glaciers moved thence to the coasts, but principally to the East coast, as was natural from the conformation of the land and the greater supply of moisture from the Atlantic.

The labours of Murray in Newfoundland, of Matthew, Chalmers, Bailey, and others in Nova Scotia and New Brunswick, have considerably enlarged our knowledge of Pleistocene fossils, showing, however, that the marine fauna is the same with that of the beds of like age in the St Lawrence valley, and with the existing fauna of the Labrador coast and colder portions of the Gulf and River St Lawrence, as ascertained by Prickard, Whiteaves, and the writer. It would seem that throughout this region, the 60 feet and the 600 feet terraces were the most important with reference to these marine remains, and that their chief repository is in the Upper Leda clay, intermediate between the

Lower and Upper boulder drift, and corresponding to the inter-glacial beds of the interior of America.

The general conditions of the period are thus summarized in a recent paper:—*

"In this district and the eastern part of North America generally, it is, I think, universally admitted that the later Pliocene period was one of continental elevation, and probably of temperate climate. The evidence of this is too well known to require re-statement here. It is also evident, from the raised beaches holding marine shells, extending to elevations of 600 feet, and from boulder drift reaching to a far greater height, that extensive submergence occurred in the middle and later Pleistocene. This was the age of the marine Leda clays and Saxicava sands found at heights of 600 feet above the sea in the St Lawrence valley nearly as far west as Lake Ontario.

"It is reasonable to conclude that the till or boulder clay under the Leda clay belongs to the intervening period of probably gradual subsidence, accompanied with a severe climate and with snow and glaciers on all the higher grounds, sending glaciated stones into the sea. This deduction agrees with the marine shells, bryozoa, and cirripedes found in the boulder deposits on the lower St Lawrence, with the unoxidized character of the mass, which proves subaqueous deposition, with the fact that it contains soft boulders, which would have crumbled if exposed to the air, with its limitation to the lower levels and absence on the hill-sides, and with the prevalent direction of striation and boulder drift from the north-east.†

"All these indications coincide with the conditions of the modern boulder drift on the lower St Lawrence and in the Arctic regions, where the great belts and ridges of boulders accumulated by the coast ice would, if the coast were sinking, climb upward and be filled in with mud, forming a continuous sheet of boulder deposit similar to that which has accumulated and is accumulating on the shores of Smith's Sound and elsewhere in the Arctic, and which, like the older boulder clay, is known to contain both marine shells and drift-wood.‡"

† Notes on the Post-Pliocene: Canadian Naturalist, op. cit.; also Paper by the author on Boulder Drift at Metis, Canadian Record of Science, vol. ii., 1886, p. 36, et seq.
‡ For references see Royal Society's Arctic Manual, London, 1875, op. cit.
seems to have been improved. The clays deposited had few boulders and many marine shells, and to the west and north there was land producing plants akin to those of the temperate regions; and in places slightly elevated above the water, peaty deposits accumulated.

"The shells of the \textit{Leda} clay indicate depths of less than 100 fathoms. The numerous foraminifera, so far as have been observed, belong to this range, and I have never seen in the \textit{Leda} clay the assemblage of foraminiferal forms now dredged from 200 to 300 fathoms in the Gulf of St Lawrence.

"I infer that the subsidence of the \textit{Leda} clay period and of the interglacial beds of Ontario belongs to the time of the sea beaches from 450 to 600 feet in height, which are so marked and extensive as to indicate a period of repose. In this period there were marine conditions in the lower and middle St Lawrence and in the Ottawa valley, and swamps and lakes on the upper Ottawa and the western end of Lake Ontario. It is quite probable, may certain, that during this interglacial period re-elevation had set in, since the upper \textit{Leda} clay and the \textit{Saxicava} sand indicate shallowing water, and during this re-elevation the plant-covered surface would extend to lower levels.

"This, however, must have been followed by a second subsidence, since the water-worn gravels and loose, far-travelled boulders of the later drift rose to heights never reached by the till or the \textit{Leda} clay, and attained to the tops of the highest hills of the St Lawrence valley, 1200 feet in height, and elsewhere to still greater elevations. This second boulder drift must have been wholly marine, and probably not of long duration. It shows no evidence of colder climate than that now prevalent, nor of extensive glaciers on the mountains; and it was followed by a paroxysmal elevation in successive stages till the land attained even more than its present height, as subsidence is known to have been proceeding in modern times."

I am quite aware that the above sequence and the causes assumed are somewhat different from those held by many geologists with reference to regions south of Canada; but must hold that they are the only rational conclusions which can be propounded with reference to the facts observed from the parallel of 45° to the Arctic Ocean.

II. THE TRIAS.

The Triassic Red Sandstone of Nova Scotia and Prince Edward Island and the associated Traps closely resemble the same formations
in England. The latter were described by me, as early as 1847,* as being interstratified beds, though this seemed at the time not in accordance with the views expressed by many American geologists,† who regarded the corresponding rocks of the Connecticut valley as dykes. I am glad to see, however, that Russel, Davis, and other recent observers now regard the Connecticut and New Jersey igneous rocks as, in part at least, bedded overflows.‡

Like the Trias of England, ours contains no important marine limestones, and its fossils are limited thus far to a single Dinosaurian reptile and a few fossil plants. In these it is far inferior to deposits of the same area further to the south on the Atlantic coast of the United States. In America, as in Europe, the Triassic flora and land- and freshwater-faunas seem to have been of southern origin.

The maritime region of Eastern Canada is remarkable for its deficiency of Mesozoic rocks newer than the Trias. If there are such deposits, they must be, like the Cretaceous rocks believed to exist further south on George's Banks, still at sea. It is only on Greenland and the Arctic Islands that we find beds ranging from the Lias to the Eocene, and these belong rather to the Arctic basin than to that of the Atlantic.§ In this respect the maritime region of Canada differs materially from that of Europe, though it is noteworthy that the extreme coastal region of Great Britain to the west is also somewhat deficient in such rocks.

THE PERMIAN.

In the previous Supplement I have used the term Permo-carboniferous to designate those beds, principally red sandstones, which in Prince Edward Island and Northern Nova Scotia overlie the coal formation and underlie the Trias. It would seem, however, that we are now in a position to claim a portion of these beds, at least, as a true equivalent of the Permian.

As early as 1842 || the writer was able to announce the existence of Carboniferous fossils in these beds, and in 1845, in two papers published in the Journal of the Geological Society of London, to refer the whole of the Red Sandstone of the south side of Northumberland Strait and a portion of that of Prince Edward Island to the "Newer

† The late Dr Hitchcock had in 1833 regarded them as overflows.
‡ Seventh Annual Report, U.S.G.S., p. 663.
§ For references see Notes on Geological Map of Northern Canada, by Dr G. M. Dawson.
|| Notes on Geology of Prince Edward Island, Harzard's Gazette.
Coal-formation," a name afterwards changed by him, in so far as the upper beds were concerned, to "Permo-carboniferous."

In 1871, in conjunction with Dr Harrington, the writer instituted a geological examination of the whole Island, at the instance of the local Government, and published a report of fifty pages, with a map, sections, and figures of fossils. In this report were described and catalogued twenty species of fossil plants, of which sixteen were referred to the Permo-carboniferous and four to the Triassic. In the report referred to, it was proposed to arrange the strata of the Island in two groups, Permo-carboniferous and Triassic, and to divide the latter into a lower and upper series, and in our map we limited the distribution of the former group to those regions in which it was distinctly characterized by infra-position and by fossils, thus leaving the greater part of the surface to appear as Triassic. Since 1871, Mr Francis Bain has been able to discover fossil plants of Permo-carboniferous types in several places in which they were not found by us, thus extending the range of that formation, and he also suggests a threefold division of the beds, but would refer to Permian that part of the series which we designated Lower Trias. Mr Ells of the Geological Survey of Canada, who has recently re-examined the rocks of Prince Edward Island (Report of Survey, 1883-4), not only extends the limits of the lower series, but regards the Trias as very limited, and not clearly distinguishable from the Permo-carboniferous; but in this last respect I cannot but think he exaggerates the difficulty occasioned by the low dips of all the beds, and the strong mineral resemblance of the Trias to the underlying Permo-carboniferous, from whose disintegration it has undoubtedly been derived.

Mr Bain's subdivision is stated by him as follows: "—

"First.—The lower series of gray, brown, and red sandstones and shales, termed by Sir William Dawson Permo-carboniferous, presenting a thickness of about 800 feet. This series contains all the more decidedly Carboniferous plants found on the Island, as Calamites sulkowii, C. cistii, C. cannaformis, Dadoxylon materianum, and Trinocarpum, associated, however, with plants of a Permian character.

"Secondly.—A middle series, reposing conformably, or nearly so, on the last, and consisting of 2000 feet of red sandstones and shales, the shales, and also calcareous sandstones, predominating in the lower part. This series is distributed over the greater part of the Island. It is of greatly reduced thickness in the western parts. It contains

" Canadian Record of Science, July 1885."
THE PERMIAN.

plants of a decidedly Permian character, as Watchia, Calamites gigas, Pecopteris arborescens, great numbers of stems of Araucarites, evidently allied to Watchia, and the impressions of large thick leaves that look like Noeggerathia, with Dadoxylon edwardianum of Triassic affinity. The beds are disturbed slightly by three lines of anticlinal, running parallel with the Cobequid range of mountains. The disintegration of the great shale beds of the lower part of this series has caused the separation of Prince Edward Island from the mainland. At what appears to be the summit of the series is a bed of quartzose conglomerate, which is pretty extensively distributed, being found in the synclinal on the Murray Harbour Road, about the head waters of North River, and other localities in the centre of the Island.

"Thirdly.—A horizontal series of red sandstones and shales, not distinguishable lithologically from the last, except it be by more regular bedding, and appearing to repose unconformably on the denuded strata of the most northern anticlinal of the Permian. Greatest thickness observed, 150 feet. So far as yet ascertained, the plants found in this series are mostly specifically distinct from those of the lower rocks. But there is a generic relationship, especially with those of the middle series. This is seen in the few better preserved specimens, and also in the numerous fragments and obscure markings. Adding to the general specific distinctness of its plants the fact, that this series yielded the remains of Bathynathus borealis, we are inclined to consider it the representative of the Triassic. Its beds are best seen on the north shores of the Island, about New London and eastward; but their exact distribution is very difficult to determine, owing to their general conformability to the underlying Permian. A good and typical exposure of this series occurs at Cape Turner, on the north shore of the Island."

The general result, in so far as the subdivision of the beds is concerned, would seem to be that the lower series is distinctly Permocarboniferous, that its extent is considerably greater than we supposed in 1871, that there is a well-characterized overlying Trias, and that the intermediate series, whether Permian or Lower Triassic, is of somewhat difficult local definition; but that its fossils, so far as they go, lean to the Permian side.

In 1889 Mr Bain placed in my hands a number of interesting specimens of the genus Tylodendron of Weiss, illustrating not only the structure of the stem, but also the foliage and fruit. These specimens were figured and described in the Memoirs of the Peter Redpath Museum, 1890, giving for the first time a somewhat complete diagnosis of this interesting gymnospermous and probably
toxine tree, which seems very characteristic of the Permian and lower Trias both in Europe and America.

III. THE CARBONIFEROUS.

For the extensive additions made to the stratigraphy of this system by the officers of the Geological Survey I must refer to their Reports, which scarcely admit of condensation. An exception may be made in favour of the coal-field of St George’s Bay in Newfoundland, not noticed in previous editions, and of which our knowledge has been much advanced by the labours of the late Mr Murray, and of his successor Mr Howley. It is of special interest also as an addition to the coal resources of British North America, and as an extension of the coal-field of Cape Breton.*

Murray estimated the beds seen by him in 1873 at 6450 feet, composed as follows in ascending order:

(a.) Coarse Conglomerate, with boulders and pebbles cemented in a greenish sand, also sandstones and sandy shales (this probably corresponds to the lowest Carboniferous or Horton series of Nova Scotia), 1300 feet.

(b.) Gypsum, dark-coloured limestone, and black shale, argillaceous and marly shale (this is probably the lower division of the Windsor or Gysiferous or Carboniferous limestone series of Nova Scotia), 150 feet.

(c.) Gray and black limestones, with marine organic remains and veins of galena, included in thick beds of variegated marls and sandstone* (this is probably the equivalent of the upper part of the Windsor series in Nova Scotia), 2000 feet.

(d.) Brown and reddish sandstones and conglomerates, with greenish micaceous and arenaceous shales, carbonized plants (this is the “Millstone Grit” series of Nova Scotia), 2000 feet.

(e.) Gray and red sandstones, brown and black shales and clays, abundant remains of plants, beds of coal (this is the lower part of the productive coal-measures), 1000 feet.

The sequence corresponds very closely in mineral character with that in some parts of Nova Scotia and Cape Breton, but the development of coal-measure strata appears comparatively small. Mr Howley, however, in his later investigations finds that the upper members should be greatly extended, and is now disposed to estimate these upper members at not less than 7500 feet, which would better accord

* Murray’s Report, 1881, pp. 85 et seq., and 309 et seq.; Howley’s Report of 1889, St John’s, Newfoundland.
with the thicker portions of the Nova Scotia coal-areas, and would also give a greater probable value to the productive coal-measures. In so far as these are concerned, the quality and distribution of the coal would seem, as might be expected, to resemble that in the eastern coal-fields of Cape Breton. The beds as yet found appear from Mr Howley's report to be six in number, ranging from one foot two inches to eight feet in thickness, three of them having over four feet of good coal. The coal is apparently a free-burning bituminous variety resembling that of the Cape Breton mines.

The distribution of the beds in Cape Breton and in the Cumberland coal-field and in New Brunswick has been carefully mapped on a large scale by the officers of the Survey, so that any geological observer now visiting the region would go with advantages altogether unknown at the time of my earlier explorations. The mining industries have also been largely extended, the total output having increased to nearly two millions of tons, and the mining villages and districts having advanced greatly in population and in external appearance.

My own work has been limited chiefly to palaeontology. In the Report of the Peter Redpath Museum for 1883 will be found the description of the following species from the lower Carboniferous limestones of Nova Scotia and Newfoundland:

1. NOVA SCOTIA.

Discites Hartii, Dawson, [Gyroceras Hartii, Acadian Geology]
described from more perfect specimens.

Loxonema cara, S. N.

Pleurotomaria Acadica, S. N.

Sanguinolites Brookfieldianus, S. N. It is nearly allied to S. plicatus of McCoy.

Aviculopecten Lyelli (var. alternans). Notice of new specimens showing varietal forms.

Berenicea insueta, S. N. An encrusting Polyzoan.

Megastroma laminosum, 9 v., S. N. A remarkable stromatoporoid form not previously known in the Carboniferous, and resembling some Erian and Silurian stromatoporoids, though generically distinct.

2. NEWFOUNDLAND.

Serpulites Murrayi, S. N.

Macrocheilus Terranovicus, S. N.

Pteronites Gayensis (var. ornatus).

Serpulites annulatus, Dawson.
THE CARBONIFEROUS.

Conularia planicostata, Dawson.
Aviculopecten Debeertianus, Dawson.
Bakevellia antiqua, Munst.
Cypricardia, sp.
Terebratula sacculus, Martin.
Spirifera glabra, Martin.
Productus semireticulatus, Martin.
P. Cora, D'Orbigny.
Streptorhynchus crenistia, Phillips.

In 1880 I undertook a revision of the Land Snails of the Carboniferous, in order that Nova Scotia, which had taken the lead in this matter, might retain its pre-eminence. The results were published in the American Journal of Science, Nov. 1880, in which full descriptions were given of *Pupa Vetusta*, Dn., *Pupa Bigsbyi*, Dn., and *Zonites (Comulus) priscus*, Carp., as well as of *Pupa Vermilionensis*, Bradley, and *Dawsonella Meeki*, Bradley, discovered in the coal-field of Illinois; and a species from the Devonian plant beds of St John was added, as probably a land shell under the name *Strophites grandaeva*. Should this prove, when other specimens are found, to be really an air-breathing mollusc, it will be the oldest known. This paper concludes with the following remarks:—

It may be proper to mention here the alleged Pulmonifera of the genus *Palceorbis* described by some German naturalists. These I believe to be worm-tubes of the genus *Spirorbis*, and in fact to be nothing else than the common *S. carbonarius* or *S. pusillus* of the coal-formation. The history of this error may be stated thus. The eminent palaeobotanists Germar, Geppert, and Geinitz have referred the *Spirorbis*, so common in the coal-measures, to the fungi, under the name *Gyromyces*, and in this they have been followed by other naturalists, though as long ago as 1868 I had shown that this little organism is not only a calcareous shell, attached by one side to vegetable matters and shells of molluscs, but that it has the microscopic structure characteristic of modern shells of this type.* More recently Van Beneden, Cenius, and Goldenberg, perceiving that the fossil is really a calcareous shell, but apparently unaware of the observations made in this country by myself and Mr Lesquereux, have held the *Spirorbis* to be a pulmonate mollusc allied to *Planorbis*, and have supposed that its presence on fossil plants is confirmatory of this view, though the shells are attached by a flattened side to these plants, and are also found attached to shells of bivalves of the

of the Carboniferous. Mr R. Etheridge, Jr., of the Geological Survey of Great Britain, has summed up the evidence as to the true nature of these shells, and has revised and added to the species, in a series of articles in the Geological Magazine of London, vol. viii.

If we exclude the alleged Planorbis above referred to, all the Palaeozoic Pulmonifera hitherto found are American. Since, however, in the Carboniferous age, Batrachians, Arachnids, Insects, and Millipedes occur on both continents, it is not unlikely that ere long European species of land snails will be announced. The species hitherto found in Eastern America are in every way strangely isolated. In the plant-beds of St John, about 9000 feet in thickness, and in the coal-formation of the South Joggins, more than 7000 feet in thickness, no other Gasteropods occur, nor, I believe, do any occur in the beds holding land snails in Illinois. Nor, as already stated, are any of the aquatic Pulmonifera known in the Palaeozoic. Thus, in so far as at present known, these Palaeozoic snails are separated not only from any predecessors, if there were any, or successors, but from any contemporary animals allied to them.

It is probable that the land snails of the Erian and Carboniferous were neither numerous nor important members of the fauna of those periods. Had other species existed in any considerable numbers, there is no reason why they should not have been found in the erect trees, or in those shades which contain land plants. More especially would the discovery of any larger species, had they existed, been likely to have occurred. Further, what we know of the vegetation of the Palaeozoic Period would lead us to infer that it did not abound in those succulent and nutritious leaves and fruits which are most congenial to land snails. It is to be observed, however, that we know little as yet of the upland life of the Erian or Carboniferous. The animal life of the drier parts of the low country is indeed as yet very little known; and but for the revelations in this respect of the erect trees in one bed in the coal-formation of Nova Scotia, our knowledge of the land snails and Millipedes, and also of an eminently terrestrial group of reptiles, the Microsauria, would have been much more imperfect than it is. We may hope for still further revelations of this kind, and in the meantime, it would be premature to speculate as to the affinities of our little group of land snails with animals either their contemporaries or belonging to earlier or later formations, except to note the fact of the little change of form or structure in this type of life in that vast interval of time which separates the Erian Period from the present day.

In 1878, a small grant having been given by the Royal Society of
London to aid in the exploration of erect trees containing reptilian remains at the South Joggins, a very full examination was made of these singular repositories under the superintendence of the author, and the results were published in a memoir of thirty-eight pages in the Transactions of the Royal Society, with nine plates. The facts stated may be summarised as follows, and will be understood on reference to the account of previous explorations in chapter xviii. of this work.

The explorations referred to were carried on chiefly in the beds at Coal Mine Point, South Joggins, Nova Scotia; and their object was to make an exhaustive examination of the contents of erect trees found at that place and containing remains of Batrachians and other land animals.

A detailed section was prepared of the beds containing the erect trees in question, with lists of their fossil remains. The most important part of the section is the following:—

Sandstone with erect Calamite and Stigmaria roots	6 ft. 6 in.
Argillaceous sandstone, Calamites, Stigmaria, *Alethopteris louchitica*	1 „ 6 „
Gray shale, with numerous fossil plants, and also *Naiadites, Carbonia*, and fish scales	2 „ 4 „
Black conly shale, with similar fossils	1 „ 1 „
Coal, with impressions of *Sigillaria* bark	0 „ 6 „

On the surface of the coal stand many erect *Sigillaria*, penetrating the beds above, and some of them nearly three feet in diameter at the base and nine feet in height. In the lower part of many of these erect trees there is a deposit of earthy matter, blackened with carbon and vegetable remains, and richly stored with bones of small reptiles, land snails, and Millipedes. Detailed descriptions of the contents of these trees are given in the memoir, and it is shown that on decay of the woody axis and inner bark they must have constituted open cylindrical cavities, in which small animals sheltered themselves, or into which they fell and remained imprisoned. These natural traps must have remained open for some time on a subaerial surface.

In all twenty-five of these erect trees were discovered and extracted, and the productive portions of them preserved and carefully examined. Of these, fifteen proved more or less productive of animal remains. From one no less than twelve reptilian skeletons were obtained. In a few instances, not only the bones, but
portions of cuticle, ornamented with horny scales and spines, had been preserved.

The Batrachians obtained were referred to twelve species in all. Of these, two were represented so imperfectly that they could not be definitely characterized. The remaining ten were referable to the two family groups of Microsauria and Labyrinthodontia.

The Microsauria are characterized by somewhat narrow crania, smooth cranial bones, simple or non-plaited teeth, well-developed limbs and ribs, elongated biconcave vertebrae, bony scales and plates on the abdomen, and horny scales, often ornate, on the back and sides. They show no traces of gills. The species belonging to this group are referred to the genera Hylonomus, Smilerteton, Hyterpeton, and Fritschia. The characters of these genera and of the several species are given in the memoir, and illustrated by drawings and photographs, including microscopic delineations of the teeth of all the species, with their internal structure and the microscopie structure of their bones, as well as representations of their cuticular ornamentation and armour.

The Labyrinthodonts are represented by only two species of Dendrerpeton, which are also described and delineated.

About half of the reptilian species described were new, and those previously described from fragmentary remains were more fully characterized, and their parts more minutely examined.

The invertebrate animals found are three species of land snails and five of myriapods, besides specimens supposed to represent new species of myriapods and insect larvae, not fully examined, and which were afterwards reported on by Dr Scudder, of Cambridge, U.S.

The memoir closes with the following general statement:—"The negative result that, under the exceptionally favourable conditions presented by these erect trees, no remains of any animals of higher rank than the Microsauria and Labyrinthodontia have been found, deserves notice here. It seems to indicate that no small animals of higher grade inhabited the forests of Nova Scotia at the period in question; but this would not exclude the possibility of the existence of higher animals of a larger size than the hollow trees were capable of receiving. Nor does it exclude the possibility of higher animals having lived contemporaneously in upland situations remote from the low flats to which our knowledge of the coal-formation is for the most part confined. It is to be observed also that as some of the reptilian animals are represented only by single specimens, there may have been still rarer forms, which may be disclosed should other productive trees be exposed by the gradual wasting of the cliff and reef."
Prof. T. Rupert Jones has kindly examined and described a number of Entomostraca found in connexion with the exploration of the erect trees.* They occur, not in the trees themselves, but in the roof shale of the coal on which the trees stand, in fine shale which represents the first deposit of silt over the peaty soil on which the Sigillaria grew. In the same paper he has ably summed up our knowledge of Entomostraca in the Carboniferous of Nova Scotia generally. Prof. Jones determines the most common crustacean in the shale—and, indeed, in the Joggins shales generally—as Carbonia fabulina, J. and K. This is the species figured at page 206 as Cytherella inflata.

I may add that Dr Scudder has given much attention to the Myriapoda, Insects, and Arachnids of these deposits, but must refer for his results to his papers in the Memoirs of the Natural History Society of Boston. One correction which has resulted from his recent labours is, that the species figured at page 53 of the Supplement as Libellata carbonaria, and supposed to be the larva of a dragon-fly, is now found to belong to the Arachnida, and to that curious group between the mites and the scorpions represented in modern times by the well-known Chelifcr or scorpion-crab. Its name must now be changed to Anthrocomartius carbonarius; and it may be restored by prefixing a squarish cephalo-thorax, furnished with eight spider-like legs, and probably a pair of claws in front.

I entertain the hope that I may be able fully to revise and to publish in a connected form the fossil plants which I have described at various times, and the specimens of which are now in the Peter Redpath Museum; but this is a work requiring years, and unfortunately interrupted by many engagements.

One fact of general application which is admirably illustrated in the Carboniferous of Nova Scotia is the extreme sensitiveness of the earth’s crust to unequal pressure. The coal-formation of the Cumberland district, 5000 feet in thickness, and consisting wholly of beds which must have been deposited almost exactly at the sea-level, shows that for every inch of sediment or of vegetable matter there must have been a corresponding depression of the crust. This accurate correspondence of sedimentation with subsidence has long appeared to me one of the most striking facts in geological dynamics.

IV. THE ERIAN, OR DEVONIAN.

This formation, most largely and completely represented in the great “Erie Division” of the Geological Survey of New York, which occupies an immense area in the district around the lake from which

* London Geol. Magazine, August 1884.
...and described a few fossils. At the exploration of sulphur springs, but in the shale which represents the Sigillaria beds, our knowledge is very imperfect generally. Prof. Penhallow has described the shale—and, perhaps, the Sigillaria beds from Fabella, J. and C. Fabella inflata.

But it is necessary to revise and to correct many of the results, but must refer the reader to the recent Natural History of the Geology of America, from his recent works. They may be referred to the papers of the American Journal of Science, as those of Prof. Penhallow have been already referred to in the papers of the American Journal of Science.

In the Baie de Chaleur, for example, the lowest series is characterized by Psilophyton and Nematophyton, and by fishes of the genera Cephalaspis, Coccolitus, Ctenacanthus, and Homacanthus. The upper division is characterized by forms of the genera Archaeopteria and Platyphyllum, and by fishes of the genera Petrichthys, Diplacanthus, Planeropleon, Glyptolepis, Cheirolepis, and a new genus named by Whiteaves Eusthenopteron.

The only true marine portion of the system in the Maritime Provinces is the lower part, corresponding to the Oriskany of the interior, and this may perhaps be regarded as an equivalent of the Downton Sandstones of England. Additional facts as to its fossils are given in the first of my papers above referred to.

The greatest granite intrusions of Nova Scotia belong to the close of the Devonian, as do many granitic masses in New Brunswick and Quebec. These are the equivalents of the Devonian and Cornish granites, though perhaps a little earlier in date, and are also represented by the felsites of the Scottish Devonian.

The remarkably rich flora of the Erian of the east of Canada still holds its position as probably the most copious known in this age, and since 1878 I have been able to add a few species and some new facts.

Professor Penhallow has also, in the Transactions of the Royal Society, illustrated more fully the nature of the remarkable tree-like

‡ On Devonian Fishes.”
§ Ibid.
plants of the genus *Nematophyton* from the Baie de Chaleur and Gaspé.

In Mr. Fletcher's Reports on Southern Cape Breton and Eastern Nova Scotia some beds referred by me on the evidence of fossil plants to the Lower Carboniferous are classed as Devonian. I am not in a position to contest this on stratigraphical grounds, but I know that some of the beds contain the characteristic flora of the Horton series or lowest division of the Carboniferous. I may add here that this series is sometimes locally unconformable to the coal-formation.

As doubts have been expressed, since the date of the last edition, respecting the Lower Erian (Oriskany) age assigned in the body of the work to the beds holding the iron ore of Nictaux, and Bear River in Nova Scotia, I give here an abridgment of part of my paper of 1879 above referred to, and in which further details will be found.

In 1868 I recognised, on the evidence of stratigraphy and fossils, in the district extending from New Canaan to Bear River, the following groups of rocks:

1. The Niagara series, equivalent to the Wenlock of English geologists, represented by the Dictyonema shales and the coral-bearing rocks of New Canaan.
2. The Upper Arissaig series (of my papers on Eastern Nova Scotia). This is the equivalent of the Lower Holderberg series of America, the Ludlow of England, and is the upper member of the Silurian as held at that time. Beds of this age occur at Nictaux near to those of the next series.
3. The Oriskany series, represented by iron ores, sandstones, and shales. At that time the Oriskany was regarded by all as Lower Devonian. More recently some American geologists have proposed to place it in the upper part of the Silurian, above the Lower Holderberg, with which its fossils have some affinity.

A careful re-examination of the fossils which I have collected at Nictaux and Bear River affords the following species characteristic of the third of the above groups:

1. *Zaphrentis*, a large species with deep calyx.
2. *Favosites*. General form and size of cells similar to those of *F. cer.technitis*, Ed. and Hainé; tabulate continuous and very close.
4. *Stenopora*. A branching species with very fine cells.
5. *Strophodonta magnifica*, Hall. A large Strophodonta, resembling, as far as the specimens admit comparison, the above species, characteristic of the Oriskany.
7. *Spirifer acroosus*, Hall. This characteristically Oriskany species is so abundant at Nictaux, that though the specimens are imperfect, I think its recognition certain. It is found also at Bear River.
8. *Spirifer arrectus*, Hall, or allied, also an Oriskany species.
9. Spirifer Nictavensis. This is the most abundant species in the Nictaux ore, some specimens of which are crowded with it, and it is also found at Bear River. It is very nearly allied to the well-known Spirifer micronatus of the Devonian. It is perhaps still nearer to S. Gaspensis of Billings from the Gaspé sandstone; and no Spirifers of this type are known to extend so low as the Medina.

11. Leptoeclia flabellata, Hall. This little shell is abundant at the base of the Devonian in Gaspé, and the same or a very similar species is found at Nictaux and Bear River.

13. Megambovia, very near to the Oriskany species M. lamellata, Hall.

14. Avicula, a large species of the type of the Oriskany species A. textilis, but too imperfect for determination.

15. Tentaculites, not distinguishable from T. elongata, Hall, of the Lower Helderberg.

16. I group together a Plantyceros very near to an Oriskany species, a Dillerophon and an Orthoceras, found at Nictaux.

Fragments in my collection indicate several other species; but the above I hold to be amply sufficient to prove that the beds in which they occur are approximately of the age of the Oriskany sandstone, and cannot possibly be so old as the Clinton or Medina formation, to which they have been, as I believe incorrectly, assigned.

It is also to be observed that, independently of the determination of species, the whole aspect of the fauna of the Nictaux iron bed, in its abundance of large ribbed spirifers, of large strophomenoid shells, and of great lamellibranchiate species, is different from that of the Clinton or Medina, and on the contrary reminds an observer forcibly of the Oriskany sandstone of Gaspé and of Western Canada. It is almost equally distinct from that of the (Helderberg) Silurian red hematite of Pictou.

It should, however, be distinctly understood, that, in so far as I have held Erian rocks to exist at Nictaux and Bear River, the upward extension of such rocks is limited to the Oriskany sandstone, and should any one hold that this formation may be included in the Silurian, I have no objection; though I think that on physical grounds and by virtue of its close relationship with the overlying formations, it has quite as good claims to be correlated with the Lower Erian.

Questions which have been raised respecting the age of the granite of Nictaux and its vicinity can only be discussed profitably on the ground. My notes of many years ago assure me, however, that I have traced the Lower Devonian beds into contact with the granite.
in such circumstances as prove the later date of the latter, and there are now in my collections specimens showing the gradations from the fossiliferous to the altered strata, including some which hold Oriskany fossils, but have assumed an incipient gneissic structure, and were penetrated by granite veins. It is further to be observed that the age assigned by me to these granites accords with the fact that in Nova Scotia the formations older than the Carboniferous are more or less in an altered and disturbed condition, and that granite debris does not occur as a prominent ingredient in our formations till the Lower Carboniferous age. In the district in question, the thick beds of granitic sandstone in the Lower Carboniferous near Wolfville and Lower Horton afford a good illustration. Besides this, we have to consider the evidence given in the body of this work of the age of similar granites in other parts of Nova Scotia, and referred to above.

I should add here that the age above claimed for a portion of the Nictaux series in no respect conflicts with that assigned in 1860* by Prof. Hall and myself to the Silurian iron ores of the East River of Pictou, and illustrated at page 594, and First Supplement, page 76, and in my paper of 1880.† These are somewhat older than the ferruginous beds of Nictaux, being of Lower Helderberg age, and apparently associated with strata still lower in the Silurian series, and some of which are probably synchronous with the Lower Arisaig (Clinton) series.

In Pennsylvania bedded iron-ore deposits occur in the Clinton, Lower Helderberg, Oriskany, Corniferous, and Marcellus, so that they range, as I believe they do in Nova Scotia, from the Middle of the Upper Silurian to the Lower Devonian inclusive.‡ The principal deposits in Pennsylvania are in the Clinton, Oriskany, and Marcellus. In Nova Scotia only small layers are known to me, at Arisaig and East River, so low as the Clinton, and the principal deposits seem to be Lower Helderberg and Oriskany. The analogy is thus sufficiently close, beds of the age of the Marcellus not having been recognised in Nova Scotia.

V. THE SILURIAN.

In the inland plateau of North America this period begins with shallow-water conditions passing into the great and long-continued depression marked by the Niagara Limestone. There is then a second elevation, that of the Salina, succeeded by the very widely distributed

* Canadian Naturalist, vol. v.
† Ibid., vol. ix.
‡ Second Survey of Pennsylvania, vol. F.
Helderberg Limestones. There are thus two depressions separated by an intervening elevation.

In Newfoundland the Silurian rocks occur in a narrow trough extending through the centre of the island, and, so far as can be ascertained from the Reports of the Survey of Newfoundland, are not dissimilar from the exposures in Nova Scotia.

In the latter province the great limestones are, as stated in the earlier editions, absent or represented by comparatively insignificant and impure bands. Shales with some sandy beds (Lower Arisaig beds of previous papers) represent the Clinton, and contain Gray toitthus clintonensis; coarse impure limestone and shale (New Canaan beds of previous papers) correspond to the Niagara, holding characteristic corals of this age, and shaly beds with thin layers of limestone (Upper Arisaig of previous papers) represent the Helderberg. In Nova Scotia these occur in the New Canaan, Arisaig, and Pictou districts, and their characters correspond to those seen in Newfoundland, New Brunswick, and Maine. In the Cobequid Mountains of Nova Scotia, however, and in New Brunswick, these beds, especially in their upper part, show great contemporaneous emissions of igneous rock. These are partly felsitic and partly doleritic and amygdaloidal. They correspond in age with those isolated igneous masses of the plain of the St. Lawrence to which the Montreal and Beloeil Mountains belong.

In proceeding to the west and north, the Helderberg Limestones appear in great force at Cape Bon Ami in Northern New Brunswick, where they are rich in fossils and associated with beds of trap. Both limestones are largely developed in Bonaventure and Gaspé, and the lower member in the Island of Anticosti, so that here, as in previous periods, the area of the Gulf of St. Lawrence corresponds with the interior plateau rather than with the coastal region. In some respects, indeed, this area presents an exaggeration of the interior conditions, since in Anticosti there is apparently a gradual passage from the limestones of the Hudson River group to those of the Clinton, without the intervention of sandstones similar to the Oneida and Medina of New York and Ontario. In so far as I am aware there is also an absence of beds representing that condition of deserts and salt lagoons represented by the Salina or Onondago salt-group. In this last respect, as in so many others, the conditions of the eastern districts of America conform to those of Europe, and not to those of the interior plateau of America.

In America as in England the Silurian of the maritime districts is unconformable to the Cambro-Silurian, though this does not hold in Anticosti or in the inland region.
Much new information as to the subdivision and character of the Silurian in New Brunswick and Nova Scotia appears in the Reports of Bailey and Fletcher above referred to; and in my paper on the iron-ore deposits I have given further facts as to the fossils.

VI. THE CAMBRO-SILURIAN, OR ORDOVICIAN.

With the incoming of this age a more marked distinction occurs in America between the marginal and plateau-deposits. This had previously appeared in the Cambrian, and becomes more distinct in the Erian and Carboniferous, but it is somewhat peculiar as between the marginal and submarginal areas and those inland in the period on which we now enter.

In Newfoundland, Murray and Howley have described large areas of Quebec group rocks in the west and north of the island, which seem to be continuations of the submarginal area of the Lower St Lawrence. There is also one limited exposure of Trenton Limestone on the west coast, which may be regarded as belonging to the area of the Gulf of St Lawrence.

So far as our present subject is concerned, it is sufficient to observe that the Quebec group is not strictly an outer marginal formation, but rather submarginal, and belongs to a period when the principal area of coastal deposition of sediment from the north was inland of the Acadian provinces, or between them and the main American plateau, and separated from the outer ocean by a belt of active volcanos. Its conditions of deposit and characteristic fossils may fairly be compared with those of the Skiddaw and Arenig of England.* The Ordovician series of Shropshire extending upward from the Stiper Stones to the Caradoc is also a counterpart of the Quebec group.†

Of Ordovician rocks other than the Quebec group and nearer to the Atlantic margin, perhaps the best example is that of the area in Central and Western New Brunswick described by Prof. Bailey.‡ This consists, in ascending order, of (1) gneiss and mica-schist with chloritic and hornblendic schists, (2) gray and purplish micaceous sandstones and slates with limestone and conglomerate and felspathic slates, (3) black graphitic and pyritic slates, (4) schistose felspathic rocks and conglomerates, (5) amygdaloid and felsite with sandstone and slate, (6) felsites capped with sandstones and slates, often chloritic. These remarkable rocks, which are of great thickness and

* Hicks, Classification of Lower Palæozoic Rocks, 1881.
† Lapworth, Geol. Magazine, 1887.
have evidently experienced much metamorphism, have been found at
one locality to contain fossils of Trenton age equivalent to Bala and
Llandilo. Similar rocks come out from beneath Silurian beds in
various parts of the hilly districts of Nova Scotia.* They resemble
the Cumberland Ordovician more nearly than other British develop-
ments of these rocks. In the continuation of these beds in Northern
New Brunswick Graptolites were discovered some years ago by Mr
Robb and Dr Ellis, of the Canadian Geological Survey, and are
believed to be of Upper Ordovician age.

VII. THE CAMBRIAN.

For a long time the base of the Paleozoic, in the eyes of most of
the geologists of America, was the Potsdam Sandstone, which over
wide areas of Canada and the United States rests unconformably and
directly on the Laurentian.

The marginal areas of the continent have since afforded a great
series parallel to the Cambrian of Wales and of Scandinavia.

In southern New Brunswick the Huronian rocks, or the Signal-Hill
red sandstones and conglomerates overlying them, are succeeded,
according to Jukes and Murray, by a thick formation of sandstones
and slates with a little limestone and conglomerate, and near the base
of this the great *Paradoxides* Bennettii and other forms of like age
are found. These are Middle or Lower Cambrian, and obviously
parallel with the beds holding the rich fauna of this age in New
Brunswick, originally described by the late Prof. Hart,† and more
recently and more fully by Mr Matthew. † The strata holding these
fossils in Newfoundland have conglomerate, slate, and limestone
below, and a great thickness of variously coloured slates above, over-
lain by sandstones and slate. Very similar beds constitute the lower
Cambrian series of St John, New Brunswick.

There exists in southern New Brunswick a series of red, purple,
and gray conglomerates and sandstones not unlike the Signal-Hill
series, unconformable to the Huronian below and the *Paradoxides-
beds* above, and holding not only worm-tracks, but Linguloid shells.
These are regarded by Matthew as a basal Cambrian series, equiva-
 lent to the Caerfai group of Hicks, while above this are the equiv-
lents of the Solva and Menevian groups of the same geologist, corre-
sponding in mineral character and fossils so closely as to indicate
portions of the same sea-bottom. ¤ The Briantree slates in Massa-

† Acadian Geology, 1868. † Trans. Royal Society of Canada, 1885 to 1888.
¤ Matthew, Canadian Record of Science, 1888.
chusetts with their underlying conglomerates may be considered a
continuation of the New Brunswick beds. *

Above these in Eastern Newfoundland is a slender representation
of the lower part of the Upper Cambrian, consisting of sandstones and
flags, often micaceous, with Lingula. Similar beds cap the Lower
Cambrian in southern New Brunswick. Mr Fletcher, of the Canadian
Survey, has found fossils indicating what is probably the same horizon
in the slaty districts of southern Cape Breton. Mr Matthew regards these
series as covering the whole succession from the Caerfai group of
Hicks to the Lingula-flags, and the two great zones A and B of
Angelina in Sweden. There is, however, no certain evidence that any
of these beds reach so high as the horizon of the Potsdam. †

These rocks of Newfoundland and the Acadian Provinces, containing
what I formerly named the "Acadian group," ‡ are in their litho-
logical characters and fossil remains equivalents of the Longmynd,
Menovian, and Lower Lingula-flag groups of England.

In this connexion an important group of rocks is the Atlantic coast
series, or gold series of Nova Scotia, described by me in the
Geological Society's Journal in 1850, § and subsequently in "Acadian
Geology" and supplements thereto. || This great series, extending
for more than 200 miles along the Atlantic coast of Nova Scotia,
consists of dark-coloured quartzite and slate in massive bands, the
former predominating below and the latter above, and the whole
attaining to a thickness of perhaps 10,000 feet. In its western
extension it appears to rest on rocks of Huronian aspect, and where it
is invaded by granitic masses and veins (Devonian in age) it assumes
the condition of mica-schist and imperfect gneiss, being then similar
in mineral character to the rocks elsewhere known as Montalban. It
has, unfortunately, afforded no well-characterized fossils. The mark-
ings called Eophytton † and certain radiating bodies (Astropolithon) **
found in it are, however, similar to those occurring elsewhere in
Lower Cambrian rocks. Murray was disposed to regard this forma-
tion as corresponding to his Huronian in Newfoundland; but it does
not agree with this either in mineral character or in fossils, and is
perhaps rather to be regarded as a great development of the lowest
member of the Cambrian, an exaggerated equivalent of the Harlech
Grits and Llanberris Slates. In this case, however, it may be
expected that it will yet afford true Cambrian fossils.

* Crosby, Boston Socety of Nat. History, 1884.
1886; Canadian Record of Science, 188.
¶ Selwyn, Report Geol. Survey. ** Acadian Geology, Supplement, p. 82.
In Western Europe, as Hicks has shown, great movements of depression must have occurred in this period, and we have evidence of a similar character in America. If we roughly divide the Cambrian system into three great series, characterized respectively by the prevalence of the large Trilobites of the genera Olenellus, Paradoxides, and Dikellocephalus, we shall find that the former, the true Lower Cambrian, extends somewhat widely over the great continental plateau of America, being found in the St Lawrence valley, in Vermont, and even in Nevada and Utah, and the Rocky Mountains of Canada. The second or Paradoxides group is more properly a marginal deposit formed at a time when there was probably a great continent west of the then infant Appalachians. On the other hand, the upper members of the Cambrian, the Dikellocephalus group or Potsdam Sandstone, is apparently altogether absent in the Acadian provinces, which at that time must have been under ocean-depths in which deposits of a very different kind would be produced, or elevated into land, perhaps the border of an Atlantic island now mostly submerged. It seems doubtful if any good equivalent of the Potsdam exists in England or Wales.

It is otherwise, however, with the next succeeding formation, that passage-series between the Cambrian and Ordovician known in Wales as the Tremadoc. This, in America, takes a more inland position, and becomes an interior or submarginal formation connected with the Quebec group. It has not yet been recognised in Acadia, but at Matane and Cape Rosier, as noted by me in 1883, and as Lapworth has more fully proved in 1886, we have a true Tremadoc filled with Dictyonema sociale, and containing also fragments of characteristic Trilobites. Further inland, on the main American plateau, these beds are not found, but are represented by the peculiar "Caliciferous" formation, a dolomite formed apparently in an inland sea and having a characteristic fauna of its own.

Before leaving the Cambrian, it may be well to state that Mr Matthew informs me that he hopes to make out in the St John series the equivalents of all the subdivisions of the Paradoxides zone established by Linnarson in Sweden, so that there would seem to be a correspondence even in the minor details of the deposits on the opposite sides of the Atlantic. This, as we shall see, also appears to Prof. Lapworth to hold in the case of the Graptolitic fauna of the Upper Cambrian and Ordovician on the two Atlantic margins.

† Report Peter Redpath Museum, No. II., Richardson's Observations at Matane.
‡ Transactions Royal Society of Canada.
In Mr Matthew's latest paper* he states that while in certain parts of the Cambrian basin of St John the Acadian series (Paradoxides group) rests directly on the Laurentian, in tracing the beds to the eastward they are found to be separated from the Laurentian by a band of conglomerate, shales, sandstones, and flags of purplish, reddish, and greenish colours. Some parts of these beds I have had the pleasure of seeing in company with Mr Matthew. They constitute what he has termed the Basal Cambrian series, and attain to a thickness of 1200 feet. They are regarded as the equivalents of the Caerfai group of Hicks and of the so-called Sparagmites formation of Norway, and the upper part is supposed to correspond with the lower portion of the Manuel's brook beds of Newfoundland. These lower beds, holding what has been called the Olenellus fauna, from the occurrence of large Trilobites of that genus, are now regarded as Lower Cambrian,† and the Georgia slates of the Province of Quebec are included in its upper part. We should thus have in ascending order:

1. Basal series of Matthew, Lower Cambrian or Olenellus series.
2. Acadian or St John series, Middle Cambrian or Paradoxides series.
3. Potsdam or Upper Cambrian.‡ Pelura beds of Miré, Cape Breton, Kelly and Little Bell Island beds, Newfoundland, and possibly portions of Upper Member of St John group in New Brunswick.

The descriptions given in pages 637 et seq., it will be observed, refer mainly to the second of the above divisions, and many additions to the fossils, as well as revision of the nomenclature, will be found in the papers of Mr Matthew above referred to, and in a memoir by Mr Walcott in the publications of the U.S. Geol. Survey.§

VIII. THE HURONIAN.

In the typical area of Lake Huron, as originally described by Logan and Murray,|| this system rests unconformably on the Lower and Middle Laurentian, and presents a great contrast in point of mineral character to these formations. It is comparatively little disturbed, and is elastic rather than crystalline in character. This point has been well insisted upon by Dr Bonney and by Mr Irving in recent

‡ Matthew prefers with Hicks to consider the Paradoxides beds as Lower Cambrian; dividing the whole system into two main divisions (American Geologist, Sept. 1889, p. 139).
§ Bulletin, No. 10, 1884.
|| Geology of Canada, 1863.
It has been noted in certain areas (Purposes, etc.) that the beds of the lower Laurentian series (Paradoxides) often contain pebbles of Laurentian jasper, and have been observed that they constitute a layer in the bed (or bed) of the Paradoxides.* Further, its conglomerates contain pebbles of Laurentian rock in the same crystalline state in which these rocks are found at present. It consists chiefly of quartzites, conglomerates of different kinds, limestone, and slates, sometimes chloritic, with interbedded diorite. Without discussing those more or less crystalline rocks west of Lake Superior and in the Appalachian region, which have been by Logan himself and later authors identified with the Huronian, and which may, in part, belong to the interval between the Huronian and Laurentian or to the upper beds of the latter, or may even be later sediments in an altered state, we may attend at once to the beds which on the Atlantic coast succeed the Laurentian. We may remark, however, that, associated with the Huronian at the west of Lake Superior, and extending thence northwards to Hudson's Bay and the Arctic Sea, are the dark slates, sandstones, etc., constituting the Aimikiké series of Hunt. Whether these constitute an upper member of the Huronian or a distinct formation does not certainly appear. It is, however, certain that this formation is very widely distributed, especially in the north.† It is also to be observed that many of the bedded rocks of the Huronian are really of volcanic origin, being bedded volcanic ashes or muds in an altered state.‡

In Newfoundland the older slate-series of Jukes,§ which Murray originally called the intermediate series, but afterwards mapped as Huronian, consists, in ascending order, of quartzites with diorites and jasper bands, slate-conglomerate, green, purple, and red slates, and dark brown or blackish slates. In the upper part of this or the lower part of the next group are the worm-burrows known as Arenicolites spiralis and the uncertain fossils described by Billings as Aspidella. The lithological correspondence here between Newfoundland and Lake Huron is very close, and is increased by the fact that a series of red sandstones and conglomerates, the Keweenian of the West and the Upper Huronian or Signal-Hill beds of Jukes and Murray, overlie the typical Huronian in both districts.||

Passing from Newfoundland to the coast of southern New Brunswick, we find in the "Coldbrook" and "Coastal" series of Bailey a group corresponding essentially to that in Newfoundland, except, perhaps, in the fact that felsitic rocks occur to a larger extent in the

* Anniversary Address, 1886. Amer. Journ. of Science, 1887.
§ Report on Newfoundland, 1843.
|| Geology of Newfoundland, 1881.
lower part, and that the upper part presents not only conglomerates, ash-rocks, and amygdaloids, but also chloritic and hydromica schists. This upper part, distinguished as the "Coastal Series," is regarded by Prof. Bailey as distinct from the Huronian proper, and as either an upper member of that system or perhaps of later age, though pre-Cambrian.①

As in Newfoundland, the typical Huronian of New Brunswick is overlain by reddish and purple conglomerates, sandstones, and shales, which are, however, here regarded as the base of the Cambrian,† Matthew having found in them, as already stated, worm-burrows and fusoids, with a Linguloid shell. They appear to underlie unconformably the lowest division of the Paradoxides-beds.

With these rocks, whether of Lake Huron, Newfoundland, or New Brunswick, I have no hesitation in comparing the Pebidian of Wales, as well as certain portions of the older Malvern rocks and those of Charnwood Forest. Some of these groups I have seen on the ground, others are well known to me by suites of specimens. Similar rocks also succeed the Laurentian in Scandinavia and in other parts of Europe as well as in Africa and portions of Asia. Thus the Huronian type is very widely distributed, even if we take it in the restricted sense as originally used by Logan, and, later, by Irving,‡ and by the writer in 1857,§ and leave out doubtful deposits which have been connected with it.

The Huronian marks a period of igneous disturbance and coarse mechanical deposition succeeding to the Laurentian foldings. It is essentially a coastal or marginal deposit, and indicates that at the close of the Laurentian considerable areas of land had been elevated in the northern hemisphere. It was along the margins of this old Laurentian land that the Huronian was deposited, and its ontops mark these margins, which in America before the rise of the Appalachianos extended westward from the Atlantic coast along the southern shores of the Laurentian land. The conditions of deposit in Wales at the same period were evidently in general similar, though with local peculiarities.

Two important questions arise from the above statements. The first relates to possible deep-sea deposits of this age, differing from the coarse marginal detritus and volcanic accumulations. These

† Geological Survey Reports, 1878.
‡ Amer. Jour. of Science, 1887.
§ Canadian Naturalist, 1857.
must have existed; but to what an extent are they known to us? The limestones associated with the Huronian probably belong to their margins; but these have so far afforded no fossils except obscure indications of sponge-spicules in the chert-nodules which they contain.* Those, which seem to be simple spicules, would indicate at least sponges as inhabitants of the Huronian sea. It is just possible that some fortunate discovery of deep-water deposits of this age may yet be made; but if so, they will certainly be different in mineral character from the typical Huronian, and so may for a time fail to be identified with it.

I confess, however, that I am inclined to suspect that some of the beds known as Aininiké and Taconian may prove to be of this character, as well as some of the disputed Huronian of the Appalachian region.†

The second question relates to the extent to which conditions similar to those of the Huronian may have been repeated in subsequent periods; and here it is evident that wherever on continental margins coarse aqueous rocks were being accumulated, in the vicinity of igneous foci and mixed with their detritus, rocks lithologically resembling the Huronian may have been deposited. This consideration imposes much caution as to the possible correlation of such deposits with the true Huronian on the ground of mineral character alone. In Nova Scotia and New Brunswick, as well as in Great Britain, there are rocks having in many respects the aspect of the Huronian which belong to Palaeozoic times, and there is reason to believe that on the Pacific coast there are certain rocks of this kind of much later date. These, as has been shown by Dr Selwyn and Dr G. M. Dawson, are in great part bedded volcanic ash-rocks in an altered condition.‡

An important new light has, as already stated, been thrown on the supposed Upper Huronian of Newfoundland by Mr Matthew, who has found that in New Brunswick the conglomerate and red sandstone underlying the Paradoxides-beds are, as before stated, unconformable to these, and that, like the Basal or- Caerfai beds of Hicks in Wales, which somewhat resemble them in mineral character, they contain Lower Cambrian fossils. He therefore regards these as basal Cambrian beds. This may also prove to be the position of the New-

* I have found such indications in the chert of the limestones on Georgian Bay. They are apparently simple acerate siliceous spicules, resembling those of some Cambrian sponges. Journal Geol. Society, Nov. 1888.
† See, however, Dr Sterry Hunt, "Elements of Primary Geology," Geol. Mag., Nov. 1887, for his classification of the western rocks of these groups.
foundland Signal-Hill rocks, and of the Kewenian series of the west. I have been informed by the late Mr Irving that "an obscure Linguloid shell" has been found in the quartzite of south-western Minnesota, a formation which he regarded as probably below the Kewenian, and possibly even Huronian.* These facts render it possible that an Upper Huronian series containing precursors of the Cambrian fauna may yet be recognised, or possibly a new intermediate system to be designated by some other name.† It will also be observed that, like the typical Huronian, such series, whether Huronian or Kewenian or intermediate, will be common to the coastal and interior regions, thus differing from the Middle Cambrian and agreeing with the recognised Lower Cambrian.

IX. THE LAURENTIAN.

It is, I think, becoming more and more evident that in every part of the world the oldest rocks exposed are of the nature of orthoclase-gneisses associated with various kinds of crystalline schists, and locally with quartzites and limestones. This statement applies with equal force to the Acadian Provinces of Canada and to Western Europe. In these districts, however, the old Laurentian substratum is represented, not by great continuous areas, as in the interior of North America, but by rugged islets and ridges of crystalline rock, in most places so imperfectly exposed that their subdivisions can scarcely be made out, and that geologists may even be excused for doubting the stratified character of their rocks. It is only by comparing them with the magnificent series exposed in the country north of the St Lawrence, and worked out so ably by Logan, that the more limited exposures of the Atlantic margins can be understood.

In the Journal of the Geological Society for February 1865 will be found a summary statement by Logan of the structure of this formation, which still holds good.‡ He there divides the Laurentian into two series, the lower and the upper, the former largely composed of orthoclase-gneiss, but with beds of limestone, quartzite, the micaeous and hornblende schists in its upper parts; the latter composed of similar gneisses and limestones, but with beds of gneissose anorthosite and labradorite, and great masses of coarsely cleavable labradorite and hypersthene.

It is perhaps unfortunate that these last masses, many of them, no doubt, accidental and intrusive, so forcibly attracted the attention of Logan that he characterized the Upper Laurentian as a labradorite

* See, however, Winchell Minnesota Reports, 1884-88.
† Matthew, Canadian Record of Science, 1887.
‡ "On the Eozoic and Palaeozoic Rocks."
series, whereas the true aqueous rocks of this series would afford better terms of comparison with other districts than merely igneous masses or beds. A similar objection, I think, applies in some degree to the name Norian, as more recently given by Hunt; and I have no doubt, from my own observations in the typical districts, that Logan's division must stand, though perhaps it would be well to separate the lower gneiss from the remainder of his Lower Laurentian, and to recognise a Lower, Middle, and Upper group, all of which are distinctly crystalline rocks.* The upper member, as developed in the west, should, I think, include some of the crystalline rocks which have been classed as Huronian, and which seem to fill part of the gap between the latter and the Lower Laurentian in the regions further east.† This view will in any case afford better means of comparison with the Laurentian of other districts, and the occurrence of masses of binary granite and syenite in the Lower group and of labradorite in the Upper need not interfere with such comparisons, though it is to be observed that in the Upper member plagioclase feldspars are much more abundant than in the Lower. Prof. Bonney has some very judicious remarks on this in his Anniversary Address before the Geological Society in 1886.

Whatever views may be entertained as to the origin of these old rocks, no one who has studied the typical districts of the Ottawa River can doubt for a moment that they are regularly bedded deposits, and that in the Middle Laurentian those conditions which in later periods have produced beds of limestone, sandstone, iron-ore, and even of coal, were already in operation on a gigantic scale. † At the same time it may be admitted that some areas of the lower gneiss may be cooled portions of an original igneous mass, and that many of the schistose rocks may be really bedded igneous materials.

Turning now to the Atlantic coast, the greatest area of Laurentian rocks is that forming the nucleus of the Island of Newfoundland. In the northern part of that island the absence of the more limited

* The two principal members have been named respectively the Ottawa and Grenville series. The third, or upper member, in Logan's typical district has been separated as the Norian series by Hunt; and by Selwyn (Reports Geol. Survey of Canada, 1879-80) is regarded as mainly composed of igneous rocks. In the Maritime Provinces, as we shall see, only two members have been recognised.

† Dr Bigsby, "On Lake of the Woods," Journal of Geol. Society, 1851-2; Dr G. M. Dawson, Report on 49th Parallel, 1875; Mr Lawson, Reports Geol. Survey of Canada, 1885. The latter has proposed the name "Keewatin" for some of these rocks in the west.

‡ Q. J. G. S., vols. xxii., xxv., xxxii., xxxv. In these papers I have set forth not merely the evidence for the organic character of Eocene, but for that of the Laurentian limestones and graphites and phosphates in general.
limestones would seem to indicate that the lower member of the series alone is represented. The same remark applies to the continuation of the formation in the south of the island, with the exception that indications of graphitic limestone and of magnetic iron-ore have been found in two places.*

It is to be noted here that the great uplift in Pre-Cambrian times of the Laurentian nucleus of Newfoundland seems to have acted as an outwork to the formations to the westward, protecting the area of the Gulf of St Lawrence from those thrusts from the eastward which have piled up in gigantic earth-waves the older formations of other parts of Eastern Canada and the Appalachian region. In consequence of this the area of the Gulf of St Lawrence has throughout Palaeozoic time remained undisturbed, and has conformed in its conditions of deposit rather to the internal plateau than to the maritime districts.

In Cape Breton the isolated mass of St Ann’s Mountain seems to be a representative of the Lower Laurentian of Newfoundland, and Mr Fletcher’s observations render it probable that rocks of this kind exist in the northern extremity of the island. In Nova Scotia proper I have not as yet been able to recognise any true Laurentian, the rocks attributed by some other observers to this age being, in my judgment, intrusive granite masses of much later date associated with altered rocks.†

In southern New Brunswick, however, the Laurentian reappears. As seen near St John, the lower part consists of red and gray gneiss with chloritic gneiss and diorite. The occurrence of hydrated silicates in some parts of these old gneisses may be attributed to changes subsequent to their original formation. The upper member contains much limestone, with graphite and serpentine,‡ gray quartzites and diorite. This last series, which I hold to be really Laurentian, as it certainly underlies, and probably unconformably, the Huronian system, must belong to the upper member of the series. There is, indeed, nothing in its mineral character to exclude it from the Upper Laurentian as developed further west except the absence of certain igneous rocks.

The resemblance of this interrupted belt of Laurentian along the Atlantic coast of America to that which extends southward from Scandinavia along the west of Europe is patent to every observer. The relation to the next succeeding formations is also identical, and

* Murray’s Geol. Survey of Newfoundland, 1881.
† Supplement to Acadian Geology, 1878, p. 89.
‡ In this limestone there occur fragments of Eocoon, and the graphite shows obscure fibrous structures.
on both sides of the Atlantic those great foldings which have bent and crumpled the old crystalline rocks seem to have occurred at the close of the Laurentian and before the next succeeding formation. It is to be observed here, however, that in the case of the Laurentian these foldings pervaded the whole of what are now the Continental areas, as well as those marginal lines which were alone affected by the succeeding movements. This general disturbance of the Laurentian over the whole breadth of our continents, before any of the succeeding beds were deposited, impresses us with the conviction that the earth-movements immediately following the Laurentian were more extensive than those of any subsequent period, that they form a sufficient explanation of the very different character of the next succeeding formations, and that they produced wide areas of elevated rock which formed the nuclei of all later deposits and movements.

In comparing the Upper Laurentian of New Brunswick with the rocks which elsewhere, as in New Hampshire, the district of St. Jerome, the Madoc district in Ontario, and the country west of Lake Superior, rest on the older Laurentian gneisses or on rocks regarded by some as primitive granites, one is obliged to admit either that this formation is of a somewhat primitive character, or that, as Hunt maintains, there are several different formations of post-Laurentian crystalline rocks occurring in these various localities.

In the Lewisian gneiss of Murchison we have in Britain an adequate representative of the Lower Laurentian, and in the two members of the Dimetian of Hicks a sufficient parallel to the middle and upper members of this great series, which undoubtedly also appear in the isolated mass of the Malverns, and have been recognised by Barrois and Bonney in the ancient crystalline rocks of Brittany.

The following may be reproduced with some changes from the supplement of 1878, as indicating the correlation of the older rocks of Acadia with those of Western Europe.

England, &c.
Nova Scotia and New Brunswick.

Silurian.

Ludlow, Wenlock and Llandovery, Upper Arisaig Series, Nova Scotia; or Mayhill.

Upper Marnacane Series, New Brunswick; Lower Arisaig, New Canaan, and Wentworth beds of Nova Scotia; and Restigouche Series, New Brunswick.

* Hitchcock's Report. The beds called Montalban by Hitchcock occupy this position.

Ordovician.

| Caradoc and Bala, with Snowdon felsites and ash-beds, Coniston and Knock Series. | Upper Cobequid Series, slates, felsites, quartzites, and greenstones.
| Lower Cobequid Series, felsites, porphyrites, agglomerates, and massive syenite of Cobequids, Picton, and Cape Breton? |

| Great felsite and trap-ash Series of Borrowdale (Ward). |

| Lower Llandeilo flags and slates, Arenig Series, Skiddaw slates, &c. |

Cambrian.

| Tremadoc slates and Lingula flags. | Matane or Cape Rosier Graptolitic beds. Miri and St Andrew's Channel Series in Cape Breton? |

| Menovian and Longmynd Series, Harlech grits, and Llanberis slates. |

| Caernarvon Group of Hicks. |

Huronian.

| Palidian Series (Hicks), containing felsite, chlorite-schist, and Serpentine. |

| Huronian felsites, chloritic and epidotic rocks of Southern New Brunswick, Yarmouth, and of Cape Breton in part. |

Laurentian.

| Older gneisses of Scotland and of Scandinavia, Dinantian? |

| Gneiss, quartzite and limestone of St John, Portland Group, gneiss of St Anne's Mountain. |

The question of Palaeozoic climates in the northern hemisphere has some bearings on the subjects discussed above, and is well illustrated by a map of the Arctic districts of Canada recently issued by the Geological Survey.* From this it appears that there are no indications of a warm climate in the Arctic basin up to the close of the Cambrian. The later Ordovician and the Silurian were, however, signalized by the deposition in the Arctic seas of thick and extensive organic limestones, holding fossils comparable with those of the temperate regions at the same time. The Lower Erian may perhaps indicate a short relapse to cold; but in the Upper Erian and Lower Carboniferous we have warm seas tenanted by marine animals and a rich land-vegetation appearing both in the Arctic islands of Canada and in Spitzbergen. The Upper Coal-formation and the Permian and Trias indicate a return of cold, and the temperature seems to increase in the Jurassic, attaining its maximum in the later

*"Geology of Northern Canada," Dr G. M. Dawson, 1887.
Cretaceous and Eocene, and gradually diminishing to the glacial age, between which and the modern there seems to have been a warm period of short duration, evidenced in the deposition of mammoth bones, &c., on the Arctic coasts. The cycles of cold and warm climate thus indicated in the Arctic region have, I think, an important bearing on the succession of life further south, at least in Eastern America, and their correlation with the climatal changes in Europe would be a subject of much interest, on which, however, I do not feel in a position to speak positively; but I imagine that the warm and cold periods will be found to correspond with those of the Arctic basin and of America.

A leading element in the importance of the Geology of the Acadian Provinces consists in that diversity from the deposits of the internal plateau of Central Canada and the interior of the United States, which is apparent in so many of their formations, and to which I have alluded above. We are taught in this connexion the necessity in any system of geological classification of distinguishing the continental plateaus, the lines of great foldings and of igneous action, and the ancient ocean-margins from each other, and of adapting our arrangements and nomenclature to their actual diversity. In order to do this, while adopting common designations for the great ages of geological time, and for those systems of formations which mark the successive submergences and emergences of the continental plateaus, separate classifications must exist for the different kinds of areas, in their details. It is also, I think, necessary that we should not tie ourselves down to hard-and-fast lines either as to the limits of systems or as to the relative values of their divisions in widely separated localities, as these differ in nature, and nothing is to be gained by conventional arrangements overlooking these differences.

January 1891.
EXPLANATION OF THE COLOURS IN THE MAP & SECTION

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alluvium & Blown Sand</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Trias, or New Red Sandstone</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Carboniferous</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Devonian</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Upper Silurian</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Lower Silurian</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Huronian</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Laurentian</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Triassic Trap</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Granite, Syenite, &c.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Principal Beds of Coal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Limestones of L. Carboniferous</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iron Ores of Silurian & Devonian</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gold Mines</td>
<td></td>
</tr>
</tbody>
</table>